1
|
Kulkarni AM, Gayam PKR, Baby BT, Aranjani JM. Epithelial-Mesenchymal Transition in Cancer: A Focus on Itraconazole, a Hedgehog Inhibitor. Biochim Biophys Acta Rev Cancer 2025; 1880:189279. [PMID: 39938662 DOI: 10.1016/j.bbcan.2025.189279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/24/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Cancer, and the resulting mortality from it, is an ever-increasing concern in global health. Cancer mortality stems from the metastatic progression of the disease, by dissemination of the tumor cells. Epithelial-Mesenchymal Transition, the major hypothesis purported to be the origin of metastasis, confers mesenchymal phenotype to epithelial cells in a variety of contexts, physiological and pathological. EMT in cancer leads to rise of cancer-stem-like cells, drug resistance, relapse, and progression of malignancy. Inhibition of EMT could potentially attenuate the mortality. While novel molecules for inhibiting EMT are underway, repurposing drugs is also being considered as a viable strategy. In this review, Itraconazole is focused upon, as a repurposed molecule to mitigate EMT. Itraconazole is known to inhibit Hedgehog signaling, and light is shed upon the existing evidence, as well as the questions remaining to be answered.
Collapse
Affiliation(s)
- Aniruddha Murahar Kulkarni
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104, India.
| | - Prasanna Kumar Reddy Gayam
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104, India.
| | - Beena Thazhackavayal Baby
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104, India
| | - Jesil Mathew Aranjani
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104, India.
| |
Collapse
|
2
|
Montero-Calle A, López-Janeiro Á, Mendes ML, Perez-Hernandez D, Echevarría I, Ruz-Caracuel I, Heredia-Soto V, Mendiola M, Hardisson D, Argüeso P, Peláez-García A, Guzman-Aranguez A, Barderas R. In-depth quantitative proteomics analysis revealed C1GALT1 depletion in ECC-1 cells mimics an aggressive endometrial cancer phenotype observed in cancer patients with low C1GALT1 expression. Cell Oncol (Dordr) 2023; 46:697-715. [PMID: 36745330 PMCID: PMC10205863 DOI: 10.1007/s13402-023-00778-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2023] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Endometrial cancer (EC) is the most common cancer of the female reproductive organs. Despite the good overall prognosis of most low-grade ECs, FIGO I and FIGO II patients might experience tumor recurrence and worse prognosis. The study of alterations related to EC pathogenesis might help to get insights into underlying mechanisms involved in EC development and progression. METHODS Core tumoral samples were used to investigate the role of C1GALT1 in EC by immunohistochemistry (IHC). ECC-1 cells were used as endometrioid EC model to investigate the effect of C1GALT1 depletion using C1GALT1 specific shRNAs. SILAC quantitative proteomics analyses and cell-based assays, PCR, qPCR, WB, dot-blot and IHC analyses were used to identify, quantify and validate dysregulation of proteins. RESULTS Low C1GALT1 protein expression levels associate to a more aggressive phenotype of EC. Out of 5208 proteins identified and quantified by LC-MS/MS, 100 proteins showed dysregulation (log2fold-change ≥ 0.58 or ≤-0.58) in the cell protein extracts and 144 in the secretome of C1GALT1 depleted ECC-1 cells. Nine dysregulated proteins were validated. Bioinformatics analyses pointed out to an increase in pathways associated with an aggressive phenotype. This finding was corroborated by loss-of-function cell-based assays demonstrating higher proliferation, invasion, migration, colony formation and angiogenesis capacity in C1GALT1 depleted cells. These effects were associated to the overexpression of ANXA1, as demonstrated by ANXA1 transient silencing cell-based assays, and thus, correlating C1GALT and ANXA1 protein expression and biological effects. Finally, the negative protein expression correlation found by proteomics between C1GALT1 and LGALS3 was confirmed by IHC. CONCLUSION C1GALT1 stably depleted ECC-1 cells mimic an EC aggressive phenotype observed in patients and might be useful for the identification and validation of EC markers of progression.
Collapse
Affiliation(s)
- Ana Montero-Calle
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | | | - Marta L Mendes
- Department of Infection and Immunity, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | - Daniel Perez-Hernandez
- Department of Infection and Immunity, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | - Irene Echevarría
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
- Biochemistry and Molecular Biology Department, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037, Madrid, Spain
| | | | - Victoria Heredia-Soto
- Translational Oncology, La Paz University Hospital (IdiPAZ), 28046, Madrid, Spain
- Center for Biomedical Research in the Cancer Network (Centro de Investigación Biomédica en Red de Cáncer, CIBERONC), Instituto de Salud Carlos III, 28046, Madrid, Spain
| | - Marta Mendiola
- Center for Biomedical Research in the Cancer Network (Centro de Investigación Biomédica en Red de Cáncer, CIBERONC), Instituto de Salud Carlos III, 28046, Madrid, Spain
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046, Madrid, Spain
| | - David Hardisson
- Department of Pathology, Hospital Universitario La Paz, 28046, Madrid, Spain
- Center for Biomedical Research in the Cancer Network (Centro de Investigación Biomédica en Red de Cáncer, CIBERONC), Instituto de Salud Carlos III, 28046, Madrid, Spain
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046, Madrid, Spain
- Faculty of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - Pablo Argüeso
- Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Alberto Peláez-García
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046, Madrid, Spain.
| | - Ana Guzman-Aranguez
- Biochemistry and Molecular Biology Department, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037, Madrid, Spain.
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
- Functional Proteomics Unit, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| |
Collapse
|
3
|
Yu H, Wei Y, Dong Y, Chen P. Regulation of Notch Signaling Pathway to Innate Lymphoid Cells in Patients with Acute Myocardial Infarction. Immunol Invest 2023; 52:241-255. [PMID: 36562737 DOI: 10.1080/08820139.2022.2158856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Notch signaling pathway is an important regulator in fate decisions and immune responses of innate lymphoid cells (ILCs). However, the function of Notch signaling in ILCs in acute coronary syndrome is still not fully elucidated. Thirty-one unstable angina pectoris (UAP) patients, 21 acute myocardial infarction (AMI) patients, and 20 controls were included in this study. Peripheral blood mononuclear cells (PBMCs) were isolated. The mRNA expression levels of Notch receptors and ligands were measured by real-time PCR, while ILC subsets were measured by flow cytometry. Lin- cells were purified and stimulated with γ-secretase inhibitor (GSI). ILC subsets, transcription factors, and secreted cytokines were assessed. Notch receptor and ligand mRNA levels were elevated in PBMCs and peripheral lin- cells from AMI patients. There was no significant difference in total lin-CD45+CD161+CD127+ ILC frequency among three groups. The CRTH2-CD117- ILC1 subset was down-regulated, while the CRTH2+ ILC2 subset was up-regulated in AMI patients. The CRTH2-CD117+ ILC3 subpopulation was comparable among the three groups. ILC1% was negatively correlated with Notch1 and Notch2 in AMI patients. Inhibition of Notch signaling pathway by GSI induced elevations in ILC1 frequency, T-bet mRNA expression, and interferon-γ secretion and reduced ILC2 frequency, GATA3 mRNA levels, and interleukin-5/interleukin-13 production by lin- cells from AMI patients. The current data indicated that activation of Notch signaling pathway might contribute to ILC1-to-ILC2 shift in peripheral blood in AMI patients.
Collapse
Affiliation(s)
- Haiwen Yu
- Department of Cardiovascularology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yongjie Wei
- Department of Cardiovascularology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanyan Dong
- Department of Cardiovascularology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Penglei Chen
- Department of Cardiovascularology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Słabuszewska-Jóźwiak A, Lukaszuk A, Janicka-Kośnik M, Wdowiak A, Jakiel G. Role of Leptin and Adiponectin in Endometrial Cancer. Int J Mol Sci 2022; 23:5307. [PMID: 35628118 PMCID: PMC9141615 DOI: 10.3390/ijms23105307] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/07/2022] [Accepted: 05/07/2022] [Indexed: 02/04/2023] Open
Abstract
Endometrial cancer is the most common malignancy of the female genital tract. Obesity is a strong risk factor for endometrial cancer. Adipose tissue is an active endocrine organ that synthesizes biologically active cytokine peptides, called adipokines. Adiponectin and leptin are the main cytokines of adipose tissue, which may influence the development of metabolic diseases and carcinogenesis. In this scenario, we describe the role of leptin and adiponectin in the development of endometrial cancer. A better understanding of the signalling pathway of these cytokines in endometrial cancerogenesis will provide an opportunity for effective target therapy and may be usable in fertility-sparing treatment. In the future, clinical trials focusing on adipokines, molecular biology, and genetics of the tumour will be needed.
Collapse
Affiliation(s)
- Aneta Słabuszewska-Jóźwiak
- First Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, Żelazna 90 Street, 01-004 Warsaw, Poland;
| | - Aron Lukaszuk
- Saint Sophia Hospital, Żelazna 90 Street, 01-004 Warsaw, Poland; (A.L.); (M.J.-K.)
- Invicta Research and Development Center, Polna 64 Street, 81-710 Sopot, Poland
| | - Marta Janicka-Kośnik
- Saint Sophia Hospital, Żelazna 90 Street, 01-004 Warsaw, Poland; (A.L.); (M.J.-K.)
| | - Artur Wdowiak
- Chair of Obstetrics and Gynecology, Faculty of Health Sciences, Medical University of Lublin, 4-6 Staszica St., 20-081 Lublin, Poland;
| | - Grzegorz Jakiel
- First Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, Żelazna 90 Street, 01-004 Warsaw, Poland;
| |
Collapse
|
5
|
Banz-Jansen C, Helweg LP, Kaltschmidt B. Endometrial Cancer Stem Cells: Where Do We Stand and Where Should We Go? Int J Mol Sci 2022; 23:ijms23063412. [PMID: 35328833 PMCID: PMC8955970 DOI: 10.3390/ijms23063412] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/08/2022] [Accepted: 03/19/2022] [Indexed: 02/04/2023] Open
Abstract
Endometrial cancer is one of the most common malignant diseases in women worldwide, with an incidence of 5.9%. Thus, it is the most frequent cancer of the female genital tract, with more than 34,000 women dying, in Europe and North America alone. Endometrial Cancer Stem Cells (CSC) might be drivers of carcinogenesis as well as metastatic and recurrent disease. Therefore, targeting CSCs is of high interest to improve prognosis of patients suffering of advanced or recurrent endometrial cancer. This review describes the current evidence of molecular mechanisms in endometrial CSCs with special emphasis on MYC and NF-κB signaling as well as mitochondrial metabolism. Furthermore, the current status of immunotherapy targeting PD-1 and PD-L1 in endometrial cancer cells and CSCs is elucidated. The outlined findings encourage novel therapies that target signaling pathways in endometrial CSCs as well as immunotherapy as a promising therapeutic approach in the treatment of endometrial cancer to impede cancer progression and prevent recurrence.
Collapse
Affiliation(s)
- Constanze Banz-Jansen
- Department of Gynecology and Obstetrics, and Perinatal Center, Protestant Hospital of Bethel Foundation, University Medical School OWL at Bielefeld, Bielefeld University, Campus Bielefeld-Bethel, Burgsteig 13, 33617 Bielefeld, Germany;
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33617 Bielefeld, Germany;
| | - Laureen P. Helweg
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33617 Bielefeld, Germany;
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
- Correspondence:
| | - Barbara Kaltschmidt
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33617 Bielefeld, Germany;
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
- Molecular Neurobiology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| |
Collapse
|
6
|
Components of NOTCH Signaling for Uterine Cancer Patients’ Prognosis. JOURNAL OF ONCOLOGY 2022; 2022:8199306. [PMID: 35136410 PMCID: PMC8818413 DOI: 10.1155/2022/8199306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/24/2021] [Indexed: 11/17/2022]
Abstract
New molecular biomarkers that could have an independent prognostic value in endometrial cancer are currently under investigation. Recently, it was suggested that genetic changes in the Notch signaling pathway could be associated with the development of endometrial carcinoma. This study aimed to determine the expression of the Notch signaling pathway components in tumour and adjacent normal uterine tissue and to evaluate their importance for the survival of uterine cancer patients. The present study was performed on uterine body samples collected from 109 patients and paired adjacent noncancerous endometrial tissue samples. Kaplan–Meier curves and Cox regression were used for survival analyses. Expression alterations of NOTCH2, NOTCH3, NOTCH4, JAG2, and HES1 were evaluated as independent and significant prognostic factors for uterine cancer patients.
Collapse
|
7
|
Xiu M, Zeng X, Shan R, Wen W, Li J, Wan R. Targeting Notch4 in Cancer: Molecular Mechanisms and Therapeutic Perspectives. Cancer Manag Res 2021; 13:7033-7045. [PMID: 34526819 PMCID: PMC8436177 DOI: 10.2147/cmar.s315511] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/03/2021] [Indexed: 12/28/2022] Open
Abstract
The dysregulation of Notch signaling is found in many cancers and is closely related to cancer progression. As an important Notch receptor, abnormal Notch4 expression affects several tumor-cell behaviors, including stemness, the epithelial-mesenchymal transition, radio/chemoresistance and angiogenesis. In order to inhibit the oncogenic effects of Notch4 activation, several methods for targeting Notch4 signaling have been proposed. In this review, we summarize the known molecular mechanisms through which Notch4 affects cancer progression. Finally, we discuss potential Notch4-targeting therapeutic strategies as a reference for future research.
Collapse
Affiliation(s)
- Mengxi Xiu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, People's Republic of China.,Second Clinical Medical College, Nanchang University, Nanchang, People's Republic of China
| | - Xiaohong Zeng
- Imaging Department, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, People's Republic of China
| | - Renfeng Shan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, People's Republic of China
| | - Wu Wen
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, People's Republic of China
| | - Jianfeng Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, People's Republic of China
| | - Renhua Wan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
8
|
Molecular Landscape of the Epithelial-Mesenchymal Transition in Endometrioid Endometrial Cancer. J Clin Med 2021; 10:jcm10071520. [PMID: 33917330 PMCID: PMC8038735 DOI: 10.3390/jcm10071520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/02/2021] [Indexed: 12/25/2022] Open
Abstract
Modern diagnostics are based on molecular analysis and have been focused on searching for new molecular markers to use in diagnostics. Included in this has been the search for the correlation between gene expression in tissue samples and liquid biological materials. The aim of this study was to evaluate the differences in the expression profile of messenger RNA (mRNA) and micro-RNA (miRNA) related to the epithelial-mesenchymal transition (EMT) in different grades of endometrial cancer (G1-G3), in order to select the most promising molecular markers. The study material consisted of tissue samples and whole blood collected from 30 patients with endometrial cancer (study group; G1 = 15; G2 = 8; G3 = 7) and 30 without neoplastic changes (control group). The molecular analysis included the use of the microarray technique and RTqPCR. Microarray analysis indicated the following number of mRNA differentiating the endometrial cancer samples from the control (tissue/blood): G1 vs. C = 21/18 mRNAs, G2 vs. C = 19/14 mRNAs, and G3 vs. C = 10/9 mRNAs. The common genes for the tissue and blood samples (Fold Change; FC > 3.0) were G1 vs. C: TGFB1, WNT5A, TGFB2, and NOTCH1; G2 vs. C: BCL2L, SOX9, BAMBI, and SMAD4; G3 vs. C STAT1 and TGFB1. In addition, mRNA TGFB1, NOTCH1, and BCL2L are common for all grades of endometrial cancer. The analysis showed that miR-144, miR-106a, and miR-30d are most strongly associated with EMT, making them potential diagnostic markers.
Collapse
|
9
|
Anusewicz D, Orzechowska M, Bednarek AK. Notch Signaling Pathway in Cancer-Review with Bioinformatic Analysis. Cancers (Basel) 2021; 13:cancers13040768. [PMID: 33673145 PMCID: PMC7918426 DOI: 10.3390/cancers13040768] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 01/19/2023] Open
Abstract
Simple Summary The Notch signaling pathway, which controls multiple cell differentiation processes during the embryonic stage and adult life, is associated with carcinogenesis and disease progression. The aim of the present study was to highlight cancer heterogeneity with respect to the Notch pathway. Our analysis concerns the effects of the Notch signaling at different levels, including core components and downstream target genes. We also demonstrate overall and disease-free survival results, pointing out the characteristics of particular Notch components. Depending on tissue context, Notch members can be either oncogenic or suppressive. We observed different expression profile core components and target genes that could be associated with distinct survival of patients. Advances in our understanding of the Notch signaling in cancer are very promising for the development of new treatment strategies for the benefit of patients. Abstract Notch signaling is an evolutionarily conserved pathway regulating normal embryonic development and homeostasis in a wide variety of tissues. It is also critically involved in carcinogenesis, as well as cancer progression. Activation of the Notch pathway members can be either oncogenic or suppressive, depending on tissue context. The present study is a comprehensive overview, extended with a bioinformatics analysis of TCGA cohorts, including breast, bladder, cervical, colon, kidney, lung, ovary, prostate and rectum carcinomas. We performed global expression profiling of the Notch pathway core components and downstream targets. For this purpose, we implemented the Uniform Manifold Approximation and Projection algorithm to reduce the dimensions. Furthermore, we determined the optimal cutpoint using Evaluate Cutpoint software to established disease-free and overall survival with respect to particular Notch members. Our results demonstrated separation between tumors and their corresponding normal tissue, as well as between tumors in general. The differentiation of the Notch pathway, at its various stages, in terms of expression and survival resulted in distinct profiles of biological processes such as proliferation, adhesion, apoptosis and epithelial to mesenchymal transition. In conclusion, whether oncogenic or suppressive, Notch signaling is proven to be associated with various types of malignancies, and thus may be of interest as a potential therapeutic target.
Collapse
|
10
|
Orzechowska M, Anusewicz D, Bednarek AK. Functional Gene Expression Differentiation of the Notch Signaling Pathway in Female Reproductive Tract Tissues-A Comprehensive Review With Analysis. Front Cell Dev Biol 2021; 8:592616. [PMID: 33384996 PMCID: PMC7770115 DOI: 10.3389/fcell.2020.592616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
The Notch pathway involves evolutionarily conserved signaling regulating the development of the female tract organs such as breast, ovary, cervix, and uterine endometrium. A great number of studies revealed Notch aberrancies in association with their carcinogenesis and disease progression, the management of which is still challenging. The present study is a comprehensive review of the available literature on Notch signaling during the normal development and carcinogenesis of the female tract organs. The review has been enriched with our analyses of the TCGA data including breast, cervical, ovarian, and endometrial carcinomas concerning the effects of Notch signaling at two levels: the core components and downstream effectors, hence filling the lack of global overview of Notch-driven carcinogenesis and disease progression. Phenotype heterogeneity regarding Notch signaling was projected in two uniform manifold approximation and projection algorithm dimensions, preceded by the principal component analysis step reducing the data burden. Additionally, overall and disease-free survival analyses were performed with the optimal cutpoint determination by Evaluate Cutpoints software to establish the character of particular Notch components in tumorigenesis. In addition to the review, we demonstrated separate models of the examined cancers of the Notch pathway and its targets, although expression profiles of all normal tissues were much more similar to each other than to its cancerous compartments. Such Notch-driven cancerous differentiation resulted in a case of opposite association with DFS and OS. As a consequence, target genes also show very distinct profiles including genes associated with cell proliferation and differentiation, energy metabolism, or the EMT. In conclusion, the observed Notch associations with the female tract malignancies resulted from differential expression of target genes. This may influence a future analysis to search for new therapeutic targets based on specific Notch pathway profiles.
Collapse
Affiliation(s)
| | - Dorota Anusewicz
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Andrzej K Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
11
|
Jonusiene V, Sasnauskiene A. Notch and Endometrial Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1287:47-57. [PMID: 33034025 DOI: 10.1007/978-3-030-55031-8_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The human endometrium is a unique, highly dynamic tissue that undergoes cyclic changes of cell proliferation, differentiation, and death. Endometrial cancer is the most common malignancy among women in developed countries. Importantly, the incidence of endometrial cancer is rising in high-income countries. Currently histological classification is used for subtyping of endometrial cancer, while ongoing research is evaluating markers for more accurate molecular classification. Evolutionary conserved Notch signaling pathway regulates diverse cellular processes such as proliferation, differentiation, and cell invasion. Accumulating evidence links aberrant Notch signaling with diseases such as hyperplasia and endometrial cancer. This chapter summarizes the current state of Notch signaling investigations in the endometrium, endometriosis, and endometrial cancer.
Collapse
Affiliation(s)
- Violeta Jonusiene
- Vilnius University, Life Sciences Center, Institute of Biosciences, Vilnius, Lithuania.
| | - Ausra Sasnauskiene
- Vilnius University, Life Sciences Center, Institute of Biosciences, Vilnius, Lithuania
| |
Collapse
|
12
|
Tian W, Li Z, Bai L, Chen L, Yan Y, Li H, Han Y, Teng F, Gao C, Xue F, Wang Y. The oncogenic role of SOX8 in endometrial carcinoma. Cancer Biol Ther 2020; 21:1136-1144. [PMID: 33190587 DOI: 10.1080/15384047.2020.1840318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Endometrial carcinoma (EC) remains one of the most prevalent forms of cancer to impact the female reproductive system, yet the mechanisms governing its development and progression are incompletely understood. We, therefore, sought to assess the relevance of SOX8 to EC progression and patient prognosis. Array comparative genomic hybridization (aCGH) was performed using samples from 50 patients with EC. Samples were separated based upon whether patients were positive for lymph node metastasis (LN+ and LN-, respectively). Based on our initial results, the SOX8 gene was selected for further analysis. Immunohistochemical staining of 630 endometrial tissue samples was conducted to understand how SOX8 expression relates to specific EC clinicopathological characteristics. In addition, we explored the impact of SOX8 expression on the growth, invasion, and migration of EC cells through knockdown and overexpression experiments. In our initial aCGH analysis, SOX family proteins and the Wnt and Notch signaling pathways were significantly associated with EC LN metastasis. SOX8 expression was markedly increased in EC tumor samples relative to normal endometrial tissue (P= .003), and higher SOX8 expression was linked to a high tumor histological grade (P= .032), LN metastasis (P= .027), and shorter patient overall survival (P= .031). When SOX8 was knocked down, this further impaired the proliferative, invasive, and migratory activity of EC cells, whereas overexpressing this gene had the opposite effect. SOX8 may function in an oncogenic manner to drive EC development and progression, and higher SOX8 expression is associated with a poor EC patient prognosis.
Collapse
Affiliation(s)
- Wenyan Tian
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital , Tianjin, China
| | - Zhanghuan Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital , Tianjin, China
| | - Lu Bai
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital , Tianjin, China.,Department of Gynecology and Obstetrics, Nankai University Affiliated Hospital (Tianjin No.4 Hospital) , Tianjin, China
| | - Lingli Chen
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital , Tianjin, China
| | - Ye Yan
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital , Tianjin, China
| | - Huihui Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital , Tianjin, China
| | - Yanyan Han
- Department of Pathology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine , Tianjin, China
| | - Fei Teng
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital , Tianjin, China
| | - Chao Gao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital , Tianjin, China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital , Tianjin, China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital , Tianjin, China
| |
Collapse
|
13
|
Njoku K, Chiasserini D, Jones ER, Barr CE, O’Flynn H, Whetton AD, Crosbie EJ. Urinary Biomarkers and Their Potential for the Non-Invasive Detection of Endometrial Cancer. Front Oncol 2020; 10:559016. [PMID: 33224875 PMCID: PMC7670058 DOI: 10.3389/fonc.2020.559016] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022] Open
Abstract
Endometrial cancer is the most common malignancy of the female genital tract and its incidence is rising in parallel with the mounting prevalence of obesity. Early diagnosis has great potential to improve outcomes as treatment can be curative, especially for early stage disease. Current tests and procedures for diagnosis are limited by insufficient accuracy in some and unacceptable levels of invasiveness and discomfort in others. There has, therefore, been a growing interest in the search for sensitive and specific biomarkers for endometrial cancer detection based on non-invasive sampling methodologies. Urine, the prototype non-invasive sample, is attractive for biomarker discovery as it is easily accessible and can be collected repeatedly and in quantity. Identification of urinary biomarkers for endometrial cancer detection relies on the excretion of systemic biomarkers by the kidneys or urinary contamination by biomarkers shed from the uterus. In this review, we present the current standing of the search for endometrial cancer urinary biomarkers based on cytology, genomic, transcriptomic, proteomic, and metabolomic platforms. We summarize the biomarker candidates and highlight the challenges inherent in urinary biomarker discovery. We review the various technologies with promise for biomarker detection and assess these novel approaches for endometrial cancer biomarker research.
Collapse
Affiliation(s)
- Kelechi Njoku
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, St. Mary’s Hospital, Manchester, United Kingdom
- Stoller Biomarker Discovery Centre, Faculty of Biology, Medicine and Health, Institute of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Davide Chiasserini
- Stoller Biomarker Discovery Centre, Faculty of Biology, Medicine and Health, Institute of Cancer Sciences, University of Manchester, Manchester, United Kingdom
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Eleanor R. Jones
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, St. Mary’s Hospital, Manchester, United Kingdom
- Department of Obstetrics and Gynaecology, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Chloe E. Barr
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, St. Mary’s Hospital, Manchester, United Kingdom
- Department of Obstetrics and Gynaecology, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Helena O’Flynn
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, St. Mary’s Hospital, Manchester, United Kingdom
- Department of Obstetrics and Gynaecology, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Anthony D. Whetton
- Stoller Biomarker Discovery Centre, Faculty of Biology, Medicine and Health, Institute of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Emma J. Crosbie
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, St. Mary’s Hospital, Manchester, United Kingdom
- Department of Obstetrics and Gynaecology, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
14
|
Lachej N, Jonušienė V, Mažeikė A, Sasnauskienė A, Dabkevičienė D, Šimienė J, Sužiedėlis K, Didžiapetrienė J. Changes in the expression of Notch and Wnt signalling molecules in human endometrial cancer. Acta Med Litu 2020; 26:181-190. [PMID: 32015673 DOI: 10.6001/actamedica.v26i3.4148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background Endometrial cancer is the sixth most frequent type of cancer among women worldwide. Type I adenocarcinomas account for 80-85% of endometrial cancer cases and sometimes require more aggressive treatment than the remaining part of this group. Therefore, molecular markers to stratify adenocarcinomas are needed. Materials and methods In this study, we analysed Notch and Wnt signalling in human endometrial cancer cases to evaluate these pathway elements as potential biomarkers for type I endometrial cancer. Endometrial samples were obtained from 47 women undergoing surgery for stage I-IV endometrial cancer in the National Cancer Institute (Vilnius, Lithuania) in 2015-2016. The expression at the mRNA level of signalling molecules genes (NOTCH1, NOTCH2, NOTCH3, NOTCH4, JAG1, JAG2, DLL1, HES1, AXIN2 and CTNNB1) was analysed by the quantitative real-time polymerase chain reaction. Relative expression of NOTCH1, NOTCH4, HES1 and β-catenin proteins in endometrioid adenocarcinoma was evaluated by the Western blot method. Results The expression level of Notch receptors, ligands, and the target gene, as well as CTNNB1 and AXIN2, was reduced in stage I endometrioid adenocarcinoma if compared to the adjacent non-tumour tissue. The expression of all receptors, ligands, and target molecules was reduced in adenocarcinomas of later stages. The statistically significant correlations between transcript amounts of Notch receptors and ligands were found. There was a statistically significant difference in the gene expression of Notch signalling pathway components between different tumour differentiation grade samples. A positive correlation between mRNA and protein the expression level of NOTCH1, NOTCH4, HES1 was determined in stage I samples. Conclusions Analysis of 47 human endometrial cancer samples revealeda reduction in the transcript levels of Notch and Wnt signalling molecule compared to the adjacent non-tumour tissue. These results suggest tumour suppressor function of Notch and Wnt signalling in human endometrial cancer. More detailed research on these signalling pathways should reveal their importance as potential biomarkers.
Collapse
Affiliation(s)
- Nadežda Lachej
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Clinic of Internal Diseases, Family Medicine and Oncology, Vilnius, Lithuania.,National Cancer Institute, Vilnius, Lithuania
| | - Violeta Jonušienė
- Institute of Biosciences, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
| | - Augustina Mažeikė
- Institute of Biosciences, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
| | - Aušra Sasnauskienė
- Institute of Biosciences, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
| | - Daiva Dabkevičienė
- National Cancer Institute, Vilnius, Lithuania.,Institute of Biosciences, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
| | - Julija Šimienė
- National Cancer Institute, Vilnius, Lithuania.,Institute of Biosciences, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
| | - Kęstutis Sužiedėlis
- National Cancer Institute, Vilnius, Lithuania.,Institute of Biosciences, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
| | | |
Collapse
|
15
|
Determination of novel biomarkers and pathways shared by colorectal cancer and endometrial cancer via comprehensive bioinformatics analysis. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
16
|
Daley-Brown D, Harbuzariu A, Kurian AA, Oprea-Ilies G, Gonzalez-Perez RR. Leptin-induced Notch and IL-1 signaling crosstalk in endometrial adenocarcinoma is associated with invasiveness and chemoresistance. World J Clin Oncol 2019; 10:222-233. [PMID: 31367531 PMCID: PMC6657217 DOI: 10.5306/wjco.v10.i6.222] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 03/14/2019] [Accepted: 03/28/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Obesity is a recognized risk factor for endometrial cancer (EmCa) and other cancer types. Leptin levels are significantly increased in obese individuals. Leptin-induced signaling crosstalk [Notch, Interleukin-1 (IL-1) and leptin outcome, NILCO] has been associated with breast cancer progression. This complex signaling crosstalk affects cancer cell proliferation, migration, invasion, angiogenesis, apoptosis and chemoresistance. NILCO expression was previously detected in human EmCa. However, it is unknown whether leptin regulates NILCO and alters EmCa’s response to chemotherapeutics. It is hypothesized that leptin induces NILCO and increases aggressiveness and chemoresistance in EmCa cells.
AIM To determine whether leptin induces NILCO molecules in EmCa affecting cell proliferation, aggressiveness and chemoresistance.
METHODS Leptin’s effects on the expression of NILCO molecules [mRNAs and proteins for Notch receptors (Notch1-4), ligands (JAG1 and DLL4) and downstream effectors (survivin, Hey2), and leptin (OB-R) and IL-1 (IL-1R tI) receptors] was examined in EmCa cells (type I: Ishikawa, and HEC-1A, and type II: An3Ca and KLE) using Real-time PCR and Western blot analysis, respectively. In addition, the effects of leptin on cell cycle, proliferation and cell invasion were determined using cytometric analysis (Cellometer Vision CBA system), MTT cell proliferation and Matrigel-based invasion assays, respectively. Inhibitors of leptin (nanoparticle-bound leptin peptide receptor antagonist-2, IONP-LPrA2), IL-1 (anti-IL-1R tI antibody) and Notch (siRNA interference RNA) were used to investigate NILCO’s effects on cell proliferation and invasion. Leptin’s effects on Paclitaxel cytotoxicity in EmCa cells was determined by the CCK8 and Cellometer-based Annexin V assays.
RESULTS For the first time it was shown that leptin is an inducer of Notch in EmCa. Experimental data suggest that leptin induced the expression of NILCO molecules, promoted proliferation and S- phase progression, and reduced Paclitaxel cytotoxicity on EmCa cells. Leptin’s effects were higher in type II EmCa cells. The progression of this more aggressive form of the disease is associated with obesity. Remarkably, the use of the leptin signaling antagonist, IONP-LPrA2, re-sensitized EmCa cells to Paclitaxel.
CONCLUSION Present data suggest the notion that leptin-induced NILCO could be a link between obesity and EmCa progression and chemoresistance. Most aggressive type II EmCa cells were higher sensitive to leptin, which appears to increase proliferation, cell cycle progression, aggressiveness, and chemoresistance to Paclitaxel. Therefore, leptin and NILCO could be novel therapeutic targets for type II EmCa, which does not have targeted therapy. Overall, IONP-LPrA2 has a potential as a novel adjuvant drug to enhance the effectiveness of type II EmCa chemotherapy.
Collapse
Affiliation(s)
- Danielle Daley-Brown
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, United States
| | - Adriana Harbuzariu
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, United States
| | - Ann Anu Kurian
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, United States
| | - Gabriela Oprea-Ilies
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, United States
| | - Ruben Rene Gonzalez-Perez
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, United States
| |
Collapse
|
17
|
Shang C, Lang B, Meng LR. Blocking NOTCH pathway can enhance the effect of EGFR inhibitor through targeting CD133+ endometrial cancer cells. Cancer Biol Ther 2019; 19:113-119. [PMID: 27791463 DOI: 10.1080/15384047.2016.1250985] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Although the molecular therapeutics targeting key biomarkers such as epithelial growth factor receptor (EGFR), PI3K/AKT/mTOR, and vascular endothelial growth factor (VEGF) shows some success in clinical trials, some internally existing challenges in endothelial cancer biology hinder the drug effects. One of the major challenges stems from cancer stem cell-derived drug resistance. CD133 positive cells are well believed as cancer stem cells (CSC) in endometrial cancers and NOTCH pathway plays a critical role in retaining CD133+ cells by promoting CSC self-renewal and chemoresistance. Here, we initiated a therapeutic strategy to improve effects of EGFR inhibition by targeting NOTCH pathway of CD133+ cells in endometrial cancers. We first detected and purified the CD133+ cell fraction in endometrial cancer cell line Ishikawa (IK), and validated activation of NOTCH pathway in the CD133+ cells that have higher proliferation rate and lower apoptosis rate, comparing to CD133- cells. Results of nude mouse xenograft experiments further demonstrated CD133+ cells retain higher tumorigenesis capacity than CD133- cells, indicating their tumor-initiating property. Last, we applied both NOTCH inhibitor DAPT and EGFR inhibitor AG1478 treatment on endometrial cancer lines IK and HEC-1A and the results suggested improvement effects of the combination therapy compared to the treatments of DAPT or AG1478 alone. These findings indicated targeting NOTCH pathway in CD133+ cells, combining with EGFR inhibition, which provides a novel therapeutic strategy for endometrial cancer diseases.
Collapse
Affiliation(s)
- Chao Shang
- a Department of Neurobiology , China Medical University , Shenyang , P. R. China
| | - Bin Lang
- b School of Health Sciences , Macao Polytechnic Institute , Macao , P. R. China
| | - Li-Rong Meng
- b School of Health Sciences , Macao Polytechnic Institute , Macao , P. R. China
| |
Collapse
|
18
|
Townsend MH, Ence ZE, Felsted AM, Parker AC, Piccolo SR, Robison RA, O’Neill KL. Potential new biomarkers for endometrial cancer. Cancer Cell Int 2019; 19:19. [PMID: 30679932 PMCID: PMC6341571 DOI: 10.1186/s12935-019-0731-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/08/2019] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Incidence of endometrial cancer are rising both in the United States and worldwide. As endometrial cancer becomes more prominent, the need to develop and characterize biomarkers for early stage diagnosis and the treatment of endometrial cancer has become an important priority. Several biomarkers currently used to diagnose endometrial cancer are directly related to obesity. Although epigenetic and mutational biomarkers have been identified and have resulted in treatment options for patients with specific aberrations, many tumors do not harbor those specific aberrations. A promising alternative is to determine biomarkers based on differential gene expression, which can be used to estimate prognosis. METHODS We evaluated 589 patients to determine differential expression between normal and malignant patient samples. We then supplemented these evaluations with immunohistochemistry staining of endometrial tumors and normal tissues. Additionally, we used the Library of Integrated Network-based Cellular Signatures to evaluate the effects of 1826 chemotherapy drugs on 26 cell lines to determine the effects of each drug on HPRT1 and AURKA expression. RESULTS Expression of HPRT1, Jag2, AURKA, and PGK1 were elevated when compared to normal samples, and HPRT1 and PGK1 showed a stepwise elevation in expression that was significantly related to cancer grade. To determine the prognostic potential of these genes, we evaluated patient outcome and found that levels of both HPRT1 and AURKA were significantly correlated with overall patient survival. When evaluating drugs that had the most significant effect on lowering the expression of HPRT1 and AURKA, we found that Topo I and MEK inhibitors were most effective at reducing HPRT1 expression. Meanwhile, drugs that were effective at reducing AURKA expression were more diverse (MEK, Topo I, MELK, HDAC, etc.). The effects of these drugs on the expression of HPRT1 and AURKA provides insight into their role within cellular maintenance. CONCLUSIONS Collectively, these data show that JAG2, AURKA, PGK1, and HRPT1 have the potential to be used independently as diagnostic, prognostic, or treatment biomarkers in endometrial cancer. Expression levels of these genes may provide physicians with insight into tumor aggressiveness and chemotherapy drugs that are well suited to individual patients.
Collapse
Affiliation(s)
- Michelle H. Townsend
- Department of Microbiology and Molecular Biology, Brigham Young University, 3142 LSB, Provo, UT 84602 USA
| | - Zac E. Ence
- Department of Biology, Brigham Young University, Provo, UT USA
| | - Abigail M. Felsted
- Department of Microbiology and Molecular Biology, Brigham Young University, 3142 LSB, Provo, UT 84602 USA
| | | | - Stephen R. Piccolo
- Department of Biology, Brigham Young University, Provo, UT USA
- Department of Biomedical Informatics, University of Utah, Salt Lake City, UT 84132 USA
| | - Richard A. Robison
- Department of Microbiology and Molecular Biology, Brigham Young University, 3142 LSB, Provo, UT 84602 USA
| | - Kim L. O’Neill
- Department of Microbiology and Molecular Biology, Brigham Young University, 3142 LSB, Provo, UT 84602 USA
| |
Collapse
|
19
|
Polychronidou G, Kotoula V, Manousou K, Kostopoulos I, Karayannopoulou G, Vrettou E, Bobos M, Raptou G, Efstratiou I, Dionysopoulos D, Chatzopoulos K, Lakis S, Chrisafi S, Tsolakidis D, Papanikolaou A, Dombros N, Fountzilas G. Mismatch repair deficiency and aberrations in the Notch and Hedgehog pathways are of prognostic value in patients with endometrial cancer. PLoS One 2018; 13:e0208221. [PMID: 30521558 PMCID: PMC6283658 DOI: 10.1371/journal.pone.0208221] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/14/2018] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to investigate the prognostic value of the Hedgehog (Gli, Patched-1, Shh, Smo) and Notch (Jag1, Notch2, Notch3) pathway members, in comparison to a panel of proteins (ER, PgR, HER2/neu, Ki67, p53, p16, PTEN and MMR) previously suggested to be involved in the pathogenesis of endometrial cancer, in association with clinical outcome and standard clinicopathological characteristics. A total of 204 patients with histological diagnosis of endometrial cancer treated from 2004 to 2013 were included. The evaluation of protein expression was assessed by immunohistochemistry. Univariate analysis showed that higher Ki67 labeling, expression of PTEN, p16, Notch2 and Notch3 proteins, as well as MMR proficiency were associated with increased relapse and mortality rate. Additionally, Patched-1 protein expression was associated with worse DFS, while p53 overexpression was associated with worse OS. In multivariate analyses, patients with MMR proficient tumors had more than double risk for death than patients with MMR deficient (MMRd) tumors (adjusted HR = 2.19, 95% CI 1.05–4.58, p = 0.036). Jag1 positivity conferred reduced mortality risk (HR = 0.48, 95% CI 0.23–0.97, p = 0.042). However, as shown by hierarchical clustering, patients fared better when their tumors expressed high Jag1 protein in the absence of Notch2 and Notch3, while they fared worse when all three proteins were highly expressed. Patched-1 positivity conferred higher risk for relapse (HR = 2.04, 95% CI 1.05–3.96, p = 0.036). Aberrant expression of key components of the Notch and Hedgehog signaling pathways, as well as MMRd may serve as independent prognostic factors for recurrence and survival in patients with endometrial cancer.
Collapse
Affiliation(s)
- Genovefa Polychronidou
- Department of Medical Oncology, Papageorgiou Hospital, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
- * E-mail: (GP); (VK)
| | - Vassiliki Kotoula
- Department of Pathology, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
- * E-mail: (GP); (VK)
| | - Kyriaki Manousou
- Section of Biostatistics, Hellenic Cooperative Oncology Group, Data Office, Athens, Greece
| | - Ioannis Kostopoulos
- Department of Pathology, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
| | - Georgia Karayannopoulou
- Department of Pathology, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
| | - Eleni Vrettou
- Department of Pathology, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
| | - Mattheos Bobos
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgia Raptou
- Department of Pathology, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
| | | | - Dimitrios Dionysopoulos
- Department of Medical Oncology, Papageorgiou Hospital, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
| | - Kyriakos Chatzopoulos
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sotirios Lakis
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sofia Chrisafi
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Tsolakidis
- First Department of Obstetrics and Gynaecology, Papageorgiou General Hospital, Aristotle University of Thessaloniki, Thessaloniki
| | - Alexios Papanikolaou
- First Department of Obstetrics and Gynaecology, Papageorgiou General Hospital, Aristotle University of Thessaloniki, Thessaloniki
| | | | - George Fountzilas
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
- Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
20
|
Zhou M, Zhang Z, Zhao H, Bao S, Sun J. A novel lncRNA-focus expression signature for survival prediction in endometrial carcinoma. BMC Cancer 2018; 18:39. [PMID: 29304762 PMCID: PMC5756389 DOI: 10.1186/s12885-017-3983-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 12/26/2017] [Indexed: 12/05/2022] Open
Abstract
Background Endometrial cancer (UCEC) is a complex malignant tumor characterized by both genetic level and clinical trial. Patients with UCEC exhibit the similar clinical features, however, they have distinct outcomes due to molecular heterogeneity. The aim of this study was to access the prognostic value of long non-coding RNAs (lncRNAs) in UCEC patients and to identify potential lncRNA signature for predicting patients’ survival and improving patient-tailored treatment. Methods We performed a comprehensive genome-wide analysis of lncRNA expression profiles and clinical data in a large cohort of 301 UCEC patients. UCEC patients were randomly divided into the discovery cohort (n = 150) and validation cohort (n = 151). A novel lncRNA-focus expression signature was identified in the discovery cohort, and independently accessed in the validation cohort. Additionally, the lncRNA signature was evaluated by multivariable Cox regression and stratification analysis as well as functional enrichment analysis. Results We detected a novel lncRNA-focus expression signature (LFES) consisting of 11 lncRNAs that were associated with survival based on risk scoring strategy in UCEC. The risk score based on the LFES was able to separate patients of discovery cohort into high-risk and low-risk groups with significantly different overall survival and progression-free survival, and has been successfully confirmed in the validation cohort. Furthermore, the LFES is an independent prognostic predictor of survival and demonstrates superior prognostic performance compared with the clinical covariates for predicting 5-year survival (AUC = 0.887). Functional analysis has linked the expression of prognostic lncRNAs to well-known tumor suppressor or ontogenetic pathways in endometrial carcinogenesis. Conclusions Our study revealed a novel 11-lncRNA signature to predict survival of UCEC patient. This lncRNA signature may be a valuable and alternative marker for risk evaluation to aid patient-tailored treatment and improve the outcome of patients with UCEC. Electronic supplementary material The online version of this article (10.1186/s12885-017-3983-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meng Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Zhaoyue Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Hengqiang Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Siqi Bao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Jie Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, People's Republic of China.
| |
Collapse
|
21
|
Williams E, Villar-Prados A, Bowser J, Broaddus R, Gladden AB. Loss of polarity alters proliferation and differentiation in low-grade endometrial cancers by disrupting Notch signaling. PLoS One 2017; 12:e0189081. [PMID: 29206870 PMCID: PMC5716545 DOI: 10.1371/journal.pone.0189081] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 11/18/2017] [Indexed: 01/03/2023] Open
Abstract
Cell adhesion and apicobasal polarity together maintain epithelial tissue organization and homeostasis. Loss of adhesion has been described as a prerequisite for the epithelial to mesenchymal transition. However, what role misregulation of apicobasal polarity promotes tumor initiation and/or early progression remains unclear. We find that human low-grade endometrial cancers are associated with disrupted localization of the apical polarity protein Par3 and Ezrin while, the adhesion molecule E-cadherin remains unchanged, accompanied by decreased Notch signaling, and altered Notch receptor localization. Depletion of Par3 or Ezrin, in a cell-based model, results in loss of epithelial architecture, differentiation, increased proliferation, migration and decreased Notch signaling. Re-expression of Par3 in endometrial cancer cell lines with disrupted Par3 protein levels blocks proliferation and reduces migration in a Notch dependent manner. These data uncover a function for apicobasal polarity independent of cell adhesion in regulating Notch-mediated differentiation signals in endometrial epithelial cells.
Collapse
Affiliation(s)
- Erin Williams
- Department of Genetics, University of Texas, MD Anderson Cancer Center, Houston, TX, United States of America
- Program of Genes and Development, Graduate School of Biomedical Sciences, University of Texas Health Sciences Center, Houston, TX, United States of America
| | - Alejandro Villar-Prados
- Department of Genetics, University of Texas, MD Anderson Cancer Center, Houston, TX, United States of America
- Program of Genes and Development, Graduate School of Biomedical Sciences, University of Texas Health Sciences Center, Houston, TX, United States of America
| | - Jessica Bowser
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX, United States of America
| | - Russell Broaddus
- Program of Genes and Development, Graduate School of Biomedical Sciences, University of Texas Health Sciences Center, Houston, TX, United States of America
- Department of Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX, United States of America
| | - Andrew B. Gladden
- Department of Genetics, University of Texas, MD Anderson Cancer Center, Houston, TX, United States of America
- Program of Genes and Development, Graduate School of Biomedical Sciences, University of Texas Health Sciences Center, Houston, TX, United States of America
| |
Collapse
|
22
|
He F, Du T, Jiang Q, Zhang Y. Synergistic Effect of Notch-3-Specific Inhibition and Paclitaxel in Non-Small Cell Lung Cancer (NSCLC) Cells Via Activation of The Intrinsic Apoptosis Pathway. Med Sci Monit 2017; 23:3760-3769. [PMID: 28769027 PMCID: PMC5553439 DOI: 10.12659/msm.902641] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/24/2017] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Lung cancers are resistant to conventional chemotherapeutic interventions such as paclitaxel. Notch signaling is crucial in the chemoresistance of lung cancer cells. The Notch inhibitor gamma-secretase inhibitor (GSI) inhibits the Notch signaling pathway. MATERIAL AND METHODS Here, we evaluated how Notch-3 inhibition by GSI can enhance the sensitivity of lung cancer cells to paclitaxel. To study how Notch-3-specific inhibition affects non-small cell lung cancer (NSCLC), we compared the cell viability, apoptosis, and colony formation of A549 and H1299 cells treated with Notch-3 siRNA and GSI. RESULTS The expression levels of Notch-3 or Notch intracellular domain 3 (NICD3) and apoptosis-related proteins were measured and compared between different groups. Notch-3 was significantly overexpressed in both cell lines, and Notch-3 expression was elevated after paclitaxel treatment, indicating activation of the Notch signaling pathway. Inhibition of the Notch signaling pathway by GSI and Notch-3 siRNA reduced cell proliferation and induced apoptosis in A549 and H1299 cells, thereby boosting sensitivity of the cell lines to paclitaxel. Concomitant treatment with paclitaxel and GSI or siRNA downregulated Bcl-2 expression and upregulated Bax expression levels. CONCLUSIONS These results indicate a synergistic effect of Notch-3-specific inhibition and paclitaxel through alteration of the intrinsic apoptosis pathway, which was involved in Notch-3-induced chemoresistance in NSCLC cells, and GSI inhibited Notch-3-induced chemoresistance in a concentration-dependent manner. This approach that combines Notch-3-specific inhibition and paclitaxel would be likely to apply in NSCLC.
Collapse
|
23
|
Lachej N, Dabkevičienė D, Sasnauskienė A, Trimonytė RM, Kanopienė D, Kazbarienė B, Didžiapetrienė J. NOTCH signalinio kelio ir ginekologinių piktybinių navikų sąsaja. Acta Med Litu 2017. [PMID: 28630591 PMCID: PMC5467961 DOI: 10.6001/actamedica.v24i1.3461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Įvadas. Organizmo ląstelėse vykstančius procesus kontroliuoja įvairūs signaliniai keliai. Vienas iš jų yra NOTCH signalinis kelias. Nustatyta, kad dalinis NOTCH funkcijos praradimas arba nenormalus NOTCH signalo aktyvinimas susijęs su įvairiais žmogaus vystymosi sutrikimais ir ligomis. Medžiaga ir metodika. Pagrindinis informacijos šaltinis ieškant duomenų – PubMed duomenų bazė. Rezultatai. Straipsnyje nagrinėjama onkologinių ligų bei
NOTCH signalinio kelio dalyvių sąsaja. NOTCH signalas, vystantis vėžiui, gali veikti dvejopai: kaip onkogenas ir kaip naviko augimo slopiklis. Tikslus tokio poveikio mechanizmas dar nėra žinomas. NOTCH signalinio kelio tyrimai svarbūs siekiant atrasti naujus vėžio gydymo būdus, farmakologiniais ir genetiniais metodais valdant NOTCH signalinį kelią. Šioje apžvalgoje daugiausia dėmesio skiriama ginekologiniams piktybiniams navikams, ypač gimdos kūno vėžiui. Išvados. Pastarųjų metų mokslinių tyrimų duomenys rodo, kad NOTCH signalinis kelias yra neabejotinai svarbus formuojantis gimdos kūno vėžiui, todėl jo komponentai gali būti potencialūs prognoziniai biožymenys ir molekuliniai terapiniai taikiniai. Siekiant patikslinti NOTCH signalinio kelio dalyvių reikšmę bei jų sąveiką su kitų signalinių kelių dalyviais, kurie taip pat gali būti svarbūs formuojantis ir progresuojant gimdos kūno vėžiui, reikalingi tolesni šios srities moksliniai tyrimai.
Collapse
Affiliation(s)
| | - Daiva Dabkevičienė
- Vilniaus universitetas, Gamtos mokslų fakultetas, Biochemijos ir molekulinės biologijos katedra
| | - Aušra Sasnauskienė
- Vilniaus universitetas, Gamtos mokslų fakultetas, Biochemijos ir molekulinės biologijos katedra
| | - Rūta Marija Trimonytė
- Vilniaus universitetas, Gamtos mokslų fakultetas, Biochemijos ir molekulinės biologijos katedra
| | | | | | | |
Collapse
|
24
|
Daley-Brown D, Oprea-Iles G, Vann KT, Lanier V, Lee R, Candelaria PV, Quarshie A, Pattillo R, Gonzalez-Perez RR. Type II Endometrial Cancer Overexpresses NILCO: A Preliminary Evaluation. DISEASE MARKERS 2017; 2017:8248175. [PMID: 28659656 PMCID: PMC5474242 DOI: 10.1155/2017/8248175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The expression of NILCO molecules (Notch, IL-1, and leptin crosstalk outcome) and the association with obesity were investigated in types I and II endometrial cancer (EmCa). Additionally, the involvement of NILCO in leptin-induced invasiveness of EmCa cells was investigated. METHODS The expression of NILCO mRNAs and proteins were analyzed in EmCa from African-American (n = 29) and Chinese patients (tissue array, n = 120 cases). The role of NILCO in leptin-induced invasion of Ishikawa and An3ca EmCa cells was investigated using Notch, IL-1, and leptin signaling inhibitors. RESULTS NILCO molecules were expressed higher in type II EmCa, regardless of ethnic background or obesity status of patients. NILCO proteins were mainly localized in the cellular membrane and cytoplasm of type II EmCa. Additionally, EmCa from obese African-American patients showed higher levels of NILCO molecules than EmCa from lean patients. Notably, leptin-induced EmCa cell invasion was abrogated by NILCO inhibitors. CONCLUSION Type II EmCa expressed higher NILCO molecules, which may suggest it is involved in the progression of the more aggressive EmCa phenotype. Obesity was associated with higher expression of NILCO molecules in EmCa. Leptin-induced cell invasion was dependent on NILCO. Hence, NILCO might be involved in tumor progression and could represent a new target/biomarker for type II EmCa.
Collapse
MESH Headings
- Adenocarcinoma, Papillary/complications
- Adenocarcinoma, Papillary/diagnosis
- Adenocarcinoma, Papillary/ethnology
- Adenocarcinoma, Papillary/genetics
- Aged
- Antibodies/pharmacology
- Asian People
- Black People
- Carcinoma, Endometrioid/complications
- Carcinoma, Endometrioid/diagnosis
- Carcinoma, Endometrioid/ethnology
- Carcinoma, Endometrioid/genetics
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cystadenocarcinoma, Serous/complications
- Cystadenocarcinoma, Serous/diagnosis
- Cystadenocarcinoma, Serous/ethnology
- Cystadenocarcinoma, Serous/genetics
- Diamines/pharmacology
- Disease Progression
- Endometrial Neoplasms/complications
- Endometrial Neoplasms/diagnosis
- Endometrial Neoplasms/ethnology
- Endometrial Neoplasms/genetics
- Endometrium/metabolism
- Endometrium/pathology
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Interleukin-1/antagonists & inhibitors
- Interleukin-1/genetics
- Interleukin-1/metabolism
- Leptin/genetics
- Leptin/metabolism
- Middle Aged
- Neoplasm Staging
- Obesity/complications
- Obesity/diagnosis
- Obesity/ethnology
- Obesity/genetics
- Protein Isoforms/antagonists & inhibitors
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Receptor, Notch1/antagonists & inhibitors
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Signal Transduction
- Thiazoles/pharmacology
- Black or African American
Collapse
Affiliation(s)
- Danielle Daley-Brown
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Gabriela Oprea-Iles
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Kiara T. Vann
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Viola Lanier
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Regina Lee
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Pierre V. Candelaria
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Alexander Quarshie
- Department of Community Health & Preventive Medicine, Morehouse School of Medicine, Atlanta, GA, USA
| | - Roland Pattillo
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Ruben Rene Gonzalez-Perez
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
25
|
Pancewicz-Wojtkiewicz J, Eljaszewicz A, Kowalczuk O, Niklinska W, Charkiewicz R, Kozłowski M, Miasko A, Moniuszko M. Prognostic significance of Notch ligands in patients with non-small cell lung cancer. Oncol Lett 2016; 13:506-510. [PMID: 28123589 DOI: 10.3892/ol.2016.5420] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/29/2016] [Indexed: 01/07/2023] Open
Abstract
The Notch signaling pathway is deregulated in numerous solid types of cancer including non-small cell lung cancer (NSCLC). However, the profile of Notch ligand expression remains unclear. Therefore, the present study aimed to determine the profile of Notch ligands in NSCLC patients and to investigate whether quantitative assessment of Notch ligand expression may have prognostic significance in NSCLC patients. The study was performed in 61 pairs of tumor and matched unaffected lung tissue specimens obtained from patients with various stages of NSCLC, which were analyzed by reverse transcription-polymerase chain reaction. The marked expression levels of certain analyzed genes were detected in NSCLC samples and in noncancerous lung samples. Of the five Notch ligands, jagged 1 (Jag1), jagged 2, delta-like protein 1 and delta-like protein 4 were expressed in the majority of tissues, but their expression levels were reduced in NSCLC when compared with noncancerous lung tissue (P<0.001). Delta-like protein 3 expression was consistently low and was observed only in 21/61 tumor tissue samples. Taken together, Notch ligands are expressed in NSCLC. However, the expression level is reduced when compared to noncancerous tissue. Furthermore, the present study revealed that quantitative assessment of Jag1 expression in NSCLC may improve prognostication of patient survival.
Collapse
Affiliation(s)
| | - Andrzej Eljaszewicz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Oksana Kowalczuk
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Wieslawa Niklinska
- Department of Histology and Embryology, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Radoslaw Charkiewicz
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Miroslaw Kozłowski
- Department of Thoracic Surgery, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Agnieszka Miasko
- Department of Histology and Embryology, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
26
|
Structural analysis of Notch-regulating Rumi reveals basis for pathogenic mutations. Nat Chem Biol 2016; 12:735-40. [PMID: 27428513 PMCID: PMC4990500 DOI: 10.1038/nchembio.2135] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 05/16/2016] [Indexed: 01/01/2023]
Abstract
Rumi O-glucosylates the EGF repeats of a growing list of proteins essential in metazoan development, including Notch. Rumi is essential for Notch signaling, and Rumi dysregulation is linked to several human diseases. Despite Rumi's critical roles, it is unknown how Rumi glucosylates a serine of many but not all EGF repeats. Here we report crystal structures of Drosophila Rumi as binary and ternary complexes with a folded EGF repeat and/or donor substrates. These structures provide insights into the catalytic mechanism and show that Rumi recognizes structural signatures of the EGF motif, the U-shaped consensus sequence, C-X-S-X-(P/A)-C and a conserved hydrophobic region. We found that five Rumi mutations identified in cancers and Dowling-Degos disease are clustered around the enzyme active site and adversely affect its activity. Our study suggests that loss of Rumi activity may underlie these diseases, and the mechanistic insights may facilitate the development of modulators of Notch signaling.
Collapse
|
27
|
Guo Q, Qian Z, Yan D, Li L, Huang L. LncRNA-MEG3 inhibits cell proliferation of endometrial carcinoma by repressing Notch signaling. Biomed Pharmacother 2016; 82:589-94. [PMID: 27470401 DOI: 10.1016/j.biopha.2016.02.049] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 02/23/2016] [Accepted: 02/23/2016] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND The long non-coding RNA MEG3 has shown functional role as a tumor suppressor in many cancer types, excluding endometrial carcinoma (EC). Thus, this study tried to reveal the MEG3 dysregulation in EC samples and potential functional mechanism due to its regulation on Notch signaling pathway. METHODS The expression profiles of MEG3 and two Notch signaling molecules, Notch1 and Hes1, were detected in both EC tissues and cell lines through real time PCR and western blot analysis. Lentiviral vector carrying whole MEG3 transcript or shRNA targeting MEG3 (shMEG3) was transfected for MEG3 dysfunction studies, and cell proliferation was analyzed through MTT and colony-formation assays. Xenograft models were also established by subcutaneous implantation and tumor growth was compared under MEG3 dysregulation. RESULTS Significant downregulation of MEG3 was observed in EC samples compared to control, while the protein levels of Notch1 and Hes1 were both upregulated. Cell proliferation was obviously inhibited by MEG3 overexpression, while opposite improved result was obtained in MEG3 knockout cells. Interestingly, MEG3-induced changes could be reversed by Notch1 regulators. Moreover, MEG3 overexpressing tumors showed strongly repressed growth in vivo, along with Notch signaling inhibition. CONCLUSION Downregulated MEG3 exhibited an anti-proliferative role in EC by repressing Notch signaling pathway.
Collapse
Affiliation(s)
- Qingyun Guo
- Women's Hospital, College of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China
| | - Zhida Qian
- Women's Hospital, College of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China
| | - Dingding Yan
- Zhejiang Cancer Hospital, Hangzhou 310022, Zhejiang, China
| | - Li Li
- Zhejiang Cancer Hospital, Hangzhou 310022, Zhejiang, China
| | - Lili Huang
- Women's Hospital, College of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| |
Collapse
|
28
|
A study of the role of Notch1 and JAG1 gene methylation in development of breast cancer. Med Oncol 2016; 33:35. [PMID: 26971121 DOI: 10.1007/s12032-016-0750-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/26/2016] [Indexed: 10/22/2022]
Abstract
This study is to explore the roles of gene methylation of Notch1 and JAG1 in development of invasive ductal carcinoma of breast. Quantitative analysis the DNA methylation levels of Notch1 and JAG1 gene by the MassARRAY method in invasive ductal carcinoma of breast (IDC; n = 89), atypical ductal hyperplasia of breast (ADH; n = 11), and ordinary ductal hyperplasia of breast (UDH; n = 20). The expressions of JAG1 and Notch1 protein in four breast tissues were detected by immunohistochemistry SP method. (1) Positive expression rates of Notch1 protein in IDC and DCIS were 88.7 % (79/89) and 70.0 % (14/20), respectively, which were significantly higher than the levels in ADH (36.0 %, 4/11) and UDH (25.0 %, 5/20; P < 0.05). Notch1 protein expression was significant positively correlated with lymph node metastasis, pathological grades, and TNM stages of IDC. (2) Positive expression rates of JAG1 protein in IDC and DCIS were 89.9 % (80/89) and 75.0 % (15/20), respectively, which were significantly higher than those of ADH (45.0 %, 5/11) and UDH (30.0 %, 6/20; P < 0.05). JAG1 protein expression was significant positive correlation with lymph node metastasis, pathological grades and TNM stages of IDC. There is an overall hypomethylation alteration of Notch1 and JAG gene in IDC, with corresponding over-expression of Notch1 and JAG1 protein. This inverse correlation shows that the alteration of protein expression results from hypomethylation oncogene Notch1 and JAG1, and this change may play an important role in occurrence and progression of breast cancer.
Collapse
|
29
|
Makker A, Goel MM. Tumor progression, metastasis, and modulators of epithelial-mesenchymal transition in endometrioid endometrial carcinoma: an update. Endocr Relat Cancer 2016; 23:R85-R111. [PMID: 26538531 DOI: 10.1530/erc-15-0218] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2015] [Indexed: 12/17/2022]
Abstract
Endometrioid endometrial carcinoma (EEC), also known as type 1 endometrial cancer (EC), accounts for over 70-80% of all cases that are usually associated with estrogen stimulation and often develops in a background of atypical endometrial hyperplasia. The increased incidence of EC is mainly confined to this type of cancer. Most EEC patients present at an early stage and generally have a favorable prognosis; however, up to 30% of EEC present as high risk tumors, which have invaded deep into the myometrium at diagnosis and progressively lead to local or extra pelvic metastasis. The poor survival of advanced EC is related to the lack of effective therapies, which can be attributed to poor understanding of the molecular mechanisms underlying the progression of disease toward invasion and metastasis. Multiple lines of evidence illustrate that epithelial-mesenchymal transition (EMT)-like events are central to tumor progression and malignant transformation, endowing the incipient cancer cell with invasive and metastatic properties. The aim of this review is to summarize the current knowledge on molecular events associated with EMT in progression, invasion, and metastasis of EEC. Further, the role of epigenetic modifications and microRNA regulation, tumor microenvironment, and microcystic elongated and fragmented glands like invasion pattern have been discussed. We believe this article may perhaps stimulate further research in this field that may aid in identifying high risk patients within this clinically challenging patient group and also lead to the recognition of novel targets for the prevention of metastasis - the most fatal consequence of endometrial carcinogenesis.
Collapse
Affiliation(s)
- Annu Makker
- Post Graduate Department of PathologyKing George's Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Madhu Mati Goel
- Post Graduate Department of PathologyKing George's Medical University, Lucknow 226003, Uttar Pradesh, India
| |
Collapse
|
30
|
Daley-Brown D, Oprea-Ilies GM, Lee R, Pattillo R, Gonzalez-Perez RR. Molecular cues on obesity signals, tumor markers and endometrial cancer. Horm Mol Biol Clin Investig 2015; 21:89-106. [PMID: 25781554 DOI: 10.1515/hmbci-2014-0049] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/28/2015] [Indexed: 02/07/2023]
Abstract
Tumor markers are important tools for early diagnosis, prognosis, therapy response and endometrial cancer monitoring. A large number of molecular and pathologic markers have been described in types I and II endometrial cancers, which has served to define the main oncogenic, epidemiological, genetic, clinical and histopathological features. Ongoing attempts to stratify biological markers of endometrial cancer are presented. However, data on changes in tumor marker profiles in obesity-related endometrial cancer are scarce. Obesity is a pandemic in Western countries that has an important impact on endometrial cancers, albeit through not very well-defined mechanisms. Although endometrial cancer is more common in Caucasian women, higher mortality is found in African Americans who also show higher incidence of obesity. Here, we describe how obesity signals (estrogen, leptin, leptin induced-molecules, Notch; cytokines and growth factors) could affect endometrial cancer. Leptin signaling and its crosstalk may be associated to the more aggressive and poor prognosis type II endometrial cancer, which affects more postmenopausal and African-American women. In this regard, studies on expression of novel molecular markers (Notch, interleukin-1 and leptin crosstalk outcome) may provide essential clues for detection, prevention, treatment and prognosis.
Collapse
|
31
|
Jin MM, Ye YZ, Qian ZD, Zhang YB. Notch signaling molecules as prognostic biomarkers for non-small cell lung cancer. Oncol Lett 2015; 10:3252-3260. [PMID: 26722321 DOI: 10.3892/ol.2015.3662] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 07/28/2015] [Indexed: 12/19/2022] Open
Abstract
Notch family proteins have been reported to be associated with the initiation and development of various types of tumors. The present study used a prospective design to investigate the role of Notch proteins as novel biomarkers that are capable of predicting the survival outcome for patients with non-small cell lung cancer (NSCLC). The protein expression of Notch 1, Notch 3 and their ligands, Jagged 1 and Delta-like 4, was examined using immunohistochemistry in NSCLC tissues and adjacent non-cancerous lung tissues from 101 patients who underwent surgical treatment. The expression was also correlated with clinicopathological parameters and overall survival (OS). High Notch 1 protein expression was observed in 55.4% (56/101) of NSCLC samples and high Notch 3 expression was observed in 53.5% (54/101). The nuclear expression of Notch 3 was significantly associated with the lymph node status (P=0.0026) and tumor-node-metastasis (TNM) stage (P<0.0001), while the coexpression of Notch 1 plus Notch 3 was associated with lymph node status (P=0.0056), TNM stage (P=0.0001) and the histological grading (P=0.0359). In the survival analyses, the high expression of Notch 1 and Notch 3 exhibited an additive effect toward a poorer OS compared with a subtype with low coexpression for the two proteins (P<0.001), with high nuclear Notch 3 expression in the NSCLC patients maintaining independent prognostic significance for the outcome on multivariate analysis. These data further demonstrate a central role for Notch signaling in NSCLC and the significance of Notch 3 as a prognostic indicator of a poorer survival for patients with resected NSCLC.
Collapse
Affiliation(s)
- Meng-Meng Jin
- Department of Respiratory Medicine, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yuan-Zi Ye
- Department of Respiratory Medicine, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Zhen-Dong Qian
- Department of Respiratory Medicine, Colored Metal General Staff Hospital of Tongling, Tongling, Anhui 244000, P.R. China
| | - Yan-Bei Zhang
- Department of Respiratory Medicine, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
32
|
He S, Zeng S, Zhou ZW, He ZX, Zhou SF. Hsa-microRNA-181a is a regulator of a number of cancer genes and a biomarker for endometrial carcinoma in patients: a bioinformatic and clinical study and the therapeutic implication. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:1103-75. [PMID: 25733820 PMCID: PMC4342183 DOI: 10.2147/dddt.s73551] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The aberrant expression of human microRNA-181a-1 (hsa-miR-181a) has been implicated in the pathogenesis of various cancers, serving as an oncogene or a tumor suppressor. However, the role of hsa-miR-181a in the pathogenesis of endometrial carcinoma (EC) and its clinical significance are unclear. This study aimed to search for the molecular targets of hsa-miR-181a using bioinformatic tools and then determine the expression levels of hsa-miR-181a in normal, hyperplasia, and EC samples from humans. To predict the targets of hsa-miR-181a, ten different algorithms were used, including miRanda-mirSVR, DIANA microT v5.0, miRDB, RNA22 v2, TargetMiner, TargetScan 6.2, PicTar, MicroCosm Targets v5, and miRWALK. Two algorithms, TarBase 6.0 and miRTarBase, were used to identify the validated targets of hsa-miR-181a-5p (a mature product of hsa-miR-181a), and the web-based Database for Annotation, Visualization and Integrated Discovery (DAVID) 6.7 was used to provide biological functional interpretation of the validated targets of hsa-miR-181a-5p. A total of 78 formalin-fixed, paraffin-embedded tissue specimens from 65 patients and 13 healthy subjects were collected and examined, including normal endometrium (n=13), endometrial hyperplasia (n=18), and EC (37 type I and 10 type II EC cases). Our bioinformatic studies have showed that hsa-miR-181a might regulate a large number of target genes that are important in the regulation of critical cell processes, such as cell fate, cell survival, metabolism, and cell death. To date, 313 targets of hsa-miR-181a have been validated, and 22 of these targets are cancer genes. The precision of predictions by all the algorithms for hsa-miR-181a-1’s targets was low. Many of these genes are involved in tumorigenesis of various cancers, including EC, based on the DAVID and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. In comparison with normal endometrial tissue, the expression level of hsa-miR-181a was significantly increased in type I and type II EC (P<0.05), and type II EC exhibited a significant higher expression level of hsa-miR-181a than that in type I EC (P<0.05). In addition, there was a significant increase in the expression level of hsa-miR-181a in type II EC compared with endometrial hyperplasia (P<0.05). Taken together, these results suggest that hsa-miR-181a may serve as an oncogene in endometrial tumorigenesis and that hsa-miR-181a might be used as a new biomarker in the prediction of prognosis of EC in clinical practice. More functional and mechanistic studies are needed to validate the role of hsa-miR-181a in the development, progression, and metastasis of EC.
Collapse
Affiliation(s)
- Shuming He
- Department of Obstetrics and Gynecology, Xiaolan People's Hospital affiliated to Southern Medical University, Zhongshan, Guangdong, People's Republic of China
| | - Shumei Zeng
- Department of Obstetrics and Gynecology, Xiaolan People's Hospital affiliated to Southern Medical University, Zhongshan, Guangdong, People's Republic of China
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA ; Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People's Republic of China
| | - Zhi-Xu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People's Republic of China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA ; Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People's Republic of China
| |
Collapse
|
33
|
Liu W, Xu C, Wan H, Liu C, Wen C, Lu H, Wan F. MicroRNA-206 overexpression promotes apoptosis, induces cell cycle arrest and inhibits the migration of human hepatocellular carcinoma HepG2 cells. Int J Mol Med 2014; 34:420-8. [PMID: 24919811 PMCID: PMC4094593 DOI: 10.3892/ijmm.2014.1800] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 05/19/2014] [Indexed: 12/21/2022] Open
Abstract
MicroRNA-206 (miR-206) is known to regulate cell proliferation and migration and is involved in various types of cancer. However, the role of miR-206 in human hepatocellular carcinoma (HHC) has not been previously reported. In the present study, the expression of Notch3 in HCC and adjacent non-neoplastic tissue was immunohistochemically assessed on formalin-fixed, paraffin-embedded sections. miR-206 mimics were transiently transfected into HepG2 cells using Lipofectamine™ 2000. Subsequently, we evaluated the role of miR-206 in cell proliferation, apoptosis, cell cycle arrest and migration by MTS assay, Hoechst 33342 staining, Annexin V-FITC/PI assay, flow cytometry and wound healing assay. Using quantitative reverse transcription polymerase chain reaction (qRT‑PCR) and western blot analysis, we detected the expression of Notch3, Bax, Bcl-2, Hes1, p57 and matrix metalloproteinase (MMP)-9 at the mRNA and protein level, respectively. In addition, we measured the expression of miR-206 at the mRNA level and that of caspase-3 at the protein level. After miR-206 was upregulated in HepG2 cells, Notch3, Hes1, Bcl-2 and MMP-9 were downregulated both at the mRNA and protein level, whereas p57 and Bax were upregulated. Cleaved caspase-3 protein expression was also markedly increased. Cell proliferation was significantly attenuated and apoptosis was markedly increased. Furthermore, miR-206 overexpression induced cell cycle arrest and inhibited the migration of HepG2 cells. Taken together, our results uggest that miR-206 is a potential regulator of apoptosis, the cell cycle and migration in HepG2 cells and that it has the potential for use in the targeted therapy of HCC and is a novel tumor suppressor.
Collapse
Affiliation(s)
- Weiwei Liu
- Department of Biochemistry and Molecular Biology, Basic Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chuanming Xu
- Department of Biochemistry and Molecular Biology, Basic Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Huifang Wan
- Medical Experiment Education Department of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chunju Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Jiangxi College of Chinese Medicine, Nanchang, Jiangxi 330006, P.R. China
| | - Can Wen
- Department of Biochemistry and Molecular Biology, Basic Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hongfei Lu
- Department of Biochemistry and Molecular Biology, Basic Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Fusheng Wan
- Department of Biochemistry and Molecular Biology, Basic Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
34
|
Sasnauskienė A, Jonušienė V, Krikštaponienė A, Butkytė S, Dabkevičienė D, Kanopienė D, Kazbarienė B, Didžiapetrienė J. NOTCH1, NOTCH3, NOTCH4, and JAG2 protein levels in human endometrial cancer. MEDICINA-LITHUANIA 2014; 50:14-8. [PMID: 25060200 DOI: 10.1016/j.medici.2014.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 02/18/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND OBJECTIVE Notch signaling is a conserved developmental pathway, which plays an important role in the regulation of cell proliferation, differentiation and death. Deregulation of Notch pathway has been connected with the carcinogenesis in a variety of cancers. The aim of this study was to investigate the level of the Notch signaling pathway proteins (NOTCH1, 3, 4 and JAG2) in the samples from human endometrial cancer. MATERIALS AND METHODS The amount of the Notch receptors NOTCH1, 3, 4 and ligand JAG2 protein was determined by Western blot analysis in the samples from stage I endometrial cancer and adjacent nontumor endometrial tissue of 22 patients. RESULTS The level of NOTCH4 receptor was 1.7 times lower in stage I endometrial cancer as compared with the healthy tissue of the same patients (P=0.04). The protein level of ligand JAG2 was significantly reduced by 2.5 times in stage IB endometrial adenocarcinoma samples (P=0.01). It was reduced in the majority of stage IB adenocarcinomas. There were no significant changes in the protein amount of NOTCH1 and NOTCH3 receptors comparing stage I endometrial adenocarcinoma and healthy tissues. CONCLUSIONS The reduced amount of NOTCH4 and JAG2 proteins and the decreased level of mRNA coding Notch proteins, as reported in our previous studies, supports the notion that Notch pathway has rather tumor-suppressive than oncogenic role in human endometrial cancer cells. It suggests that Notch pathway activation is a potential therapeutic target.
Collapse
Affiliation(s)
- Aušra Sasnauskienė
- Department of Biochemistry and Molecular Biology, Faculty of Natural Sciences, Vilnius University, Vilnius, Lithuania.
| | - Violeta Jonušienė
- Department of Biochemistry and Molecular Biology, Faculty of Natural Sciences, Vilnius University, Vilnius, Lithuania
| | | | - Stasė Butkytė
- Department of Biochemistry and Molecular Biology, Faculty of Natural Sciences, Vilnius University, Vilnius, Lithuania; Institute of Oncology, Vilnius University, Vilnius, Lithuania
| | - Daiva Dabkevičienė
- Department of Biochemistry and Molecular Biology, Faculty of Natural Sciences, Vilnius University, Vilnius, Lithuania
| | - Daiva Kanopienė
- Institute of Oncology, Vilnius University, Vilnius, Lithuania
| | | | | |
Collapse
|
35
|
Groeneweg JW, Hall TR, Zhang L, Kim M, Byron VF, Tambouret R, Sathayanrayanan S, Foster R, Rueda BR, Growdon WB. Inhibition of gamma-secretase activity impedes uterine serous carcinoma growth in a human xenograft model. Gynecol Oncol 2014; 133:607-15. [DOI: 10.1016/j.ygyno.2014.03.560] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/13/2014] [Accepted: 03/18/2014] [Indexed: 01/22/2023]
|
36
|
Wu WR, Zhang R, Shi XD, Zhu MS, Xu LB, Zeng H, Liu C. Notch1 is overexpressed in human intrahepatic cholangiocarcinoma and is associated with its proliferation, invasiveness and sensitivity to 5-fluorouracil in vitro. Oncol Rep 2014; 31:2515-24. [PMID: 24700253 DOI: 10.3892/or.2014.3123] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 02/24/2014] [Indexed: 01/06/2023] Open
Abstract
The Notch signaling pathway has been reported to play crucial roles in inhibiting hepatocyte differentiation and allowing formation of intrahepatic bile ducts. However, little is known about its significance in intrahepatic cholangiocarcinoma (ICC). The aim of the present study was to investigate the effects of Notch1 expression in ICC tissues and cells. The expression of Notch1 was examined in paraffin-embedded sections of ICC (n=44) by immunohistochemistry. Notch1 was knocked down by RNA interference (RNAi) in cultured ICC cells (RBE and HCCC-9810). The proliferation, invasiveness and sensitivity to 5-fluorouracil (5-FU) were detected by Cell Counting Kit-8 (CCK-8), colony formation assays, Transwell assays and flow cytometry, respectively. The expression levels of several multidrug resistance (MDR)-related genes, MDR1-P-glycoprotein (ABCB‑1), breast cancer resistance protein (ABCG‑2) and the multidrug resistance protein isoform 1 (MRP‑1), were examined by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. Notch1 was overexpressed in cell membranes and cytoplasm of ICC compared with the adjacent liver tissue (35/44, 79.5%) and this was more common in cases with tumor size≥5 cm (p=0.021) and HBs-Ag positive (p=0.018). By silencing Notch1, the proliferation and invasiveness of ICC cells were inhibited and the inhibition rate of 5-FU was markedly increased. In addition, IC50 values of 5-FU in RBE cells were decreased from 148.74±0.72 to 5.37±0.28 µg/ml and the corresponding values for HCCC-9810 cells were 326.92±0.87 to 42.60±0.35 µg/ml, respectively. Furthermore, Notch1 silencing clearly increased the percentage of apoptotic cells treated by 5-FU compared with the control. Notch1 knockdown led to diminished expression levels of ABCB‑1 and MRP‑1. Therefore, Notch may play important roles in the development of ICC. Silencing Notch1 can inhibit the proliferation and invasiveness of ICC cells and increase their sensitivity to 5-FU in vitro.
Collapse
Affiliation(s)
- Wen-Rui Wu
- Department of Hepato-Pancreato-Biliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Rui Zhang
- Department of Hepato-Pancreato-Biliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Xiang-De Shi
- Department of Hepato-Pancreato-Biliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Man-Sheng Zhu
- Department of Hepato-Pancreato-Biliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Lei-Bo Xu
- Department of Hepato-Pancreato-Biliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Hong Zeng
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Chao Liu
- Department of Hepato-Pancreato-Biliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
37
|
Notch1 is a potential therapeutic target for the treatment of human hepatitis B virus X protein-associated hepatocellular carcinoma. Oncol Rep 2013; 31:933-9. [PMID: 24336972 DOI: 10.3892/or.2013.2917] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 11/27/2013] [Indexed: 11/05/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly lethal cancer with increasing worldwide incidence, and there are few therapeutics options available for patients with HCC. Thus, novel therapeutic targets for this disease are desperately needed. Chronic infection with hepatitis B virus (HBV) is the major risk factor for the development of HCC, while hepatitis B virus X protein (HBx) is essential for HBV-associated HCC. Based on our previous studies showing that HBx promoted hepatocarcinogenesis of the human non-tumor hepatic cell line L02 and activated Notch1 signaling, Notch1 short hairpin RNA (shRNA) was utilized to inhibit Notch1 mRNA in the present study. We observed that Notch1 shRNA inhibited cell proliferation together with decreased activity of the Notch1 pathway in vitro, and also markedly suppressed tumor formation of L02/HBx cells in a BALB/c nude mouse model in vivo. Furthermore, the blockade of Notch1 was capable of arresting the cell cycle in the G0/G1 phase through the downregulation of CyclinD1, CDK4, E2F1 and the upregulation of p21 and Rb, while all of these factors were involved in the CyclinD1/CDK4 pathway. Inhibition of Notch1 by shRNA markedly promoted the apoptosis of L02/HBx cells via the caspase-9-caspase-3 pathway. These data suggest that inhibition of Notch1 impairs the growth of human HBx-transformed L02 cells, and Notch1 may be a putative therapeutic target for human HBx-associated HCC.
Collapse
|
38
|
Notch3 overexpression associates with poor prognosis in human non-small-cell lung cancer. Med Oncol 2013; 30:595. [PMID: 23645556 DOI: 10.1007/s12032-013-0595-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 04/26/2013] [Indexed: 12/20/2022]
Abstract
Notch3 receptor is one of the mammalian Notch family receptors (Notch1-4) which plays an important role in the regulation of cellular proliferation, differentiation, and apoptosis. Overexpression of Notch3 is associated with tumorigenesis. In order to assess the expression of Notch3 in Chinese non-small-cell lung cancer (NSCLC) patients and determine its association with prognosis, we designed a prospective study with five years of follow-up to evaluate Notch3 expression in NSCLC tissues and adjacent non-cancerous normal lung tissues from 131 patients undergoing surgical treatment by immunohistochemistry and western blot analysis. Notch3 had high expression in 67 of 131 cases of NSCLC (51.1 %), which was significantly higher than in adjacent noncancerous lung tissues. Moreover, Notch3 overexpression was significantly correlated with TNM stage (P = 5.41e-07 in squamous cell carcinoma, P = 5.338e-07 in adenocarcinoma) and lymph node metastasis (P = 0.00764 in squamous cell carcinoma, P = 0.01491 in adenocarcinoma). Kaplan-Meier survival analysis showed that the overall survival times in patients expressing Notch3 in NSCLC were shorter. Multivariate analysis further demonstrated that Notch3 was an independent prognostic factor for patients with NSCLC. Therefore, Notch3 might be a useful biomarker to predict the prognosis of patients with NSCLC.
Collapse
|