1
|
Hu Z, Li W, Wei L, Ma J. Lactoferrin in cancer: Focus on mechanisms and translational medicine. Biochim Biophys Acta Rev Cancer 2025; 1880:189330. [PMID: 40274081 DOI: 10.1016/j.bbcan.2025.189330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/16/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
Lactoferrin is an iron-binding glycoprotein that provides natural protective effects to the human body. Its biological properties, including antibacterial, antiviral, anti-inflammatory, immune-regulatory, and iron metabolism-regulating functions, have been extensively studied. With further research, lactoferrin's impact on tumorigenesis and tumor microenvironment has become increasingly evident, as it inhibits tumor proliferation, invasion, and metastasis through multiple pathways. This article summarizes the molecular mechanisms underlying lactoferrin's anticancer effects, explores its association with the malignant progression of various cancers, and highlights its clinical translational potential as a potential cancer biomarker and drug delivery carrier to enhance anticancer therapy efficiency. Due to the high safety profile of lactoferrin, its widespread application in the field of cancer treatment is highly anticipated.
Collapse
Affiliation(s)
- Zhengyu Hu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Cancer Research Institute, School of Basic Medicine Sciences, Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, China
| | - Wenchao Li
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Cancer Research Institute, School of Basic Medicine Sciences, Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, China
| | - Lingyu Wei
- Laboratory of Clinical Research Center, Department of Pathology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China.
| | - Jian Ma
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Cancer Research Institute, School of Basic Medicine Sciences, Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, China.
| |
Collapse
|
2
|
Gori A, Brindisi G, Daglia M, del Giudice MM, Dinardo G, Di Minno A, Drago L, Indolfi C, Naso M, Trincianti C, Tondina E, Brunese FP, Ullah H, Varricchio A, Ciprandi G, Zicari AM. Exploring the Role of Lactoferrin in Managing Allergic Airway Diseases among Children: Unrevealing a Potential Breakthrough. Nutrients 2024; 16:1906. [PMID: 38931261 PMCID: PMC11206375 DOI: 10.3390/nu16121906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
The prevalence of allergic diseases has dramatically increased among children in recent decades. These conditions significantly impact the quality of life of allergic children and their families. Lactoferrin, a multifunctional glycoprotein found in various biological fluids, is emerging as a promising immunomodulatory agent that can potentially alleviate allergic diseases in children. Lactoferrin's multifaceted properties make it a compelling candidate for managing these conditions. Firstly, lactoferrin exhibits potent anti-inflammatory and antioxidant activities, which can mitigate the chronic inflammation characteristic of allergic diseases. Secondly, its iron-binding capabilities may help regulate the iron balance in allergic children, potentially influencing the severity of their symptoms. Lactoferrin also demonstrates antimicrobial properties, making it beneficial in preventing secondary infections often associated with respiratory allergies. Furthermore, its ability to modulate the immune response and regulate inflammatory pathways suggests its potential as an immune-balancing agent. This review of the current literature emphasises the need for further research to elucidate the precise roles of lactoferrin in allergic diseases. Harnessing the immunomodulatory potential of lactoferrin could provide a novel add-on approach to managing allergic diseases in children, offering hope for improved outcomes and an enhanced quality of life for paediatric patients and their families. As lactoferrin continues to capture the attention of researchers, its properties and diverse applications make it an intriguing subject of study with a rich history and a promising future.
Collapse
Affiliation(s)
- Alessandra Gori
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.B.)
| | - Giulia Brindisi
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.B.)
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.D.); (A.D.M.); (H.U.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Michele Miraglia del Giudice
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.M.d.G.); (G.D.); (C.I.)
| | - Giulio Dinardo
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.M.d.G.); (G.D.); (C.I.)
| | - Alessandro Di Minno
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.D.); (A.D.M.); (H.U.)
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Lorenzo Drago
- Laboratory of Clinical Microbiology & Microbiome, Department of Biomedical Sciences for Health, University of Milan, 20122 Milan, Italy;
- UOC Laboratory of Clinical Medicine, MultiLab Department, IRCCS Multimedica, 20138 Milan, Italy
| | - Cristiana Indolfi
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.M.d.G.); (G.D.); (C.I.)
| | - Matteo Naso
- Allergy Center, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.N.); (C.T.)
| | - Chiara Trincianti
- Allergy Center, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.N.); (C.T.)
| | - Enrico Tondina
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | | | - Hammad Ullah
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.D.); (A.D.M.); (H.U.)
| | - Attilio Varricchio
- Department of Otolaryngology, University of Molise, 86100 Campobasso, Italy;
| | - Giorgio Ciprandi
- Allergy Clinic, Casa di Cura Villa Montallegro, 16145 Genoa, Italy;
| | - Anna Maria Zicari
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.B.)
| |
Collapse
|
3
|
Single Nucleotide Polymorphism and mRNA Expression of LTF in Oral Squamous Cell Carcinoma. Genes (Basel) 2022; 13:genes13112085. [PMID: 36360322 PMCID: PMC9690716 DOI: 10.3390/genes13112085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most prevalent types of cancers worldwide. LTF arrests the G1 to S phase transition of the cell cycle. This study is the first that has aimed to determine the possible association between the LTF polymorphisms (rs2073495, rs1126478, rs34827868, rs1042073, rs4637321, rs2239692 and rs10865941), the mRNA LTF expression, the risk of OSCC and the influence on the TNM staging and histological grading. This study was composed of 176 Polish patients, including 88 subjects diagnosed with OSCC and 88 healthy individuals. QuantStudio Design and Analysis Software v1.5.1 was used for the single nucleotide polymorphism (SNP) analysis and mRNA LTF expression. The G/G genotype of rs2073495 and the G/G genotype of rs4637321 were linked, with an increased risk of OSCC. There were no significant influences between the TNM staging and the histological grading and the LTF genotype. We found no statistically significant dissimilarities in the expression level of LTF genes in the tumour and margin specimens. No association was found between the gene expression levels, the other parameters or LTF polymorphisms in the tumour and margin samples. In conclusion, rs2073495 and rs4637321 polymorphisms may affect the risk of OSCC. These results should be validated on larger and different cohorts to better comprehend the role of the LTF gene in OSCC.
Collapse
|
4
|
Wang M, Qin M. Lack of association between LTF gene polymorphisms and different caries status in primary dentition. Oral Dis 2018; 24:1545-1553. [PMID: 29989276 DOI: 10.1111/odi.12939] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/27/2018] [Accepted: 07/02/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Dental caries is related to cariogenic bacteria, salivary components, oral hygiene and host susceptibility. Lactoferrin is an important antimicrobial glycoprotein in saliva; however, the role of the LTF gene in caries susceptibility is unclear. We investigated the association between LTF polymorphisms and the severity of caries. DESIGN Our study included 910 healthy paediatric subjects (aged 24-48 months) categorised into three groups: 403 with no caries or white-spot lesions; 230 with moderate caries (8 ≤ dmft ≤ 12); and 277 with severe caries (13 ≤ dmft ≤ 20). Information regarding the subjects' oral habits was gathered using questionnaires. The LTF rs1126477 and rs1126478 polymorphism alleles were genotyped by Sanger sequencing. RESULTS The three groups showed no significant differences in LTF polymorphisms alleles, genotypes or haplotypes distribution. Multifactor dimensionality reduction analysis showed that the interactions between breastfeeding for a duration >24 months, night feeding >24 months and high frequency of sweet food intake increased the risk of caries (p = 0.0014); however, we detected no interaction effect between the LTF polymorphisms and oral habits on caries susceptibility. CONCLUSIONS The LTF rs1126477 and rs1126478 polymorphisms showed no association with the different levels of caries risk in our Chinese paediatric cohort.
Collapse
Affiliation(s)
- Mengchen Wang
- Department of Paediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China.,Department of Stomatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Man Qin
- Department of Paediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
5
|
Wang X, Wang X, Hao Y, Teng D, Wang J. Research and development on lactoferrin and its derivatives in China from 2011–2015. Biochem Cell Biol 2017; 95:162-170. [DOI: 10.1139/bcb-2016-0073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lactoferrin (Lf), a multifunctional glycoprotein, is an important antimicrobial and immune regulatory protein present in neutrophils and most exocrine secretions of mammals. Lactoferricin (Lfcin) is located in the N-terminal region of this protein. In this review, the current state of research into Lf and Lfcin in China is described. Searching with HistCite software in Web Sci located 118 papers published by Chinese researchers from 2011–2015, making China one of the top 3 producers of Lf research and development in the world. The biological functions of Lf and Lfcin are discussed, including antibacterial, antiviral, antifungal, anticarcinogenic, and anti-inflammatory activities; targeted drug delivery, induction of neurocyte, osteoblast, and tenocyte growth, and possible mechanisms of action. The preparation and heterologous expression of Lf in animals, bacteria, and yeast are discussed in detail. Five Lf-related food additive factories and 9 Lf-related health food production companies are certified by the China Food and Drug Administration (CFDA). The latest progress in the generation of transgenic livestock in China, the safety of the use of transgenic animals, and future prospects for the uses of Lf and Lfcin are also covered.
Collapse
Affiliation(s)
- Xiao Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, P.R. China
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Xiumin Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, P.R. China
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Ya Hao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, P.R. China
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Da Teng
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, P.R. China
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Jianhua Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, P.R. China
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| |
Collapse
|
6
|
Lactoferrin gene polymorphisms in Italian patients with recurrent tonsillitis. Int J Pediatr Otorhinolaryngol 2016; 88:153-6. [PMID: 27497404 DOI: 10.1016/j.ijporl.2016.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/02/2016] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Recurrent tonsillitis is an oral pathology characterized by inflammation of tonsils. The disease susceptibility depends upon environmental and host factors, specifically the innate immune response, the first line of host defence could play an important role. Among innate immunity members, lactoferrin, known for its antimicrobial properties, was previously correlated with the risk of oral pathology as periodontitis and dental caries. METHODS 89 Italian children presenting recurrent tonsillitis and 95 healthy children were genotyped for two LTF non-synonymous polymorphisms, called Thr29Ala and Arg47Lys, in order to investigate their potential role in recurrent tonsillitis susceptibility. RESULTS no different allele, genotype and haplotype frequency distributions were detected comparing patients and controls. CONCLUSION data from the current study indicate that LTF polymorphisms might not be involved in recurrent tonsillitis development in our Italian population. However, since the importance of lactoferrin in oral immunity has been previously assessed, further studies should be necessary to unravel the potential role of LTF genetic variants in oral cavity.
Collapse
|
7
|
Luo G, Zhou Y, Yi W, Yi H. Expression levels of JNK associated with polymorphic lactotransferrin haplotypes in human nasopharyngeal carcinoma. Oncol Lett 2016; 12:1085-1094. [PMID: 27446399 DOI: 10.3892/ol.2016.4723] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/12/2016] [Indexed: 12/19/2022] Open
Abstract
Lactotransferrin (LTF), a member of the transferrin family, serves a role in the innate immune response and is involved in anti-inflammatory, anti-microbial and anti-tumor activity. Alterations in the LTF gene are associated with an increased incidence of cancer. The LTF gene is polymorphic, and several common alleles may be observed in the general population. Our previous study identified a lower rate of occurrence of the 'A-G-G-T' haplotype (constructed with rs1126477, rs1126478, rs2073495 and rs9110) in nasopharyngeal carcinoma (NPC) patients compared with controls. In the present study, in order to elucidate a possible mechanism of LTF-mediated anti-tumor activity in NPC, the protein profiles of NPC and non-tumorous nasopharyngeal epithelium tissues with/without the 'A-G-G-T' haplotype were constructed using LTQ Orbitrap technology. The results revealed that c-Jun N-terminal kinase 2 (JNK2) was highly expressed in NPC tissues and non-tumor nasopharyngeal epithelium tissues without the 'A-G-G-T' haplotype. These results were confirmed by western blot analysis. Furthermore, microRNA (miRNA) microarray analysis was conducted to investigate the differential miRNA profiles of NPC and non-tumor nasopharyngeal epithelium tissues with/without the 'A-G-G-T' haplotype. It was observed that hsa-miR-1256 and hsa-miR-659, which are potentially targeted to the JNK2 gene, were downregulated in NPC tissues without the 'A-G-G-T' haplotype. Hsa-miR-298, another miRNA potentially targeted to the JNK2 gene, was downregulated in non-tumor nasopharyngeal epithelium tissues without the 'A-G-G-T' haplotype. In summary, these results suggested that the expression levels of JNK2 may be associated with polymorphic LTF haplotypes in human NPC.
Collapse
Affiliation(s)
- Gengqiu Luo
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yanhong Zhou
- Molecular Genetics Laboratory, Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Wei Yi
- Molecular Genetics Laboratory, Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Hong Yi
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
8
|
PEI ZHEN, ZHU GUANGCHAO, HUO XIAOLEI, GAO LU, LIAO SHAN, HE JUNYU, LONG YUEHUA, YI HONG, XIAO SONGSHU, YI WEI, CHEN PAN, LI XIAOLING, LI GUIYUAN, ZHOU YANHONG. CD24 promotes the proliferation and inhibits the apoptosis of cervical cancer cells in vitro. Oncol Rep 2015; 35:1593-601. [DOI: 10.3892/or.2015.4521] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/22/2015] [Indexed: 11/05/2022] Open
|
9
|
Zhong G, Chen X, Fang X, Wang D, Xie M, Chen Q. Fra-1 is upregulated in lung cancer tissues and inhibits the apoptosis of lung cancer cells by the P53 signaling pathway. Oncol Rep 2015; 35:447-53. [PMID: 26549498 DOI: 10.3892/or.2015.4395] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/23/2015] [Indexed: 11/05/2022] Open
Abstract
Fos-related antigen-1 (Fra-1) is a member of the activator protein-1 transcription factor superfamily. It plays important roles in oncogenesis in various types of malignancies. Herein, we investigated the expression of Fra-1 in lung cancer tissues by qPCR, immunohistochemistry, and western blot technologies. The results showed that Fra-1 was overexpressed in the lung cancer tissues when compared with the level in the adjacent non-cancerous tissues. To explore the possible mechanism of Fra-1 in lung cancer, we elucidated the effect of Fra-1 on the apoptosis of lung cancer H460 cells, and found that the rate of cell apoptosis was decreased in the H460/Fra-1 cells compared with the H460 or H460/vector cells. Cell apoptosis is closely related with a reduction in mitochondrial membrane potential (ΔΨm) and an increase in intracellular reactive oxygen species (ROS) and calcium ion (Ca2+) concentrations. Our results showed that overexpression of Fra-1 in the lung cancer H460 cells, led to an increase in ΔΨm and and a decrease in intracellular ROS and Ca2+ concentrations. Furthermore, we found that Fra-1 was correlated with dysregulation of the P53 signaling pathway in lung cancer tissues in vitro. At the same time, we found that Fra-1 overexpression affected the expression of MDM2 and P53 in vivo. In summary, our results suggest that Fra-1 is upregulated in lung cancer tissues and functions by affecting the P53 signaling pathway in lung cancer.
Collapse
Affiliation(s)
- Guangwei Zhong
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xi Chen
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xia Fang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Dongsheng Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Mingxuan Xie
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Qiong Chen
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
10
|
He J, Zhu G, Gao L, Chen P, Long Y, Liao S, Yi H, Yi W, Pei Z, Wu M, Li X, Xiang J, Peng S, Ma J, Zhou M, Xiong W, Zeng Z, Xiang B, Tang K, Cao L, Li G, Zhou Y. Fra-1 is upregulated in gastric cancer tissues and affects the PI3K/Akt and p53 signaling pathway in gastric cancer. Int J Oncol 2015; 47:1725-34. [PMID: 26330014 DOI: 10.3892/ijo.2015.3146] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 07/30/2015] [Indexed: 11/06/2022] Open
Abstract
Gastric cancer is an aggressive disease that continues to have a daunting impact on global health. Fra-1 (FOSL1) plays important roles in oncogenesis in various malignancies. We investigated the expression of Fra-1 in gastric cancer (GC) tissues by qPCR, immunohistochemistry (IHC) and western blot technologies. The results showed that Fra-1 was overexpressed in gastric cancer tissues compared with the adjacent non‑cancerous tissues. To explore the possible mechanism of Fra-1 in GC, we elucidated the effect of Fra-1 in the apoptosis and cell cycle of gastric cancer cells, AGS, and found that a considerable decrease in apoptotic cells and increase of S phase rate were observed for AGS cells with Fra-1 overexpession. We identified and confirmed that Fra-1 affected the expression level of CTTN and EZR in vitro through LC-MS/MS analyses and western blot technology. Furthermore, we found that Fra-1 was correlated with dysregulation PI3K/Akt and p53 signaling pathway in gastric cancer tissues in vitro. Moreover, we found that Fra-1 overexpression affected the expression of PI3K, Akt, MDM2 and p53 in vivo. In summary, our results suggest that Fra-1 is upregulated in gastric cancer tissues and plays its function by affecting the PI3K/Akt and p53 signaling pathway in gastric cancer.
Collapse
Affiliation(s)
- Junyu He
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Guangchao Zhu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Lu Gao
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Pan Chen
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Yuehua Long
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Shan Liao
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Hong Yi
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Wei Yi
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Zhen Pei
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Minghua Wu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Xiaoling Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Juanjuan Xiang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Shuping Peng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Jian Ma
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Ming Zhou
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Wei Xiong
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Zhaoyang Zeng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Bo Xiang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Ke Tang
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Li Cao
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Guiyuan Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Yanhong Zhou
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| |
Collapse
|
11
|
Zhu GC, Gao L, He J, Long Y, Liao S, Wang H, Li X, Yi W, Pei Z, Wu M, Xiang J, Peng S, Ma J, Zhou M, Zeng Z, Xiang B, Xiong W, Tang K, Cao L, Li X, Li G, Zhou Y. CD90 is upregulated in gastric cancer tissues and inhibits gastric cancer cell apoptosis by modulating the expression level of SPARC protein. Oncol Rep 2015; 34:2497-506. [PMID: 26329007 DOI: 10.3892/or.2015.4243] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/24/2015] [Indexed: 01/08/2023] Open
Abstract
Cluster of differentiation 90 (CD90) (Thy-1) plays important roles in the oncogenesis in various types of malignancies. In the present study, we investigated the expression of CD90 in gastric cancer (GC) tissues by q-PCR, immunohistochemistry (IHC), and western blot technologies. The results showed that CD90 was overexpressed in gastric cancer tissues compared with the level in the adjacent non‑cancerous tissues. To explore the possible mechanism of CD90 in GC, we elucidated the effect of CD90 on the apoptosis of AGS gastric cancer cells, and found that a considerable decrease in apoptotic cells was observed for AGS cells with CD90 overexpression. Meanwhile, the rate of apoptotic cells was increased in the AGS cells with CD90 interference (siCD90) compared with that in the AGS cells. Cell apoptosis is closely related to a reduction in mitochondrial membrane potential (ΔΨm) and an increase in intracellular reactive oxygen species (ROS) and calcium ion (Ca2+) concentrations. Our results showed that overexpression of CD90 in the AGS gastric cancer cells led to an increase in ΔΨm and a decrease in intracellular ROS and Ca2+ concentrations. At the same time, siCD90 reduced ΔΨm and the increase in intracellular ROS and Ca2+ concentrations. Furthermore, we identified and confirmed that CD90 functions by modulating the expression level of secreted protein, acidic, cysteine‑rich (osteonectin) (SPARC) in vitro through LC‑MS/MS analyses and western blot technology. In summary, our results suggest that CD90 is upregulated in gastric cancer and inhibits gastric cancer cell apoptosis by modulating the expression level of SPARC protein.
Collapse
Affiliation(s)
- Guang Chao Zhu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Lu Gao
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Junyu He
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Yuehua Long
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Shan Liao
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Haiyun Wang
- School of Life Science and Technology, Tongji University, Shanghai 200092, P.R. China
| | - Xujuan Li
- School of Life Science and Technology, Tongji University, Shanghai 200092, P.R. China
| | - Wei Yi
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Zhen Pei
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Minghua Wu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Juanjuan Xiang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Shuping Peng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Jian Ma
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Ming Zhou
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Zhaoyang Zeng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Bo Xiang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Wei Xiong
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Ke Tang
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Li Cao
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Xiaoling Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Guiyuan Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Yanhong Zhou
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| |
Collapse
|
12
|
Zheng D, Zhu G, Liao S, Yi W, Luo G, He J, Pei Z, Li G, Zhou Y. Dysregulation of the PI3K/Akt signaling pathway affects cell cycle and apoptosis of side population cells in nasopharyngeal carcinoma. Oncol Lett 2015; 10:182-188. [PMID: 26170996 DOI: 10.3892/ol.2015.3218] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 04/08/2015] [Indexed: 01/15/2023] Open
Abstract
Increasing evidence has suggested that certain types of cancer possess their own stem-like cells, and that one subset of these cells, termed the side population (SP), may have an important role in tumorigenesis and cancer therapy. However, the molecular mechanisms underlying the modulation of SP cells in nasopharyngeal carcinoma (NPC) have remained elusive. In the present study, it was hypothesized that dysregulation of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt signaling pathway may influence SP and non-SP (NSP) phenotype. SP cells from the HK-1 NPC cell line were identified, and cancer stem cell markers were found to be highly expressed in SP cells compared with that of NSP cells. Freshly sorted SP cells demonstrated a significant increase in the proportion of cells in G0/G1 phase, while the majority of NSP cells were in the proliferative phase. Following 48 h of culture subsequent to cell sorting, the differences in cell cycle distribution between the SP and NSP cells converged. In addition, the apoptotic ratio of NSP cells was higher than that of SP cells at 24 h following sorting, but had no significant differences 48 h following sorting. To elucidate the potential mechanism mediating the cell cycle and apoptosis in SP cells, the expression levels of key molecules in the PI3K/Akt signaling pathway were evaluated. PI3K and Akt were upregulated, while 14-3-3σ protein was downregulated in SP cells when freshly sorted (0 h). However, there was no significant difference in the expression of these molecules between SP and NSP cells following 48 h of culture. These results suggested that dysregulation of the PI3K/Akt signaling pathway may be associated with the cell cycle and apoptosis of SP cells in NPC. However, further investigation is required to elucidate the detailed mechanisms underlying these effects.
Collapse
Affiliation(s)
- Danwei Zheng
- Medical Experimental Center, Hunan Provincial Tumor Hospital and The Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China ; Molecular Genetics Laboratory, Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Changsha, Hunan 410078, P.R. China ; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Guangchao Zhu
- Medical Experimental Center, Hunan Provincial Tumor Hospital and The Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China ; Molecular Genetics Laboratory, Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Changsha, Hunan 410078, P.R. China ; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Shan Liao
- Medical Experimental Center, Hunan Provincial Tumor Hospital and The Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China ; Molecular Genetics Laboratory, Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Changsha, Hunan 410078, P.R. China ; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Wei Yi
- Medical Experimental Center, Hunan Provincial Tumor Hospital and The Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China ; Molecular Genetics Laboratory, Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Changsha, Hunan 410078, P.R. China ; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Gengqiu Luo
- Department of Pathology, Basic School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Junyu He
- Medical Experimental Center, Hunan Provincial Tumor Hospital and The Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China ; Molecular Genetics Laboratory, Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Changsha, Hunan 410078, P.R. China ; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhen Pei
- Medical Experimental Center, Hunan Provincial Tumor Hospital and The Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China ; Molecular Genetics Laboratory, Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Changsha, Hunan 410078, P.R. China ; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Guiyuan Li
- Medical Experimental Center, Hunan Provincial Tumor Hospital and The Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China ; Molecular Genetics Laboratory, Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Changsha, Hunan 410078, P.R. China ; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yanhong Zhou
- Medical Experimental Center, Hunan Provincial Tumor Hospital and The Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China ; Molecular Genetics Laboratory, Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Changsha, Hunan 410078, P.R. China ; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
13
|
Zupin L, Polesello V, Coelho AVC, Boniotto M, Arraes LC, Segat L, Crovella S. Lactotransferrin gene functional polymorphisms do not influence susceptibility to human immunodeficiency virus-1 mother-to-child transmission in different ethnic groups. Mem Inst Oswaldo Cruz 2015; 110:222-9. [PMID: 25946246 PMCID: PMC4489453 DOI: 10.1590/0074-02760140447] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/05/2015] [Indexed: 11/29/2022] Open
Abstract
Lactotransferrin, also known as lactoferrin, is an iron binding glycoprotein that
displays antiviral activity against many different infectious agents, including human
immunodeficiency virus (HIV)-1. Lactotransferrin is present in the breast milk and in
the female genitourinary mucosa and it has been hypothesised as a possible candidate
to prevent mother-to-child HIV-1 transmission. To verify if two functional
polymorphisms, Thr29Ala and Arg47Lys, in the lactotransferrin encoding gene (LTF)
could affect HIV-1 infection and vertical transmission, a preliminary association
study was performed in 238 HIV-1 positive and 99 HIV-1 negative children from Brazil,
Italy, Africa and India. No statistically significant association for the Thr29Ala
and Arg47Lys LTF polymorphisms and HIV-1 susceptibility in the studied populations
was found. Additionally LTF polymorphisms frequencies were compared between the four
different ethnic groups.
Collapse
Affiliation(s)
- Luisa Zupin
- Institute for Maternal and Child Health, Scientific Institute For Research, Hospitalization and Care Burlo Garofolo, Trieste, Italy
| | - Vania Polesello
- Institute for Maternal and Child Health, Scientific Institute For Research, Hospitalization and Care Burlo Garofolo, Trieste, Italy
| | | | - Michele Boniotto
- Faculty of Medicine, National Institute of Health and Medical Research, University of Paris-Est Créteil, Créteil, France
| | | | - Ludovica Segat
- Institute for Maternal and Child Health, Scientific Institute For Research, Hospitalization and Care Burlo Garofolo, Trieste, Italy
| | - Sergio Crovella
- Institute for Maternal and Child Health, Scientific Institute For Research, Hospitalization and Care Burlo Garofolo, Trieste, Italy
| |
Collapse
|
14
|
Xiao S, Zhou Y, Yi W, Luo G, Jiang B, Tian Q, Li Y, Xue M. Fra-1 is downregulated in cervical cancer tissues and promotes cervical cancer cell apoptosis by p53 signaling pathway in vitro. Int J Oncol 2015; 46:1677-84. [PMID: 25651840 DOI: 10.3892/ijo.2015.2873] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/22/2015] [Indexed: 11/05/2022] Open
Abstract
Cervical cancer is a potentially preventable disease; however, it is the third most commonly diagnosed cancer and the fourth leading cause of cancer deaths in women worldwide. Cervical cancer is thought to develop through a multistep process involving virus, tumor suppressor genes, proto-oncogenes and immunological factors. It is known that human papillomavirus (HPV) infection is necessary but insufficient to cause malignancy. At present, the etiology of cervical carcinoma remains poorly understood. In this study, we found that the expression of FOS-like antigen-1 (Fra-1) gene was downregulated in cervical cancer compared with the adjacent non-cancerous tissues by RT-qPCR, immunohistochemistry (IHC) and western blotting techniques. To uncover the effect of Fra-1 on cervical cancer, we tested and confirmed that Fra-1 significantly inhibited the proliferation of HeLa cells by MMT assays in vitro. At the same time, overexpression of Fra-1 promoted apoptosis of HeLa cells. To explore the possible mechanism of Fra-1 in cervical cancer, we tested the expression levels of key molecules in p53 signaling pathway by western blotting technology. The results showed that p53 was downregulated in cervical cancer compared with the adjacent non-cancerous tissues, but MDM2 proto-oncogene, E3 ubiquitin protein ligase (MDM2) was upregulated in cervical cancer. In vitro, the p53 was upregulated and MDM2 was downregulated in HeLa cells with Fra-1 overexpression. In summary, our results suggested that Fra-1 expression is low in cervical cancer tissues and promotes apoptosis of cervical cancer cells by p53 signaling pathway.
Collapse
Affiliation(s)
- Songshu Xiao
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yanhong Zhou
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Wei Yi
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Guijuan Luo
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Bin Jiang
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Qi Tian
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yueran Li
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Min Xue
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
15
|
Zheng D, Liao S, Zhu G, Luo G, Xiao S, He J, Pei Z, Li G, Zhou Y. CD38 is a putative functional marker for side population cells in human nasopharyngeal carcinoma cell lines. Mol Carcinog 2015; 55:300-11. [PMID: 25630761 DOI: 10.1002/mc.22279] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 11/21/2014] [Accepted: 12/05/2014] [Indexed: 11/09/2022]
Abstract
Cancer stem cells (CSCs) are thought to be responsible for cancer progression and therapeutic resistance but identification of this subpopulation requires selective markers. Fortunately, side population (SP) cells analysis brings a novel method to CSCs study. In this study, we identified SP cells, which are demonstrated rich in CSCs, in four nasopharyngeal carcinoma (NPC) cell lines. We investigated SP cells from HK-1 NPC cell line and showed CSCs characteristics in this subpopulation. SP cells displayed greater proliferation and invasion and expressed high levels of CSCs markers than NSP cells. Furthermore, our microRNA microarray analysis of SP versus NSP cells revealed that CD38-related miRNAs were down-regulated in SP cell, but the mRNA and protein level of CD38 were highly expressed in SP cells. We further searched for molecules interacting with CD38 and identified ZAP70, which was also well expressed in SP cells at both mRNA and protein levels. Our results uncover a CD38 pathway that may regulate the proliferation and migration of SP cells from HK-1 NPC cell line.
Collapse
Affiliation(s)
- Danwei Zheng
- Human Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Shan Liao
- Human Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Guangchao Zhu
- Human Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Gengqiu Luo
- Department of Pathology, Basic School of Medicine, Central South University, Changsha, Hunan Province, P. R. China
| | - Songshu Xiao
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Junyu He
- Human Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Zhen Pei
- Human Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Guiyuan Li
- Human Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Yanhong Zhou
- Human Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| |
Collapse
|
16
|
Zhu W, Li J, Su J, Li J, Li J, Deng B, Shi Q, Zhou Y, Chen X. FOS-like antigen 1 is highly expressed in human psoriasis tissues and promotes the growth of HaCaT cells in vitro. Mol Med Rep 2014; 10:2489-94. [PMID: 25175497 DOI: 10.3892/mmr.2014.2509] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 06/26/2014] [Indexed: 11/06/2022] Open
Abstract
Psoriasis is a multifactorial disease and the mechanisms involved in its pathogenesis remain to be elucidated. FOS‑like antigen 1 (Fra‑1) is a proto‑oncogene. It is a negative inhibitor of activator protein‑1 activity and possesses transforming activity. The effect of and possible mechanisms underlying Fra‑1 in psoriasis remain to be elucidated. In the present study, western blot analysis and reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) techniques were used to identify differentially expressed Fra‑1 in psoriatic and in normal control tissues. Compared with the control samples, the expression of normalized Fra‑1 genes in psoriasis was 12.6 times higher. Western blot analysis was used to assess the protein levels of Fra‑1. The results demonstrated that the protein expression of Fra-1 was high in tissues affected by psoriasis. This also corresponded with the results of RT‑qPCR. Fra‑1‑stable expressing HaCaT/Fra‑1 or control HaCaT/vector cell lines were then generated to elucidate the function of Fra‑1 in the growth of HaCaT cells. The results demonstrated that Fra‑1 promoted the growth of HaCaT cells in vitro by arresting the cell cycle and inhibiting cell apoptosis. These results suggested that Fra‑1 may be important in psoriasis.
Collapse
Affiliation(s)
- Wu Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jing Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jie Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jinmao Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Bo Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Qian Shi
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yanhong Zhou
- Molecular Genetics Laboratory, Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
17
|
Xiao S, Liao S, Zhou Y, Jiang B, Li Y, Xue M. High expression of octamer transcription factor 1 in cervical cancer. Oncol Lett 2014; 7:1889-1894. [PMID: 24932254 PMCID: PMC4049708 DOI: 10.3892/ol.2014.2023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 03/04/2014] [Indexed: 11/18/2022] Open
Abstract
Cervical carcinoma is the second most prevalent malignancy in females worldwide. The crucial etiologic factors involved in the development of cervical carcinoma include infection with papillomavirus, and the structural or functional mutation of oncogenes and tumor suppressor genes. The abnormal change of octamer transcription factor 1 (OCT1) is associated with tumor progression and a poor patient survival rate. However, little is known regarding the effect of OCT1 in cervical cancer. In the present study, flow cytometry, western blot analysis and quantitative polymerase chain reaction (qPCR) were peformed to identify differentially expressed OCT1 in cervical cancer tissue and adjacent non-cancerous tissues. The normalized OCT1 gene expression in cervical cancer was 5.98 times higher compared with the adjacent non-cancerous tissues. Western blot analysis and flow cytometry assessed the levels of OCT1 protein. The results of these two differential techniques showed that the protein expression level of OCT1 was greater in cervical cancer tissues, which corresponded with the qPCR results. Finally, as OCT1 is a potential target gene for microRNA (miR)-1467, -1185, -4493 and -3919, their expression levels were analyzed in cervical cancer tissues and adjacent non-cancerous tissues; they were downregulated by ~45% in the cervical cancer samples. The results of the present study showed that OCT1 is highly expressed in cervical cancer tissues and indicated that OCT-1 may be significant in cervical cancer.
Collapse
Affiliation(s)
- Songshu Xiao
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Shan Liao
- Molecular Genetics Laboratory, Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Yanhong Zhou
- Molecular Genetics Laboratory, Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Bin Jiang
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yueran Li
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Min Xue
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
18
|
Xiao S, Zhou Y, Jiang J, Yuan L, Xue M. CD44 affects the expression level of FOS‑like antigen 1 in cervical cancer tissues. Mol Med Rep 2014; 9:1667-74. [PMID: 24604526 DOI: 10.3892/mmr.2014.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 02/02/2014] [Indexed: 12/19/2022] Open
Abstract
Cervical carcinoma is the second most prevalent type of malignancy in females worldwide. The crucial etiological factors involved in the development of cervical carcinoma include infection with the papillomavirus, and the structural or functional mutation of oncogenes and tumor suppressor genes. CD44 refers to a multifunctional family of type I transmembrane proteins. These proteins have been implicated in numerous biological processes, including cell adhesion, cell migration and metastasis. The present study examined the differences in the expression levels of ATP-binding cassette sub-family G member 2, CD24, CD44, CD133, cytokeratin (CK) 14 and CK19 between cervical cancer tissues and corresponding normal non-tumor tissues by flow cytometry. Then, the CD44+ or CD44‑ cells from cervical cancer tissues were sorted for identification and confirmation of differential expression by flow cytometry. The results demonstrated that the expression level of CD44 in cervical cancer tissues was higher than in the corresponding non-tumor normal tissues (t=3.12; P=0.0102). Compared with the CD44‑ cells, the FOS-like antigen 1 (Fra-1), nestin, nuclear receptor subfamily 4, group A, member 2, OCT4 and p63 genes were highly expressed in CD44+ cells. The fold changes were 3.55, 3.55, 2.46, 2.87 and 2.56, respectively (P<0.05). However, BMI1 polycomb ring finger oncogene, ck5, tumor protein p53 and lactotransferrin genes exhibited low expression levels in CD44+ cells. It was verified by western blot analysis and flow cytometry that Fra-1 was highly expressed in CD44+ cells. Fra-1 was a potential target of miR-19a and miR-19b. The expression of miR-19a and miR-19b was downregulated by ~50% in CD44+ cells compared with CD44‑ cells. These findings suggested that CD44 dysregulated the activation of the Fra‑1 gene. The interaction of Fra-1 and CD44 may therefore be important in cervical carcinoma.
Collapse
Affiliation(s)
- Songshu Xiao
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yanhong Zhou
- Molecular Genetics Laboratory, Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Jianfa Jiang
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Le Yuan
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Min Xue
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|