1
|
Hu X, Liu Y, Bing Z, Ye Q, Li C. High Moesin Expression Is a Predictor of Poor Prognosis of Breast Cancer: Evidence From a Systematic Review With Meta-Analysis. Front Oncol 2021; 11:650488. [PMID: 34900662 PMCID: PMC8660674 DOI: 10.3389/fonc.2021.650488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Owing to metastases and drug resistance, the prognosis of breast cancer is still dismal. Therefore, it is necessary to find new prognostic markers to improve the efficacy of breast cancer treatment. Literature shows a controversy between moesin (MSN) expression and prognosis in breast cancer. Here, we aimed to conduct a systematic review and meta-analysis to evaluate the prognostic relationship between MSN and breast cancer. Literature retrieval was conducted in the following databases: PubMed, Web of Science, Embase, and Cochrane. Two reviewers independently performed the screening of studies and data extraction. The Gene Expression Omnibus (GEO) database including both breast cancer gene expression and follow-up datasets was selected to verify literature results. The R software was employed for the meta-analysis. A total of 9 articles with 3,039 patients and 16 datasets with 2,916 patients were ultimately included. Results indicated that there was a significant relationship between MSN and lymph node metastases (P < 0.05), and high MSN expression was associated with poor outcome of breast cancer patients (HR = 1.99; 95% CI 1.73-2.24). In summary, there is available evidence to support that high MSN expression has valuable importance for the poor prognosis in breast cancer patients. SYSTEMATIC REVIEW REGISTRATION https://inplasy.com/inplasy-2020-8-0039/.
Collapse
Affiliation(s)
- Xiaoli Hu
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Yang Liu
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Zhitong Bing
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Qian Ye
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou, China
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Chengcheng Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| |
Collapse
|
2
|
Proteomic Research on the Antitumor Properties of Medicinal Mushrooms. Molecules 2021; 26:molecules26216708. [PMID: 34771120 PMCID: PMC8588050 DOI: 10.3390/molecules26216708] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022] Open
Abstract
Medicinal mushrooms are increasingly being recognized as an important therapeutic modality in complementary oncology. Until now, more than 800 mushroom species have been known to possess significant pharmacological properties, of which antitumor and immunomodulatory properties have been the most researched. Besides a number of medicinal mushroom preparations being used as dietary supplements and nutraceuticals, several isolates from mushrooms have been used as official antitumor drugs in clinical settings for several decades. Various proteomic approaches allow for the identification of a large number of differentially regulated proteins serendipitously, thereby providing an important platform for a discovery of new potential therapeutic targets and approaches as well as biomarkers of malignant disease. This review is focused on the current state of proteomic research into antitumor mechanisms of some of the most researched medicinal mushroom species, including Phellinus linteus, Ganoderma lucidum, Auricularia auricula, Agrocybe aegerita, Grifola frondosa, and Lentinus edodes, as whole body extracts or various isolates, as well as of complex extract mixtures.
Collapse
|
3
|
A Genome-Wide Profiling of Glioma Patients with an IDH1 Mutation Using the Catalogue of Somatic Mutations in Cancer Database. Cancers (Basel) 2021; 13:cancers13174299. [PMID: 34503108 PMCID: PMC8428353 DOI: 10.3390/cancers13174299] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Glioma patients that present a somatic mutation in the isocitrate dehydrogenase 1 (IDH1) gene have a significantly better prognosis and overall survival than patients with the wild-type genotype. An IDH1 mutation is hypothesized to occur early during cellular transformation and leads to further genetic instability. A genome-wide profiling of glioma patients in the Catalogue of Somatic Mutations in Cancer (COSMIC) database was performed to classify the genetic differences in IDH1-mutant versus IDH1-wildtype patients. This classification will aid in a better understanding of how this specific mutation influences the genetic make-up of glioma and the resulting prognosis. Key differences in co-mutation and gene expression levels were identified that correlate with an improved prognosis. Abstract Gliomas are differentiated into two major disease subtypes, astrocytoma or oligodendroglioma, which are then characterized as either IDH (isocitrate dehydrogenase)-wild type or IDH-mutant due to the dramatic differences in prognosis and overall survival. Here, we investigated the genetic background of IDH1-mutant gliomas using the Catalogue of Somatic Mutations in Cancer (COSMIC) database. In astrocytoma patients, we found that IDH1 is often co-mutated with TP53, ATRX, AMBRA1, PREX1, and NOTCH1, but not CHEK2, EGFR, PTEN, or the zinc finger transcription factor ZNF429. The majority of the mutations observed in these genes were further confirmed to be either drivers or pathogenic by the Cancer-Related Analysis of Variants Toolkit (CRAVAT). Gene expression analysis showed down-regulation of DRG2 and MSN expression, both of which promote cell proliferation and invasion. There was also significant over-expression of genes such as NDRG3 and KCNB1 in IDH1-mutant astrocytoma patients. We conclude that IDH1-mutant glioma is characterized by significant genetic changes that could contribute to a better prognosis in glioma patients.
Collapse
|
4
|
Hu S, Shi X, Liu Y, He Y, Du Y, Zhang G, Yang C, Gao F. CD44 cross-linking increases malignancy of breast cancer via upregulation of p-Moesin. Cancer Cell Int 2020; 20:563. [PMID: 33292278 PMCID: PMC7686781 DOI: 10.1186/s12935-020-01663-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Background CD44 is highly expressed in most cancer cells and its cross-linking pattern is closely related to tumor migration and invasion. However, the underlying molecular mechanism regarding CD44 cross-linking during cancer cell metastasis is poorly understood. Therefore, the purpose of this study was to explore whether disruption of CD44 cross-linking in breast cancer cells could prevent the cells migration and invasion and determine the effects of CD44 cross-linking on the malignancy of the cancer cells. Methods The expression of CD44, CD44 cross-linking and Moesin phosphorylation in breast cancer cells was assessed by Western Blot assays. Effects of CD44 cross-linking on tumor metastasis were evaluated by Transwell assay. The effects of CD44 cross-linking disruption on cell viability were assessed using CCK-8 assays. The expression of p-Moesin between normal and breast cancer tissues was examined by immunohistochemical staining. Results High expression of CD44 cross-linking was found in invasive breast cancer cells (BT-549 and MDA-MB-231), which is associated with the malignancy of breast cancer. The expressions of ERM complex in a panel of breast cancer cell lines indicate that Moesin and its phosphorylation may play a significant role in cell metastasis. Moesin phosphorylation was inhibited by CD44 de-crosslinking in breast cancer cells and Moesin shRNA knockdown attenuated the promotion of CD44 cross-linking on cell migration and invasion. Finally, immunohistochemistry results demonstrated that p-Moesin was overexpressed in primary and metastatic cancers. Conclusions Our study suggested that CD44 cross-linking could elevate p-Moesin expression and further affect migration and invasion of breast cancer cells. These results also indicate that p-Moesin may be useful in future targeted cancer therapy.
Collapse
Affiliation(s)
- Song Hu
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Xiaoxing Shi
- Department of Laboratory Medicine, Shanghai Wujing General Hospital, Shanghai, 201103, China
| | - Yiwen Liu
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yiqing He
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yan Du
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Guoliang Zhang
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Cuixia Yang
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China. .,Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Feng Gao
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China. .,Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
5
|
Yu L, Zhao L, Wu H, Zhao H, Yu Z, He M, Jin F, Wei M. Moesin is an independent prognostic marker for ER-positive breast cancer. Oncol Lett 2018; 17:1921-1933. [PMID: 30675256 DOI: 10.3892/ol.2018.9799] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 05/18/2018] [Indexed: 12/27/2022] Open
Abstract
Moesin, a cytoskeletal protein belonging to the ezrin-radixin-moesin family serves important roles in cell motility, invasion and metastasis. Moesin has been demonstrated to be of prognostic significance in tumor progression, due to its role in the metastatic process; however, its role in breast cancer is not well characterized. In the present study, the moesin expression was determined using immunohistochemistry in 404 and 46 patients with breast cancer and fibroadenoma, respectively, and the associations between moesin expression and the clinical parameters and prognostic values were analyzed. The positive rate of moesin protein expression was 47.8% (193/404) in breast cancer tissues, which was significantly higher than in fibroadenoma tissues (15.2%, 14/46). Overexpression of moesin was significantly associated with advanced clinical stage (P=0.002), positive lymph node metastasis (P<0.0001), and estrogen receptor (ER; P=0.008) and progesterone receptor (P=0.026) status. Patients with high moesin expression had significantly lower recurrence-free survival time, compared with patient with low moesin expression. Notably, overexpression of moesin was significantly associated with poor prognosis in patients with ER-positive breast cancer, and in patients treated with tamoxifen. Using a Cox proportional hazard regression model, further analysis was conducted, which demonstrated that moesin overexpression was a predictive prognostic factor for reduced overall survival time in patients with ER-positive breast cancer, and in patients treated with tamoxifen. These results indicated that moesin may be a potential marker for poor prognosis in patients with ER-positive breast cancer treated with tamoxifen. In conclusion, moesin serves an important role in the progression of breast cancer, and may be a valuable marker of breast cancer prognosis.
Collapse
Affiliation(s)
- Lifeng Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Haishan Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Feng Jin
- Department of Breast Surgery, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
6
|
Ansardamavandi A, Tafazzoli-Shadpour M, Shokrgozar MA. Behavioral remodeling of normal and cancerous epithelial cell lines with differing invasion potential induced by substrate elastic modulus. Cell Adh Migr 2018; 12:472-488. [PMID: 29969940 PMCID: PMC6363025 DOI: 10.1080/19336918.2018.1475803] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 05/07/2018] [Indexed: 12/20/2022] Open
Abstract
The micro-environment of cancer cells in the body is mechanically stiffer than that of normal cells. We cultured three breast cell lines of MCF10A-normal, MCF7-noninvasive, and MDA-MB-231-invasive on PDMS substrates with different elastic moduli and different cellular features were examined.Effects of substrate stiffness on cell behavior were evident among all cell lines. Cancerous cells were more sensitive to substrate stiffness for cell behaviors related to cell motility and migration which are necessary for invasion. The invasive cancerous cells were the most motile on substrates with moderate stiffness followed by non-invasive cancerous cells. Gene markers alterations were generally according to the analyzed cell movement parameters. Results suggest that alterations in matrix stiffness may be related to cancer disease and progression.
Collapse
Affiliation(s)
- Arian Ansardamavandi
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | | |
Collapse
|
7
|
Wang Y, Han X, Li YD, Wang Y, Zhao SY, Zhang DJ, Lu Y. Lentinan dose dependence between immunoprophylaxis and promotion of the murine liver cancer. Oncotarget 2017; 8:95152-95162. [PMID: 29221118 PMCID: PMC5707012 DOI: 10.18632/oncotarget.19808] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 04/21/2017] [Indexed: 11/25/2022] Open
Abstract
Lentinan could exhibit significant biological activity favorable for human health and disease control such as the recovery of patients with liver cancer. In order to investigate the effect of lentinan dose dependence between immunoprophylaxis and promotion of cancer cell proliferation of the murine liver cancer, different concentrations of lentinan were prepared for the test in vitro (MTT assay) and in vivo (cumulative survival assay, spleen lymphocyte proliferation tests and peritoneal macrophage phagocytosis assays). New emerging proteins of the H22 cell incubated with lentinan was demonstrated by MS analysis and protein database searching. Lentinan was non-toxic for HL7702 cells but inhibited H22 cells proliferation obviously in a dose-dependent manner. In vivo, the proliferation of H22 hepatocarcinoma cells was inhibited by lentinan 0.4mg/kg body weight (L2, survival rate, 20%, PPP<0.01). Six proteins 60Sacidic ribosomal protein P2, Peroxiredoxin-2, Annexin A5, PDZ and LIM domain protein 1, Src substrate cortactin and Moesin were found as emerging proteins of the H22 cell incubated with high dose lentinan which related to cancer promotion closely. In conclusion, Thelentinan was relatively safe and could inhibit the proliferation of H22 cancer cells through immunity improvement when it's intake was in proper quantity.
Collapse
Affiliation(s)
- Ying Wang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.,National Coarse Cereals Engineering Research Center, Daqing 163319, PR China
| | - Xue Han
- College of Biological Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China
| | - Yan Dong Li
- Hebei Institute of Veterinary Drugs Control, Shijiazhuang 050000, PR China
| | - Yabing Wang
- College of Biological Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China
| | - Shi Yang Zhao
- College of Biological Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China
| | - Dong Jie Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Yu Lu
- Huabei Petroleum Administration Bureau, Huasheng Integrated Service, Tianjin 300000, PR China
| |
Collapse
|
8
|
Masoumi S, Harisankar A, Gracias A, Bachinger F, Fufa T, Chandrasekar G, Gaunitz F, Walfridsson J, Kitambi SS. Understanding cytoskeleton regulators in glioblastoma multiforme for therapy design. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:2881-2897. [PMID: 27672311 PMCID: PMC5026218 DOI: 10.2147/dddt.s106196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The cellular cytoskeleton forms the primary basis through which a cell governs the changes in size, shape, migration, proliferation, and forms the primary means through which the cells respond to their environment. Indeed, cell and tissue morphologies are used routinely not only to grade tumors but also in various high-content screening methods with an aim to identify new small molecules with therapeutic potential. This study examines the expression of various cytoskeleton regulators in glioblastoma multiforme (GBM). GBM is a very aggressive disease with a low life expectancy even after chemo- and radiotherapy. Cancer cells of GBM are notorious for their invasiveness, ability to develop resistance to chemo- and radiotherapy, and to form secondary site tumors. This study aims to gain insight into cytoskeleton regulators in GBM cells and to understand the effect of various oncology drugs, including temozolomide, on cytoskeleton regulators. We compare the expression of various cytoskeleton regulators in GBM-derived tumor and normal tissue, CD133-postive and -negative cells from GBM and neural cells, and GBM stem-like and differentiated cells. In addition, the correlation between the expression of cytoskeleton regulators with the clinical outcome was examined to identify genes associated with longer patient survival. This was followed by a small molecule screening with US Food and Drug Administration (FDA)-approved oncology drugs, and its effect on cellular cytoskeleton was compared to treatment with temozolomide. This study identifies various groups of cytoskeletal regulators that have an important effect on patient survival and tumor development. Importantly, this work highlights the advantage of using cytoskeleton regulators as biomarkers for assessing prognosis and treatment design for GBM.
Collapse
Affiliation(s)
| | - Aditya Harisankar
- Center for Hematology and Regenerative Medicine, Department of Medicine
| | - Aileen Gracias
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | | | - Temesgen Fufa
- Department of Microbiology Tumor and Cell Biology; Department of Neurosurgery, University Hospital, Leipzig, Germany
| | | | - Frank Gaunitz
- Department of Neurosurgery, University Hospital, Leipzig, Germany
| | | | | |
Collapse
|
9
|
Piña-Medina AG, Hansberg-Pastor V, González-Arenas A, Cerbón M, Camacho-Arroyo I. Progesterone promotes cell migration, invasion and cofilin activation in human astrocytoma cells. Steroids 2016; 105:19-25. [PMID: 26639431 DOI: 10.1016/j.steroids.2015.11.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/23/2015] [Accepted: 11/25/2015] [Indexed: 01/22/2023]
Abstract
Astrocytomas are the most common and aggressive primary brain tumors in humans. Invasiveness of these tumors has been attributed in part to deregulation of cell motility-dependent cytoskeletal dynamics that involves actin-binding proteins such as cofilin. Progesterone (P4) has been found to induce migration and invasion of cells derived from breast cancer and endothelium. However, the role of P4 in migration and invasion of astrocytoma cells as well as its effects on astrocytomas cytoskeleton remodeling is not known. In this work we evaluated these aspects in D54 and U251 cells derived from human astrocytomas from the highest degree of malignancy (grade IV, glioblastoma). Our results showed that in scratch-wound assays P4 increased the number of D54 and U251 cells migrating from 3 to 48 h. Both RU486, a P4 receptor (PR) antagonist, and an oligonucleotide antisense against PR significantly blocked P4 effects. Transwell assays showed that P4 significantly increased the number of invasive cells at 24h. As in the case of migration, this effect was blocked by RU486. Finally, by Western blotting, an increase in the cofilin/p-cofilin ratio at 15 and 30 min and a decrease at 30 and 60 min in U251 and D54 cells, respectively, was observed after P4, P4+RU486 and RU486 treatments. These data suggest that P4 increases human astrocytoma cells migration and invasion through its intracellular receptor, and that cofilin activation by P4 is independent of PR action.
Collapse
Affiliation(s)
- Ana Gabriela Piña-Medina
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacán 04510, México, D.F., Mexico
| | - Valeria Hansberg-Pastor
- Facultad de Química, Departamento de Biología, UNAM, Ciudad Universitaria, Coyoacán 04510, México, D.F., Mexico
| | - Aliesha González-Arenas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510, México, D.F., Mexico
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacán 04510, México, D.F., Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacán 04510, México, D.F., Mexico.
| |
Collapse
|