1
|
Subramanian A, Nemat-Gorgani N, Ellis-Caleo TJ, van IJzendoorn DGP, Sears TJ, Somani A, Luca BA, Zhou MY, Bradic M, Torres IA, Oladipo E, New C, Kenney DE, Avedian RS, Steffner RJ, Binkley MS, Mohler DG, Tap WD, D'Angelo SP, van de Rijn M, Ganjoo KN, Bui NQ, Charville GW, Newman AM, Moding EJ. Sarcoma microenvironment cell states and ecosystems are associated with prognosis and predict response to immunotherapy. NATURE CANCER 2024; 5:642-658. [PMID: 38429415 PMCID: PMC11058033 DOI: 10.1038/s43018-024-00743-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 02/08/2024] [Indexed: 03/03/2024]
Abstract
Characterization of the diverse malignant and stromal cell states that make up soft tissue sarcomas and their correlation with patient outcomes has proven difficult using fixed clinical specimens. Here, we employed EcoTyper, a machine-learning framework, to identify the fundamental cell states and cellular ecosystems that make up sarcomas on a large scale using bulk transcriptomes with clinical annotations. We identified and validated 23 sarcoma-specific, transcriptionally defined cell states, many of which were highly prognostic of patient outcomes across independent datasets. We discovered three conserved cellular communities or ecotypes associated with underlying genomic alterations and distinct clinical outcomes. We show that one ecotype defined by tumor-associated macrophages and epithelial-like malignant cells predicts response to immune-checkpoint inhibition but not chemotherapy and validate our findings in an independent cohort. Our results may enable identification of patients with soft tissue sarcomas who could benefit from immunotherapy and help develop new therapeutic strategies.
Collapse
Affiliation(s)
- Ajay Subramanian
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Neda Nemat-Gorgani
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | | | | | - Timothy J Sears
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Anish Somani
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Bogdan A Luca
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Maggie Y Zhou
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Martina Bradic
- Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ileana A Torres
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Eniola Oladipo
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Christin New
- Department of Orthopedic Surgery, Stanford University, Stanford, CA, USA
| | - Deborah E Kenney
- Department of Orthopedic Surgery, Stanford University, Stanford, CA, USA
| | - Raffi S Avedian
- Department of Orthopedic Surgery, Stanford University, Stanford, CA, USA
| | - Robert J Steffner
- Department of Orthopedic Surgery, Stanford University, Stanford, CA, USA
| | - Michael S Binkley
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - David G Mohler
- Department of Orthopedic Surgery, Stanford University, Stanford, CA, USA
| | - William D Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical Center, New York, NY, USA
| | - Sandra P D'Angelo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical Center, New York, NY, USA
| | | | - Kristen N Ganjoo
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Nam Q Bui
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| | | | - Aaron M Newman
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Everett J Moding
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
2
|
Miallot R, Galland F, Millet V, Blay JY, Naquet P. Metabolic landscapes in sarcomas. J Hematol Oncol 2021; 14:114. [PMID: 34294128 PMCID: PMC8296645 DOI: 10.1186/s13045-021-01125-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/08/2021] [Indexed: 12/15/2022] Open
Abstract
Metabolic rewiring offers novel therapeutic opportunities in cancer. Until recently, there was scant information regarding soft tissue sarcomas, due to their heterogeneous tissue origin, histological definition and underlying genetic history. Novel large-scale genomic and metabolomics approaches are now helping stratify their physiopathology. In this review, we show how various genetic alterations skew activation pathways and orient metabolic rewiring in sarcomas. We provide an update on the contribution of newly described mechanisms of metabolic regulation. We underscore mechanisms that are relevant to sarcomagenesis or shared with other cancers. We then discuss how diverse metabolic landscapes condition the tumor microenvironment, anti-sarcoma immune responses and prognosis. Finally, we review current attempts to control sarcoma growth using metabolite-targeting drugs.
Collapse
Affiliation(s)
- Richard Miallot
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille Luminy, Aix Marseille Univ, Marseille, France.
| | - Franck Galland
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille Luminy, Aix Marseille Univ, Marseille, France
| | - Virginie Millet
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille Luminy, Aix Marseille Univ, Marseille, France
| | - Jean-Yves Blay
- Centre Léon Bérard, Lyon 1, Lyon Recherche Innovation contre le Cancer, Université Claude Bernard, Lyon, France
| | - Philippe Naquet
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille Luminy, Aix Marseille Univ, Marseille, France.
| |
Collapse
|
3
|
Yu X, Yustein JT, Xu J. Research models and mesenchymal/epithelial plasticity of osteosarcoma. Cell Biosci 2021; 11:94. [PMID: 34022967 PMCID: PMC8141200 DOI: 10.1186/s13578-021-00600-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022] Open
Abstract
Most osteosarcomas (OSs) develop from mesenchymal cells at the bone with abnormal growth in young patients. OS has an annual incidence of 3.4 per million people and a 60-70% 5-year surviving rate. About 20% of OS patients have metastasis at diagnosis, and only 27% of patients with metastatic OS survive longer than 5 years. Mutation of tumor suppressors RB1, TP53, REQL4 and INK4a and/or deregulation of PI3K/mTOR, TGFβ, RANKL/NF-κB and IGF pathways have been linked to OS development. However, the agents targeting these pathways have yielded disappointing clinical outcomes. Surgery and chemotherapy remain the main treatments of OS. Recurrent and metastatic OSs are commonly resistant to these therapies. Spontaneous canine models, carcinogen-induced rodent models, transgenic mouse models, human patient-derived xenograft models, and cell lines from animal and human OSs have been developed for studying the initiation, growth and progression of OS and testing candidate drugs of OS. The cell plasticity regulated by epithelial-to-mesenchymal transition transcription factors (EMT-TFs) such as TWIST1, SNAIL, SLUG, ZEB1 and ZEB2 plays an important role in maintenance of the mesenchymal status and promotion of cell invasion and metastasis of OS cells. Multiple microRNAs including miR-30/9/23b/29c/194/200, proteins including SYT-SSX1/2 fusion proteins and OVOL2, and other factors that inhibit AMF/PGI and LRP5 can suppress either the expression or activity of EMT-TFs to increase epithelial features and inhibit OS metastasis. Further understanding of the molecular mechanisms that regulate OS cell plasticity should provide potential targets and therapeutic strategies for improving OS treatment.
Collapse
Affiliation(s)
- Xiaobin Yu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Jason T Yustein
- Department of Pediatrics, Texas Children's Cancer and Hematology Center, and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Armando F, Gambini M, Corradi A, Becker K, Marek K, Pfankuche VM, Mergani AE, Brogden G, de Buhr N, von Köckritz-Blickwede M, Naim HY, Baumgärtner W, Puff C. Mesenchymal to epithelial transition driven by canine distemper virus infection of canine histiocytic sarcoma cells contributes to a reduced cell motility in vitro. J Cell Mol Med 2020; 24:9332-9348. [PMID: 32627957 PMCID: PMC7417708 DOI: 10.1111/jcmm.15585] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Sarcomas especially of histiocytic origin often possess a poor prognosis and response to conventional therapies. Interestingly, tumours undergoing mesenchymal to epithelial transition (MET) are often associated with a favourable clinical outcome. This process is characterized by an increased expression of epithelial markers leading to a decreased invasion and metastatic rate. Based on the failure of conventional therapies, viral oncolysis might represent a promising alternative with canine distemper virus (CDV) as a possible candidate. This study hypothesizes that a CDV infection of canine histiocytic sarcoma cells (DH82 cells) triggers the MET process leading to a decreased cellular motility. Immunofluorescence and immunoblotting were used to investigate the expression of epithelial and mesenchymal markers followed by scratch assay and an invasion assay as functional confirmation. Furthermore, microarray data were analysed for genes associated with the MET process, invasion and angiogenesis. CDV‐infected cells exhibited an increased expression of epithelial markers such as E‐cadherin and cytokeratin 8 compared to controls, indicating a MET process. This was accompanied by a reduced cell motility and invasiveness. Summarized, these results suggest that CDV infection of DH82 cells triggers the MET process by an increased expression of epithelial markers resulting in a decreased cell motility in vitro.
Collapse
Affiliation(s)
- Federico Armando
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Pathology Unit, Department of Veterinary Medicine, University of Parma, Parma, Italy
| | - Matteo Gambini
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Dipartimento di Medicina Veterinaria (DIMEVET), Universitá degli Studi di Milano, Lodi, Italy
| | - Attilio Corradi
- Pathology Unit, Department of Veterinary Medicine, University of Parma, Parma, Italy
| | - Kathrin Becker
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Katarzyna Marek
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Ahmed Elmonastir Mergani
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Graham Brogden
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Hannover, Germany, Germany
| | - Nicole de Buhr
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Maren von Köckritz-Blickwede
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
5
|
Piano MA, Brunello A, Cappellesso R, Del Bianco P, Mattiolo A, Fritegotto C, Montini B, Zamuner C, Del Fiore P, Rastrelli M, Sommariva A, De Salvo GL, Montesco MC, Rossi CR, Zagonel V, Calabrò ML. Periostin and Epithelial-Mesenchymal Transition Score as Novel Prognostic Markers for Leiomyosarcoma, Myxofibrosarcoma, and Undifferentiated Pleomorphic Sarcoma. Clin Cancer Res 2020; 26:2921-2931. [PMID: 32127392 DOI: 10.1158/1078-0432.ccr-19-2297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/17/2019] [Accepted: 02/28/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Interpatient clinical variability in soft-tissue sarcomas (STS) highlights the need for novel prognostic markers supporting patient risk stratification. As sarcomas might exhibit a more mesenchymal or a more epithelial state, we focused on epithelial-mesenchymal and mesenchymal-epithelial transitions (EMT/MET) for prognostic clues, and selected three histotypes with variable aggressiveness. EXPERIMENTAL DESIGN The expression of EMT/MET-related factors was measured by qRT-PCR in 55 tumor samples from patients with leiomyosarcoma, myxofibrosarcoma, or undifferentiated pleomorphic sarcoma. The identified marker was further evaluated by IHC in 31 leiomyosarcomas and by measuring its circulating levels in 67 patients. The prognostic value of a sarcoma-tailored EMT score was analyzed. Epirubicin chemosensitivity and migration were studied in primary STS cultures. Associations with overall survival (OS) were assessed using Kaplan-Meier and Cox regression methods. RESULTS High expression of periostin, a mesenchymal matricellular protein, in sarcoma tissues (P = 0.0024), its high stromal accumulation in leiomyosarcomas (P = 0.0075), and increased circulation (>20 ng/mL, P = 0.0008) were associated with reduced OS. High periostin expression [HR 2.9; 95% confidence interval (CI), 1.3-6.9; P = 0.0134] and circulation (HR 2.6; 95% CI, 1.3-5.1; P = 0.0086), and a mesenchymal EMT score (mesenchymal vs. transitioning; HR, 5.2; 95% CI, 2.1-13.0, P = 0.0005) were associated with increased risk in multivariable models. An intrinsic or induced mesenchymal state enhanced chemoresistance and migration in sarcoma cell lines. CONCLUSIONS Although limited to a pilot study, these findings suggest that periostin might contribute prognostic information in the three studied STS histotypes. Moreover, a transitioning EMT score measured in the tumor might predict a less active and a more chemosensitive disease.
Collapse
Affiliation(s)
- Maria Assunta Piano
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Antonella Brunello
- Medical Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Rocco Cappellesso
- Surgical Pathology and Cytopathology, Department of Medicine, University of Padua, Padua, Italy
| | - Paola Del Bianco
- Clinical Trials and Biostatistics, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Adriana Mattiolo
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Chiara Fritegotto
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Barbara Montini
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Carolina Zamuner
- Anatomy and Pathological Histology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Paolo Del Fiore
- Surgical Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Marco Rastrelli
- Surgical Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Antonio Sommariva
- Surgical Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Gian Luca De Salvo
- Clinical Trials and Biostatistics, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | | | - Carlo Riccardo Rossi
- Surgical Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.,Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Vittorina Zagonel
- Medical Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Maria Luisa Calabrò
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.
| |
Collapse
|
6
|
Jolly MK, Ware KE, Xu S, Gilja S, Shetler S, Yang Y, Wang X, Austin RG, Runyambo D, Hish AJ, Bartholf DeWitt S, George JT, Kreulen RT, Boss MK, Lazarides AL, Kerr DL, Gerber DG, Sivaraj D, Armstrong AJ, Dewhirst MW, Eward WC, Levine H, Somarelli JA. E-Cadherin Represses Anchorage-Independent Growth in Sarcomas through Both Signaling and Mechanical Mechanisms. Mol Cancer Res 2019; 17:1391-1402. [PMID: 30862685 PMCID: PMC6548594 DOI: 10.1158/1541-7786.mcr-18-0763] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/16/2018] [Accepted: 03/08/2019] [Indexed: 12/19/2022]
Abstract
CDH1 (also known as E-cadherin), an epithelial-specific cell-cell adhesion molecule, plays multiple roles in maintaining adherens junctions, regulating migration and invasion, and mediating intracellular signaling. Downregulation of E-cadherin is a hallmark of epithelial-to-mesenchymal transition (EMT) and correlates with poor prognosis in multiple carcinomas. Conversely, upregulation of E-cadherin is prognostic for improved survival in sarcomas. Yet, despite the prognostic benefit of E-cadherin expression in sarcoma, the mechanistic significance of E-cadherin in sarcomas remains poorly understood. Here, by combining mathematical models with wet-bench experiments, we identify the core regulatory networks mediated by E-cadherin in sarcomas, and decipher their functional consequences. Unlike carcinomas, E-cadherin overexpression in sarcomas does not induce a mesenchymal-to-epithelial transition (MET). However, E-cadherin acts to reduce both anchorage-independent growth and spheroid formation of sarcoma cells. Ectopic E-cadherin expression acts to downregulate phosphorylated CREB1 (p-CREB) and the transcription factor, TBX2, to inhibit anchorage-independent growth. RNAi-mediated knockdown of TBX2 phenocopies the effect of E-cadherin on CREB levels and restores sensitivity to anchorage-independent growth in sarcoma cells. Beyond its signaling role, E-cadherin expression in sarcoma cells can also strengthen cell-cell adhesion and restricts spheroid growth through mechanical action. Together, our results demonstrate that E-cadherin inhibits sarcoma aggressiveness by preventing anchorage-independent growth. IMPLICATIONS: We highlight how E-cadherin can restrict aggressive behavior in sarcomas through both biochemical signaling and biomechanical effects.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, Texas
| | - Kathryn E Ware
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Shengnan Xu
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Shivee Gilja
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Samantha Shetler
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Yanjun Yang
- Center for Theoretical Biological Physics, Rice University, Houston, Texas
- Department of Applied Physics, Rice University, Houston, Texas
| | - Xueyang Wang
- School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - R Garland Austin
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Daniella Runyambo
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Alexander J Hish
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | | | - Jason T George
- Center for Theoretical Biological Physics, Rice University, Houston, Texas
- Department of Bioengineering, Rice University, Houston, Texas
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas
| | - R Timothy Kreulen
- Department of Orthopedics, Duke University Medical Center, Durham, North Carolina
| | - Mary-Keara Boss
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado
| | | | - David L Kerr
- Department of Orthopedics, Duke University Medical Center, Durham, North Carolina
| | - Drew G Gerber
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Dharshan Sivaraj
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Andrew J Armstrong
- Solid Tumor Program, Duke University Medical Center, Durham, North Carolina
- Duke Prostate Center, Duke University Medical Center, Durham, North Carolina
| | - Mark W Dewhirst
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - William C Eward
- Department of Orthopedics, Duke University Medical Center, Durham, North Carolina
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, Texas
- Department of Bioengineering, Rice University, Houston, Texas
| | - Jason A Somarelli
- Department of Medicine, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
7
|
Prognostic value of high mobility group protein A2 (HMGA2) over-expression in cancer progression. Gene 2019; 706:131-139. [PMID: 31055021 DOI: 10.1016/j.gene.2019.04.088] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/15/2019] [Accepted: 04/30/2019] [Indexed: 12/23/2022]
Abstract
The high mobility group A2 (HMGA2; also called HMGI-C) gene is an architectural transcription factor that belonging to the high mobility group AT-hook (HMGA) gene family. HMGA2 is aberrantly regulated in several human tumors. Over-expression of HMGA2 is correlated with a higher risk of metastasis and an unfavorable prognosis in patients with cancer. We performed a meta-analysis to determine the clinic-pathological and prognostic value of HMGA2 overexpression in different human tumors. A comprehensive literature search was performed using PubMed, Embase, Cochrane Library, Scopus, MEDLINE, Google Scholar and ISI Web of Science. Hazard ratios (HRs)/odds ratios (ORs) and their 95% confidence intervals (CIs) were used to assess the strength of the association between HMGA2 expression and overall survival (OS)/progression free survival (PFS)/disease free survival (DFS). A total of 5319 patients with 19 different types of cancer from 35 articles were evaluated. Pooled data analysis indicated that increased HMGA2 expression in cancer patients predicted a poor OS (HR = 1.70; 95% CI = 1.6-1.81; P < 0.001; fixed-effect model). In subgroup analyses, high HMGA2 expression was particularly associated with poor OS in individuals with gastrointestinal (GI) cancer (HR = 1.89, 95% CI: 1.83-1.96; fixed-effect model) and HNSCC cancer (HR-1.78, 95%CI: 1.44-2.21; fixed-effect model). Over-expression of HMGA2 was associated with vascular invasion (OR = 0.16, 95% CI = 0.05-0.49; P = 0.001) and lymphatic invasion (OR = 1.89, 95% CI = 1.06-3.38; P = 0.032). Further studies should be conducted to validate the prognostic value of HMGA2 for patients with GI cancers.
Collapse
|
8
|
High Vimentin Expression Predicts a Poor Prognosis and Progression in Colorectal Cancer: A Study with Meta-Analysis and TCGA Database. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6387810. [PMID: 29955607 PMCID: PMC6000861 DOI: 10.1155/2018/6387810] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/10/2018] [Accepted: 04/29/2018] [Indexed: 12/17/2022]
Abstract
The aim of this study was to evaluate the role of vimentin expression in the prognosis and progression of CRC. Meta-analysis was conducted to investigate the correlations between vimentin and prognosis and clinicopathological features in CRC. Literatures were searched by PubMed, Embase, ClinicalKey, CNKI, VIP, and WanFang databases. The Cancer Genome Atlas (TCGA) database was used to assess the association of vimentin expression with survival rate in CRC. Eleven reports with 1969 cases were included in the meta-analysis. The results showed that positive vimentin expression predicted a poor overall survival (OS) in the univariate analysis (HR: 2.087, 95%CI: 1.660-2.625) and multivariate analysis (HR: 1.633, 95%CI: 1.223-2.181). Vimentin overexpression also conferred worse disease-free survival (DFS) in the univariate analysis (HR: 2.069, 95%CI: 1.024-4.179) and multivariate analysis (HR: 2.802, 95%CI: 1.421-5.527). Moreover, upregulated vimentin is related to lymph node metastasis (OR: 2.288, 95%CI: 1.159-4.517), TNM stages (OR: 1.957, 95%CI: 1.333-2.873), and N stage (OR: 2.316, 95%CI: 1.482-3.620). Analysis of TCGA database indicated that elevated vimentin predicated a shorter OS (p=0.033). Our findings reveal that upregulated vimentin contributes to the progression and poor prognosis of CRC. Vimentin may be a prognostic biomarker and therapeutic target in patients with CRC.
Collapse
|
9
|
Rangan L, Galaine J, Boidot R, Hamieh M, Dosset M, Francoual J, Beziaud L, Pallandre JR, Lauret Marie Joseph E, Asgarova A, Borg C, Al Saati T, Godet Y, Latouche JB, Valmary-Degano S, Adotévi O. Identification of a novel PD-L1 positive solid tumor transplantable in HLA-A*0201/DRB1*0101 transgenic mice. Oncotarget 2018; 8:48959-48971. [PMID: 28430664 PMCID: PMC5564740 DOI: 10.18632/oncotarget.16900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/22/2017] [Indexed: 12/28/2022] Open
Abstract
HLA-A*0201/DRB1*0101 transgenic mice (A2/DR1 mice) have been developed to study the
immunogenicity of tumor antigen-derived T cell epitopes. To extend the use and
application of this mouse model in the field of antitumor immunotherapy, we described
a tumor cell line generated from a naturally occurring tumor in A2/DR1 mouse named
SARC-L1. Histological and genes signature analysis supported the sarcoma origin of
this cell line. While SARC-L1 tumor cells lack HLA-DRB1*0101 expression, a very low
expression of HLA-A*0201 molecules was found on these cells. Furthermore they also
weakly but constitutively expressed the programmed death-ligand 1 (PD-L1).
Interestingly both HLA-A*0201 and PD-L1 expressions can be increased on SARC-L1 after
IFN-γ exposure in vitro. We also obtained two genetically
modified cell lines highly expressing either HLA-A*0201 or both HLA-A*0201/
HLA-DRB1*0101 molecules referred as SARC-A2 and SARC-A2DR1 respectively. All the
SARC-L1-derived cell lines induced aggressive subcutaneous tumors in A2DR1 mice
in vivo. The analysis of SARC-L1 tumor microenvironment revealed
a strong infiltration by T cells expressing inhibitory receptors such as PD-1 and
TIM-3. Finally, we found that SARC-L1 is sensitive to several drugs commonly used to
treat sarcoma and also susceptible to anti-PD-L1 monoclonal antibody therapy
in vivo. Collectively, we described a novel syngeneic tumor model
A2/DR1 mice that could be used as preclinical tool for the evaluation of antitumor
immunotherapies.
Collapse
Affiliation(s)
- Laurie Rangan
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-gGreffon-Tumeur, Ingénierie Cellulaire et Génique, F-25000 Besançon, France.,LabEx LipSTIC, F-25000 Besançon, France
| | - Jeanne Galaine
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-gGreffon-Tumeur, Ingénierie Cellulaire et Génique, F-25000 Besançon, France.,LabEx LipSTIC, F-25000 Besançon, France
| | - Romain Boidot
- Platform for Transfer to Cancer Biology, Centre Georges-François Leclerc, 21000 Dijon, France
| | - Mohamad Hamieh
- University Hospital of Rouen, INSERM UMR1245, Institute for Research and Innovation in Biomedicine, 76183 Rouen, France
| | - Magalie Dosset
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-gGreffon-Tumeur, Ingénierie Cellulaire et Génique, F-25000 Besançon, France.,LabEx LipSTIC, F-25000 Besançon, France
| | - Julie Francoual
- University Hospital of Rouen, INSERM UMR1245, Institute for Research and Innovation in Biomedicine, 76183 Rouen, France
| | - Laurent Beziaud
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-gGreffon-Tumeur, Ingénierie Cellulaire et Génique, F-25000 Besançon, France.,LabEx LipSTIC, F-25000 Besançon, France
| | - Jean-René Pallandre
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-gGreffon-Tumeur, Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - Elodie Lauret Marie Joseph
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-gGreffon-Tumeur, Ingénierie Cellulaire et Génique, F-25000 Besançon, France.,LabEx LipSTIC, F-25000 Besançon, France
| | - Afag Asgarova
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-gGreffon-Tumeur, Ingénierie Cellulaire et Génique, F-25000 Besançon, France.,LabEx LipSTIC, F-25000 Besançon, France
| | - Christophe Borg
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-gGreffon-Tumeur, Ingénierie Cellulaire et Génique, F-25000 Besançon, France.,LabEx LipSTIC, F-25000 Besançon, France.,Department of Medical Oncology, University Hospital of Besançon, 25000 Besançon, France
| | - Talal Al Saati
- INSERM/UPS, US006/CREFRE, Department of Histopathology, University Hospital of Purpan, 31000 Toulouse, France
| | - Yann Godet
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-gGreffon-Tumeur, Ingénierie Cellulaire et Génique, F-25000 Besançon, France.,LabEx LipSTIC, F-25000 Besançon, France
| | - Jean Baptiste Latouche
- Department of Genetics, University Hospital of Rouen, Normandy Centre for Genomic and Personalized Medicine, 76183 Rouen, France
| | | | - Olivier Adotévi
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-gGreffon-Tumeur, Ingénierie Cellulaire et Génique, F-25000 Besançon, France.,LabEx LipSTIC, F-25000 Besançon, France.,Department of Medical Oncology, University Hospital of Besançon, 25000 Besançon, France
| |
Collapse
|
10
|
Richardson AM, Havel LS, Koyen AE, Konen JM, Shupe J, Wiles WG, Martin WD, Grossniklaus HE, Sica G, Gilbert-Ross M, Marcus AI. Vimentin Is Required for Lung Adenocarcinoma Metastasis via Heterotypic Tumor Cell-Cancer-Associated Fibroblast Interactions during Collective Invasion. Clin Cancer Res 2017; 24:420-432. [PMID: 29208669 DOI: 10.1158/1078-0432.ccr-17-1776] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/10/2017] [Accepted: 10/30/2017] [Indexed: 12/24/2022]
Abstract
Purpose: Vimentin is an epithelial-to-mesenchymal transition (EMT) biomarker and intermediate filament protein that functions during cell migration to maintain structure and motility. Despite the abundance of clinical data linking vimentin to poor patient outcome, it is unclear if vimentin is required for metastasis or is a correlative biomarker. We developed a novel genetically engineered mouse model (GEMM) to probe vimentin in lung adenocarcinoma metastasis.Experimental Design: We used the LSL-KrasG12D/Lkb1fl/fl/Vim-/- model (KLV-/-), which incorporates a whole-body knockout of vimentin and is derived from the Cre-dependent LSL-KrasG12D/Lkb1fl/fl model (KLV+/+). We compared the metastatic phenotypes of the GEMMs and analyzed primary tumors from the KLV models and lung adenocarcinoma patients to assess vimentin expression and function.Results: Characterization of KLV+/+ and KLV-/- mice shows that although vimentin is not required for primary lung tumor growth, vimentin is required for metastasis, and vimentin loss generates lower grade primary tumors. Interestingly, in the KLV+/+ mice, vimentin was not expressed in tumor cells but in cancer-associated fibroblasts (CAFs) surrounding collective invasion packs (CIPs) of epithelial tumor cells, with significantly less CIPs in KLV-/- mice. CIPs correlate with tumor grade and are vimentin-negative and E-cadherin-positive, indicating a lack of cancer cell EMT. A similar heterotypic staining pattern was observed in human lung adenocarcinoma samples. In vitro studies show that vimentin is required for CAF motility to lead tumor cell invasion, supporting a vimentin-dependent model of collective invasion.Conclusions: These data show that vimentin is required for lung adenocarcinoma metastasis by maintaining heterotypic tumor cell-CAF interactions during collective invasion. Clin Cancer Res; 24(2); 420-32. ©2017 AACR.
Collapse
Affiliation(s)
- Alessandra M Richardson
- Cancer Biology Graduate Program, Emory University, Atlanta, Georgia.,Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia.,Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Lauren S Havel
- Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia.,Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Allyson E Koyen
- Cancer Biology Graduate Program, Emory University, Atlanta, Georgia.,Winship Cancer Institute of Emory University, Atlanta, Georgia.,Department of Radiation Oncology, Emory University, Atlanta, Georgia
| | - Jessica M Konen
- Cancer Biology Graduate Program, Emory University, Atlanta, Georgia.,Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia.,Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - John Shupe
- Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia.,Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - W G Wiles
- Winship Cancer Institute of Emory University, Atlanta, Georgia.,The Cancer Animal Models Shared Resource
| | - W David Martin
- Winship Cancer Institute of Emory University, Atlanta, Georgia.,The Cancer Animal Models Shared Resource
| | - Hans E Grossniklaus
- Winship Cancer Institute of Emory University, Atlanta, Georgia.,Department of Ophthalmology, Emory University, Atlanta, Georgia
| | - Gabriel Sica
- Winship Cancer Institute of Emory University, Atlanta, Georgia.,Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | - Melissa Gilbert-Ross
- Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia. .,Winship Cancer Institute of Emory University, Atlanta, Georgia.,The Cancer Animal Models Shared Resource
| | - Adam I Marcus
- Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia. .,Winship Cancer Institute of Emory University, Atlanta, Georgia
| |
Collapse
|
11
|
Mesenchymal-Epithelial Transition in Sarcomas Is Controlled by the Combinatorial Expression of MicroRNA 200s and GRHL2. Mol Cell Biol 2016; 36:2503-13. [PMID: 27402864 DOI: 10.1128/mcb.00373-16] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 07/07/2016] [Indexed: 01/04/2023] Open
Abstract
Phenotypic plasticity involves a process in which cells transiently acquire phenotypic traits of another lineage. Two commonly studied types of phenotypic plasticity are epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET). In carcinomas, EMT drives invasion and metastatic dissemination, while MET is proposed to play a role in metastatic colonization. Phenotypic plasticity in sarcomas is not well studied; however, there is evidence that a subset of sarcomas undergo an MET-like phenomenon. While the exact mechanisms by which these transitions occur remain largely unknown, it is likely that some of the same master regulators that drive EMT and MET in carcinomas also act in sarcomas. In this study, we combined mathematical models with bench experiments to identify a core regulatory circuit that controls MET in sarcomas. This circuit comprises the microRNA 200 (miR-200) family, ZEB1, and GRHL2. Interestingly, combined expression of miR-200s and GRHL2 further upregulates epithelial genes to induce MET. This effect is phenocopied by downregulation of either ZEB1 or the ZEB1 cofactor, BRG1. In addition, an MET gene expression signature is prognostic for improved overall survival in sarcoma patients. Together, our results suggest that a miR-200, ZEB1, GRHL2 gene regulatory network may drive sarcoma cells to a more epithelial-like state and that this likely has prognostic relevance.
Collapse
|
12
|
Wang N, He YL, Pang LJ, Zou H, Liu CX, Zhao J, Hu JM, Zhang WJ, Qi Y, Li F. Down-regulated E-cadherin expression is associated with poor five-year overall survival in bone and soft tissue sarcoma: results of a meta-analysis. PLoS One 2015; 10:e0121448. [PMID: 25822802 PMCID: PMC4378985 DOI: 10.1371/journal.pone.0121448] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 09/02/2014] [Indexed: 01/04/2023] Open
Abstract
Purpose To conduct a meta-analysis to evaluate the prognostic role of E-cadherin expression in bone and soft tissue sarcomas. Methods The PubMed, EMBASE, and Web of Science databases were searched using terms related to E-cadherin, sarcoma, and prognosis for all articles published in English before March 2014. Pooled effect was calculated from the available data to evaluate the association between negative E-cadherin expression and 5-year overall survival and tumor clinicopathological features in sarcoma patients. Pooled odds ratios (OR) and risk ratios (RR) with 95% confidence intervals (CI) were calculated using a fixed-effects model. Result Eight studies met the selection criteria and reported on 812 subjects. A total of 496 subjects showed positive E-cadherin expression (59.9%). Negative E-cadherin expression in bone and soft tissue sarcomas was correlated with lower 5-year overall survival (OR = 3.831; 95% CI: 2.246–6.534), and was associated with higher clinical stage (RR = 1.446; 95% CI: 1.030–2.028) and with male sex (RR = 0.678; 95% CI: 0.493–0.933). Conclusion In the E-cadherin negative group, 5-year overall survival was significantly worse than in the E-cadherin positive group. However, further studies are required to confirm these results.
Collapse
Affiliation(s)
- Ning Wang
- Department of Pathology, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Shihezi University and Chinese Ministry of Education, Shihezi, Xinjiang, China
| | - Yong-Lai He
- Department of ICU intensive care, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Li-Juan Pang
- Department of Pathology, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Shihezi University and Chinese Ministry of Education, Shihezi, Xinjiang, China
| | - Hong Zou
- Department of Pathology, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Shihezi University and Chinese Ministry of Education, Shihezi, Xinjiang, China
| | - Chun-Xia Liu
- Department of Pathology, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Shihezi University and Chinese Ministry of Education, Shihezi, Xinjiang, China
| | - Jin Zhao
- Department of Pathology, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Shihezi University and Chinese Ministry of Education, Shihezi, Xinjiang, China
| | - Jian-Ming Hu
- Department of Pathology, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Shihezi University and Chinese Ministry of Education, Shihezi, Xinjiang, China
| | - Wen-Jie Zhang
- Department of Pathology, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Shihezi University and Chinese Ministry of Education, Shihezi, Xinjiang, China
| | - Yan Qi
- Department of Pathology, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Shihezi University and Chinese Ministry of Education, Shihezi, Xinjiang, China
- * E-mail: (FL); (YQ)
| | - Feng Li
- Department of Pathology, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Shihezi University and Chinese Ministry of Education, Shihezi, Xinjiang, China
- * E-mail: (FL); (YQ)
| |
Collapse
|
13
|
Xia YY, Yin L, Tian H, Guo WJ, Jiang N, Jiang XS, Wu J, Chen M, Wu JZ, He X. HMGA2 is associated with epithelial-mesenchymal transition and can predict poor prognosis in nasopharyngeal carcinoma. Onco Targets Ther 2015; 8:169-76. [PMID: 25653540 PMCID: PMC4303461 DOI: 10.2147/ott.s74397] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Objective High-mobility group protein 2 (HMGA2) and epithelial–mesenchymal transition (EMT)-associated proteins play key roles in cancer progression and metastasis. However, the clinical significance of HMGA2 and its relationship with EMT markers in nasopharyngeal carcinoma (NPC) is unclear. This study aimed to assess the clinicopathological significance and prognostic value of HMGA2, E-cadherin, and vimentin in NPC. Methods Using immunohistochemistry, HMGA2, E-cadherin, and vimentin expression levels were evaluated in NPC (n=124) and non-tumoral inflammatory nasopharynx (n=20) tissues. The association of HMGA2 and EMT markers with clinicopathological characteristics and relationships between the protein levels and overall survival were analyzed. Results Compared with non-tumorous tissues, HMGA2 and vimentin levels were markedly increased in NPC tissues, whereas decreased E-cadherin levels were observed (P<0.001). Moreover, HMGA2 expression was positively correlated with vimentin levels (r=0.431, P<0.001) and negatively correlated with E-cadherin amounts (r=−0.413, P<0.001) in NPC tissues. The expression of all three proteins correlated significantly with tumor N stage, TNM stage, and 2-year metastasis. Furthermore, significant correlations were found for T stage, N stage, TNM stage, HMGA2, E-cadherin, and vimentin (all P<0.013) with poor prognosis (univariate analysis). However, multivariate analyses showed that only HMGA2 (hazard ratio [HR]: 2.683, 95% confidence interval [CI]: 1.185–6.077, P=0.018) and N stage (HR: 7.892, 95% CI: 2.731–22.807, P<0.001) were independent predictors of poor prognosis. Conclusion These results demonstrated that HMGA2, an independent prognostic factor, may promote NPC progression and metastasis, and is significantly associated with EMT proteins. Therefore, HMGA2 may be considered a potential therapeutic target in NPC.
Collapse
Affiliation(s)
- You-You Xia
- The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Li Yin
- Department of Radiation Oncology, The Affiliated Jiangsu Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Hao Tian
- The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Wen-Jie Guo
- Department of Radiation Oncology, The Affiliated Jiangsu Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Ning Jiang
- Department of Radiation Oncology, The Affiliated Jiangsu Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Xue-Song Jiang
- Department of Radiation Oncology, The Affiliated Jiangsu Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Jing Wu
- The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Meng Chen
- The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Jian-Zhong Wu
- Research Center of Clinical Oncology, The Affiliated Jiangsu Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Xia He
- Department of Radiation Oncology, The Affiliated Jiangsu Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
14
|
Kaygusuz EI. Immunohistochemical expression of CD44 standard and E-cadherin in atypical leiomyoma and leiomyosarcoma of the uterus. J OBSTET GYNAECOL 2014; 35:279-82. [DOI: 10.3109/01443615.2014.948821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Wang C, Wang L, Su B, Lu N, Song J, Yang X, Fu W, Tan W, Han B. Serine protease inhibitor Kazal type 1 promotes epithelial-mesenchymal transition through EGFR signaling pathway in prostate cancer. Prostate 2014; 74:689-701. [PMID: 24619958 DOI: 10.1002/pros.22787] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 01/20/2014] [Indexed: 01/06/2023]
Abstract
BACKGROUND Overexpression of serine protease inhibitor Kazal type 1 (SPINK1) defines an aggressive molecular subtype of ETS fusion-negative prostate cancer (PCa) patients in western countries. However, how SPINK1 contributes to PCa invasion and metastasis is largely unknown. METHODS Fluorescence in situ hybridization and immunohistochemistry were utilized to detect ERG rearrangement, SPINK1 expression, and EGFR aberrations in a cohort of 211 PCa patients with radical prostatectomy. Real-time quantitative PCR and Western blotting were used to study the transcript and protein expression levels. Cellular distribution of E-cadherin and vimentin were observed by immunofluorescence. Cellular function was evaluated by siRNA, transwell, and wound healing assay, respectively. RESULTS SPINK1-induced Epithelial-mesenchymal transition (EMT) in benign prostate RWPE cells, manifested by acquisition of mesenchymal morphology, alternation of EMT markers as well as migration and invasion capabilities. Knockdown of SPINK1 in 22RV1 PCa cells results in up-regulation of E-cadherin and down-regulation of vimentin. SPINK1-induced EMT is mediated by EGFR, in which MAPK/MEK/ERK pathway is mainly involved. Connective tissue growth factor (CTGF) might be an important down-stream molecule of SPINK1-EGFR axis. Clinically, SPINK1 and EGFR were significantly co-overexpressed in a cohort of Chinese PCa patients (n > 200). SPINK1 is an unfavorable prognostic factor in Chinese PCas (P = 0.025). CONCLUSIONS These findings suggest that SPINK1 promotes EMT through EGFR signaling pathway in PCa and SPINK1 could be a new prognostic marker in Chinese PCas.
Collapse
Affiliation(s)
- Chunni Wang
- Department of Pathology, Shandong University Medical School, Jinan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ding X, Wang Y, Ma X, Guo H, Yan X, Chi Q, Li J, Hou Y, Wang C. Expression of HMGA2 in bladder cancer and its association with epithelial-to-mesenchymal transition. Cell Prolif 2014; 47:146-51. [PMID: 24571540 DOI: 10.1111/cpr.12096] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 11/05/2013] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES High mobility group protein2 (HMGA2) and epithelial-to-mesenchymal transition are both related to progress of bladder cancer, however, the relationship between HMGA2, E-cadherin and vimentin in bladder cancer is not yet known. Thus, this study has examined expression of HMGA2, E-cadherin and vimentin in bladder cancer and investigated their relationship. MATERIALS AND METHODS The 5637 bladder cancer cell line and SV-HUC-1 normal uroepithelial cells were used to study expression of HMGA2, E-cadherin and vimentin using RT-PCR and western blotting. Paraffin wax-embedded bladder cancer tissues were used to study protein expression using immunohistochemistry and χ(2) analysis and Kendall's correlation were utilized statistical methods. RESULTS Overexpression of HMGA2 was associated with down-regulation of E-cadherin and up-regulation of vimentin in the 5637 bladder cancer line. A total of 49 paraffin wax-embedded tissues of transitional cell bladder cancer were used. Positive expression levels of HMGA2 protein and vimentin were 41 and 43% in bladder tissues, respectively. No expression of E-cadherin was found in 43%. Expression of HMGA2, loss of E-cadherin and expression of vimentin are all significantly correlated with bladder cancer grade and stage. Loss of E-cadherin and expression of vimentin both correlated with recurrence of the bladder cancer. CONCLUSIONS Expression of HMGA2 was closely associated with occurrence of epithelial-to-mesenchymal transition. Expression of HMGA2, loss of E-cadherin and expression of vimentin may indicate high degree malignancy of bladder cancer. Loss of E-cadherin expression and positive expression of vimentin may predict recurrence of bladder cancer.
Collapse
Affiliation(s)
- X Ding
- Department of Radiology, First Hospital of Jilin University, Changchun, 130021, China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yang J, Du X, Wang G, Sun Y, Chen K, Zhu X, Lazar AJF, Hunt KK, Pollock RE, Zhang W. Mesenchymal to epithelial transition in sarcomas. Eur J Cancer 2014; 50:593-601. [PMID: 24291235 DOI: 10.1016/j.ejca.2013.11.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/20/2013] [Accepted: 11/10/2013] [Indexed: 02/03/2023]
Abstract
Mesenchymal to epithelial transition (MET) in carcinomas has been proposed to promote the growth of epithelial tumour cells at distant sites during metastasis. MET has also been suggested as an important biological and clinical process in mesenchymal tumors, sarcomas. Here we review studies on MET in sarcomas, including molecular markers, signalling mechanisms, regulation by micro RNAs and therapeutic implications. Accumulating evidences suggest that deeper investigation and understanding of MET in sarcomas would shed light on the pathogenesis of sarcomas and might lead to identification of potential clinical biomarkers for prognosis and targets for sarcoma therapeutics.
Collapse
Affiliation(s)
- Jilong Yang
- Department of Bone and Soft Tissue Tumors, National Clinical Cancer Research Center, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China.
| | - Xiaoling Du
- Department of Diagnostics, Tianjin Medical University, Tianjin 300060, China.
| | - Guowen Wang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China.
| | - Yan Sun
- Department of Pathology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China.
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China.
| | - Xiongzeng Zhu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
| | - Alexander J F Lazar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Kelly K Hunt
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Raphael E Pollock
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Wei Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
18
|
Chaklader M, Pan A, Law A, Chattopadhayay S, Chatterjee R, Law S. Differential remodeling of cadherins and intermediate cytoskeletal filaments influence microenvironment of solid and ascitic sarcoma. Mol Cell Biochem 2013; 382:293-306. [PMID: 23861106 DOI: 10.1007/s11010-013-1750-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 07/03/2013] [Indexed: 12/21/2022]
Abstract
Different forms of sarcoma (solid or ascitic) often pose a critical medical situation for pediatric or adolescent group of patients. To date, predisposed genetic anomalies and related changes in protein expression are thought to be responsible for sarcoma development. However, in spite of genetic abnormality, role of tumor microenvironment is also indispensable for the evolving neoplasm. In our present study, we characterized the deferentially remodeled microenvironment in solid and ascitic tumors by sequential immunohistochemistry and flowcytometric analysis of E-cdaherin, N-cadherin, vimentin, and cytokeratin along with angiogenesis and metastasis. In addition, we considered flowcytometric apoptosis and CD133 positive cancer stem cell analysis. Comparative hemogram was also considered as a part. Our investigation revealed that both types of tumor promoted neovascularization over time with sign of local inflammation. Invasion of neighboring skeletal muscle by solid sarcoma was more frequent than its ascitic counterpart. In contrary, rapid and earlier cadherin switching (E-cadherin to N-cadherin) in ascitic sarcoma made them more aggressive than that of solid sarcoma and helped to early metastasize distant tissue like liver through the hematogenous route. Differential cadherin switching and infidelity of cytokeratin expression in Vimentin positive sarcoma also influenced the behavior of ascitic CD133+ cancer initiating cell pool with respect to CD133+ cells housed in solid sarcoma. Therefore our study concludes that differential cadherin switching program and infidelity of intermediate filaments in part, sharply discriminate the severity and metastatic potentiality of either type of sarcoma accompanying with CD133+ cellular repertoire. Besides, tumor phenotype-based dichotomous cadherin switching program could be exploited as a future drug target to manage decompensated malignant ascitic and solid sarcoma.
Collapse
Affiliation(s)
- Malay Chaklader
- Stem Cell Research and Application Unit, Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, 108, C. R. Avenue, Kolkata, 700073, West Bengal, India
| | | | | | | | | | | |
Collapse
|