1
|
Gurung R, Masood M, Singh P, Jha P, Sinha A, Ajmeriya S, Sharma M, Dohare R, Haque MM. Uncovering the role of aquaporin and chromobox family members as potential biomarkers in head and neck squamous cell carcinoma via integrative multiomics and in silico approach. J Appl Genet 2024; 65:839-851. [PMID: 38358594 DOI: 10.1007/s13353-024-00843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Head and neck squamous cell carcinoma (HNSC) is a diverse group of tumors arising from oral cavity, oropharynx, larynx, and hypopharynx squamous epithelium, posing significant morbidity. Aquaporins (AQPs) are membrane proteins forming water channels, some associated with carcinomas. Chromobox (CBX) family is known to modulate physiological and oncological processes. In our study, we analyzed AQPs and CBXs having significant expression followed by their prognostic and mutational assessment. Next, we performed enrichment and tumor infiltration analysis followed by HPA validation. Lastly, we established a 3-node miRNA-TF-mRNA regulatory network and performed protein-protein docking of the highest-degree subnetwork motif between TF and mRNA. Significant upregulation of CBX3/2 and downregulation of AQP3/5/7 correlated with poor overall survival (OS) in HNSC patients. The most significant pathway, GO-BP, GO-MF, and GO-CC terms associated with AQP3 and CBX3 were passive transport by aquaporins, response to vitamin, glycerol channel activity, and condensed chromosome, centromeric region. AQP3 negatively correlated withCD 4 + T cells, positively withCD 8 + T cells and B cells, and negatively with tumor purity, whereas CBX3 positively correlated withCD 4 + T cells, negatively withCD 8 + T cells and B cells, and positively with tumor purity. Three-node miRNA-TF-mRNA regulatory network revealed a highest-degree subnetwork motif comprising one TF (SMAD3), one miRNA (miR-423-5p), and one mRNA (AQP3). Protein-protein interaction studies suggested a direct interaction between AQP3 and Smad3 proteins. We concluded that AQP3 and CBX3 hold potential as treatment strategies and individual prognostic biomarkers, while further protein-protein interaction studies of AQP3 could offer insights into its interactions with Smad3 proteins.
Collapse
Affiliation(s)
- Rishabh Gurung
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Mohammad Masood
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Prakash Jha
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, 110007, India
| | - Anuradha Sinha
- Department of Preventive Oncology, Homi Bhabha Cancer Hospital and Research Centre, Muzaffarpur, 842004, India
| | - Swati Ajmeriya
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Milin Sharma
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| | - Mohammad Mahfuzul Haque
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
2
|
Zhang L, Gu H, Li X, Wang Y, Yao S, Chen X, Zheng L, Yang X, Du Q, An J, Wen G, Zhu J, Jin H, Tuo B. Pathophysiological role of ion channels and transporters in hepatocellular carcinoma. Cancer Gene Ther 2024; 31:1611-1618. [PMID: 39048663 PMCID: PMC11567900 DOI: 10.1038/s41417-024-00782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 07/27/2024]
Abstract
The incidence of hepatocellular carcinoma (HCC) has continued to increase annually worldwide, and HCC has become a common cause of cancer-related death. Despite great progress in understanding the molecular mechanisms underlying HCC development, the treatment of HCC remains a considerable challenge. Thus, the survival and prognosis of HCC patients remain extremely poor. In recent years, the role of ion channels in the pathogenesis of diseases has become a hot topic. In normal liver tissue, ion channels and transporters maintain water and electrolyte balance and acid‒base homeostasis. However, dysfunction of these ion channels and transporters can lead to the development and progression of HCC, and thus these ion channels and transporters are expected to become new therapeutic targets. In this review, ion channels and transporters associated with HCC are reviewed, and potential targets for new and effective therapies are proposed.
Collapse
Affiliation(s)
- Li Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
| | - Hong Gu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xin Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yongfeng Wang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Shun Yao
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xingyue Chen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Liming Zheng
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xingyue Yang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Qian Du
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jiaxing An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Guorong Wen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jiaxing Zhu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, Guizhou, China.
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
3
|
Tanaka M, Yasui M, Hara-Chikuma M. Aquaporin 3 inhibition suppresses the mitochondrial respiration rate and viability of multiple myeloma cells. Biochem Biophys Res Commun 2023; 676:158-164. [PMID: 37517218 DOI: 10.1016/j.bbrc.2023.07.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Aquaporin 3 (AQP3) is a member of the aquaporin water channel family expressed by numerous cell types, including some cancer cells. Accumulating evidence suggests that AQP3 inhibition may impede cancer progression, but drugs targeting AQP3 are still in the early pre-clinical stage of development. Here, we examined the effect of AQP3 inhibition on multiple myeloma (MM), an incurable plasma cell malignancy. Four MM cell lines were cultured in the presence of an anti-AQP3 monoclonal antibody (mAb), the AQP3 inhibitor DFP00173, or corresponding controls, and the effects on cell viability, proliferation, apoptosis, and mitochondrial respiration capacity were compared. Both anti-AQP3 mAb and DFP00173 reduced cell growth, mitochondrial respiration rate, and electron transport chain complex I activity. Both agents also potentiated the antiproliferative efficacy of the anticancer drug venetoclax. Administration of the anti-AQP3 mAb to immunodeficient mice inoculated with RPMI8226 or KMS-11 MM cells significantly suppressed tumor growth. These data provide evidence that AQP3 blockade can suppress MM cell growth in vitro and tumor growth in mice. Thus, AQP3 inhibition may be an effective therapeutic strategy for MM.
Collapse
Affiliation(s)
- Manami Tanaka
- Department of Pharmacology, School of Medicine, Keio University, 160-8582, Japan
| | - Masato Yasui
- Department of Pharmacology, School of Medicine, Keio University, 160-8582, Japan; Keio Advanced Institute for Water Biology and Medicine, Japan
| | - Mariko Hara-Chikuma
- Department of Pharmacology, School of Medicine, Keio University, 160-8582, Japan.
| |
Collapse
|
4
|
Aquaporin-mediated dysregulation of cell migration in disease states. Cell Mol Life Sci 2023; 80:48. [PMID: 36682037 DOI: 10.1007/s00018-022-04665-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/01/2022] [Accepted: 12/10/2022] [Indexed: 01/23/2023]
Abstract
Dysregulated cell migration and invasion are hallmarks of many disease states. This dysregulated migratory behavior is influenced by the changes in expression of aquaporins (AQPs) that occur during pathogenesis, including conditions such as cancer, endometriosis, and arthritis. The ubiquitous function of AQPs in migration of diseased cells makes them a crucial target for potential therapeutics; this possibility has led to extensive research into the specific mechanisms underlying AQP-mediated diseased cell migration. The functions of AQPs depend on a diverse set of variables including cell type, AQP isoform, disease state, cell microenvironments, and even the subcellular localization of AQPs. To consolidate the considerable work that has been conducted across these numerous variables, here we summarize and review the last decade's research covering the role of AQPs in the migration and invasion of cells in diseased states.
Collapse
|
5
|
Aquaporins as Prognostic Biomarker in Prostate Cancer. Cancers (Basel) 2023; 15:cancers15020331. [PMID: 36672280 PMCID: PMC9856769 DOI: 10.3390/cancers15020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Prostate cancer is a complex heterogeneous disease that affects millions of males worldwide. Despite rapid advances in molecular biology and innovation in technology, few biomarkers have been forthcoming in prostate cancer. The currently available biomarkers for the prognosis of prostate cancer are inadequate and face challenges, thus having limited clinical utility. To date, there are a number of prognostic and predictive biomarkers identified for prostate cancer but lack specificity and sensitivity to guide clinical decision making. There is still tremendous scope for specific biomarkers to understand the natural history and complex biology of this heterogeneous disease, and to identify early treatment responses. Accumulative studies indicate that aquaporins (AQPs) a family of membrane water channels may serve as a prognostic biomarker for prostate cancer in monitoring disease advancement. In the present review, we discuss the existing prostate cancer biomarkers, their limitations, and aquaporins as a prospective biomarker of prognostic significance in prostate cancer.
Collapse
|
6
|
Dai X, Chen Y, Chen N, Dou J, Zhuang H, Wang J, Zhao X, Zhang X, Zhao H. KLF5-mediated aquaporin 3 activated autophagy to facilitate cisplatin resistance of gastric cancer. Immunopharmacol Immunotoxicol 2022; 45:140-152. [PMID: 36083020 DOI: 10.1080/08923973.2022.2122498] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Resistance to chemotherapeutic drugs limits the control of gastric cancer (GC) development. The study intended to probe into the mechanism of aquaporin 3 (AQP3) on the chemoresistance of GC. METHODS Cisplatin (CDDP)-resistant cells were constructed. Parental AGS and HGC-27 cells and their respective CDDP-resistant cells were transfected with AQP3 overexpression plasmid, AQP3 short hairpin RNA (sh-AQP3) and sh-Kruppel-like factor 5 (shKLF5). The expressions of AQP3 and factors related to autophagy (LC3 I, LC3 II, Atg5, Beclin-1, p62)/epithelial-mesenchymal transition (EMT; E-cadherin and snail) were assessed by Western blot and qRT-PCR. Cell counting kit-8 assay was adopted to test cell viability and half maximal inhibitory concentration (IC 50) was determined. Transwell assay was used for the examination of cell migration and invasion. The regulatory relationship of AQP3 and KLF5 was tested by chromatin immunoprecipitation (ChIP) and dual luciferase reporter assays. RESULTS AQP3 was highly-expressed in GC cells and its level was even higher in CDDP-resistant GC cells. AQP3 silencing inhibited viability, autophagy and EMT in CDDP-resistant GC cells, while AQP3 overexpression had the opposite effect. KLF5 positively modulated AQP3 in GC cells resistant to CDDP. KLF5 knockdown reversed AQP3-induced autophagy, viability, migration, invasion and EMT in CDDP-resistant GC cells. CONCLUSION KLF5-modulated AQP3 activated autophagy to facilitate the resistance of GC to CDDP.
Collapse
Affiliation(s)
- Xudong Dai
- Department of General Surgery, Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University
| | - Yong Chen
- Division of Gastrointestinal Surgery, Department of General Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University
| | - Ning Chen
- Division of Gastrointestinal Surgery, Department of General Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University
| | - Jin Dou
- Division of Gastrointestinal Surgery, Department of General Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University
| | - Haiwen Zhuang
- Division of Gastrointestinal Surgery, Department of General Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University
| | - Jian Wang
- Division of Gastrointestinal Surgery, Department of General Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University
| | - Xin Zhao
- Division of Gastrointestinal Surgery, Department of General Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University
| | - Xiaoyu Zhang
- Division of Gastrointestinal Surgery, Department of General Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University
| | - Haijian Zhao
- Division of Gastrointestinal Surgery, Department of General Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University
| |
Collapse
|
7
|
Critical Role of Aquaporins in Cancer: Focus on Hematological Malignancies. Cancers (Basel) 2022; 14:cancers14174182. [PMID: 36077720 PMCID: PMC9455074 DOI: 10.3390/cancers14174182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Aquaporins are proteins able to regulate the transfer of water and other small substances such as ions, glycerol, urea, and hydrogen peroxide across cellular membranes. AQPs provide for a huge variety of physiological phenomena; their alteration provokes several types of pathologies including cancer and hematological malignancies. Our review presents data revealing the possibility of employing aquaporins as biomarkers in patients with hematological malignancies and evaluates the possibility that interfering with the expression of aquaporins could represent an effective treatment for hematological malignancies. Abstract Aquaporins are transmembrane molecules regulating the transfer of water and other compounds such as ions, glycerol, urea, and hydrogen peroxide. Their alteration has been reported in several conditions such as cancer. Tumor progression might be enhanced by aquaporins in modifying tumor angiogenesis, cell volume adaptation, proteases activity, cell–matrix adhesions, actin cytoskeleton, epithelial–mesenchymal transitions, and acting on several signaling pathways facilitating cancer progression. Close connections have also been identified between the aquaporins and hematological malignancies. However, it is difficult to identify a unique action exerted by aquaporins in different hemopathies, and each aquaporin has specific effects that vary according to the class of aquaporin examined and to the different neoplastic cells. However, the expression of aquaporins is altered in cell cultures and in patients with acute and chronic myeloid leukemia, in lymphoproliferative diseases and in multiple myeloma, and the different expression of aquaporins seems to be able to influence the efficacy of treatment and could have a prognostic significance, as greater expression of aquaporins is correlated to improved overall survival in leukemia patients. Finally, we assessed the possibility that modifying the aquaporin expression using aquaporin-targeting regulators, specific monoclonal antibodies, and even aquaporin gene transfer could represent an effective therapy of hematological malignancies.
Collapse
|
8
|
Clinical value and molecular mechanism of AQGPs in different tumors. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:174. [PMID: 35972604 PMCID: PMC9381609 DOI: 10.1007/s12032-022-01766-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022]
Abstract
Aquaglyceroporins (AQGPs), including AQP3, AQP7, AQP9, and AQP10, are transmembrane channels that allow small solutes across biological membranes, such as water, glycerol, H2O2, and so on. Increasing evidence suggests that they play critical roles in cancer. Overexpression or knockdown of AQGPs can promote or inhibit cancer cell proliferation, migration, invasion, apoptosis, epithelial-mesenchymal transition and metastasis, and the expression levels of AQGPs are closely linked to the prognosis of cancer patients. Here, we provide a comprehensive and detailed review to discuss the expression patterns of AQGPs in different cancers as well as the relationship between the expression patterns and prognosis. Then, we elaborate the relevance between AQGPs and malignant behaviors in cancer as well as the latent upstream regulators and downstream targets or signaling pathways of AQGPs. Finally, we summarize the potential clinical value in cancer treatment. This review will provide us with new ideas and thoughts for subsequent cancer therapy specifically targeting AQGPs.
Collapse
|
9
|
Ma W, Liang X, Su Z. Effects of a Chinese herbal extract on the intestinal tract and aquaporin in Adriamycin-induced nephropathy. Bioengineered 2022; 13:2732-2745. [PMID: 35068345 PMCID: PMC8973663 DOI: 10.1080/21655979.2021.2014620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Wuling Decoction is a traditional Chinese medicine that has been used to open knots, benefit water, transform Qi, return fluid, and has a significant effect on strengthening the spleen and removing dampness. To explore the effects of Wuling Decoction on the intestinal tract and aquaporin in Adriamycin-induced nephropathy, 45 specific pathogen free (SPF) Wistar rats were randomly divided into a blank control group (5 rats), Dosing control group (10 rats), Adriamycin nephropathy model group (10 rats), diarrhea group (10 rats), and an Adriamycin nephropathy diarrhea model group (10 rats). The tissue localization of aquaporin (AQP) was determined by immunohistochemistry. The expression of AQP mRNA and protein was measured by RT-PCR and western blot analysis, respectively. The results indicated that Wuling Decoction causes excretion of AQP2 through the urine, regulates AQP2 levels, and exerts diuretic and anti-diarrheal effects. It also regulates the levels of antidiuretic hormone (ADH) and arginine vasopressin (AVP), affects water absorption rate, and reduces the level of cyclic adenosine monophosphate (cAMP) in each tissue, thus reducing the absorption of AQP2 to water. Wuling Decoction promoted AQP2 expression in the nephropathy model group and inhibited AQP2 expression in the diarrhea group. Wuling Decoction increased the expression of aquaporin in the intestinal tract, reduced the water content of stool by promoting the absorption of water in the intestinal tract, inhibited the expression of aquaporin and its regulatory factors in nephridia tissue, and reduced the reabsorption of water to increase urine volume, to decrease the occurrence of diarrhea.
Collapse
Affiliation(s)
- Weizhong Ma
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xing Liang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhuowei Su
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
10
|
Zhou Z, Zhang C, Ma Z, Wang H, Tuo B, Cheng X, Liu X, Li T. Pathophysiological role of ion channels and transporters in HER2-positive breast cancer. Cancer Gene Ther 2022; 29:1097-1104. [PMID: 34997219 DOI: 10.1038/s41417-021-00407-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/21/2021] [Accepted: 11/08/2021] [Indexed: 11/09/2022]
Abstract
The incidence of breast cancer (BC) has been increasing each year, and BC is now the most common malignant tumor in women. Among the numerous BC subtypes, HER2-positive BC can be treated with a variety of strategies based on targeting HER2. Although there has been great progress in the treatment of HER2-positive BC, recurrence, metastasis and drug resistance remain considerable challenges. The dysfunction of ion channels and transporters can affect the development and progression of HER2-positive BC, so these entities are expected to be new therapeutic targets. This review summarizes various ion channels and transporters associated with HER2-positive BC and suggests potential targets for the development of new and effective therapies.
Collapse
Affiliation(s)
- Zhengxing Zhou
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Chengmin Zhang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Hu Wang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Xiaoming Cheng
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China.
| | - Taolang Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China.
| |
Collapse
|
11
|
Xu S, Huang S, Li D, Zou Q, Yuan Y, Yang Z. The Expression of Aquaporin-1 and Aquaporin-3 in Extrahepatic Cholangiocarcinoma and their Clinicopathological Significance. Am J Med Sci 2021; 364:181-191. [PMID: 34800429 DOI: 10.1016/j.amjms.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 06/16/2021] [Accepted: 11/15/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND The aim of the study was to evaluate the expression and clinicopathological significance of aquaporin-1 (AQP1) and aquaporin-3 (AQP3) in extrahepatic cholangiocarcinoma (EHCC). METHODS Immunostaining of AQP1 and AQP3 was performed by EnVision immunohistochemistry in benign and malignant biliary tract tissues. RESULTS The expression of AQP1 and AQP3 protein were significantly higher in EHCC tumor tissues (P < 0.05 or P < 0.01). Adenoma and paracancerous tissues with positive AQP1 and/or AQP3 protein expression exhibited atypical hyperplasia. AQP1 expression was positive correlated with AQP3 expression in EHCC (P < 0.01). TNM I + II stage and radical surgery, the positive expression of AQP1 and AQP3 In patients with well-differentiation, no invasion, no lymph metastasis, is lower (P < 0.05 or P < 0.01). Average overall survival time of those with positive expression of AQP1 and AQP3 was significant shorter (P < 0.01). Both AQP1 and AQP3 positive expressions were proved to be an independent prognostic factors in EHCC by cox multivariate analysis. The AUC calculated for AQP1 was 0.769 (95% confidence interval [CI]: 0.618-0.920), and that for AQP3 was 0.758 (95%CI: 0.605-0.911, while that for AQP1 and AQP3 was 0.825 (95%CI: 0.658-0.991). CONCLUSIONS Positive expression of AQP1 and AQP3 is closely related to the pathogenesis, severe clinicopathological characteristics, aggressive biological behaviors, and dismal prognoses in EHCC.
Collapse
Affiliation(s)
- Shu Xu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, PR China
| | - Shengfu Huang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, PR China
| | - Daiqiang Li
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, PR China
| | - Qiong Zou
- Department of Pathology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, PR China
| | - Yuan Yuan
- Department of Pathology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, PR China
| | - Zhulin Yang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, PR China.
| |
Collapse
|
12
|
Abstract
Objective Glioblastoma (GB) is a refractory malignancy with a high rate of recurrence and treatment resistance. Hypoxia-related genes are promising prognostic indicators for GB, so we herein developed a reliable hypoxia-related gene risk scoring model to predict the prognosis of patients with GB. Method Gene expression profiles and corresponding clinicopathological features of patients with GB were obtained from the Cancer Genome Atlas (TCGA; n = 160) and Gene Expression Omnibus (GEO) GSE7696 (n = 80) databases. Univariate and multivariate Cox regression analyses of differentially expressed hypoxia-related genes were performed using R 3.5.1 software. Result Fourteen prognosis-related genes were identified and used to construct a risk signature. Patients with high-risk scores had significantly lower overall survival (OS) than those with low-risk scores. The median risk score was used as a critical value and for OS prediction in an independent external verification GSE7696 cohort. Risk score was not significantly affected by clinical-related factors. We also developed a prediction nomogram based on the TCGA training set to predict survival rates, and included six independent prognostic parameters in the TCGA prediction model. Conclusion We determined a reliable hypoxia-related gene risk scoring model for predicting the prognosis of patients with GB.
Collapse
Affiliation(s)
- Chao-Qun Lin
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Lu-Kui Chen
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.,Department of Neurosurgery, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Azad AK, Raihan T, Ahmed J, Hakim A, Emon TH, Chowdhury PA. Human Aquaporins: Functional Diversity and Potential Roles in Infectious and Non-infectious Diseases. Front Genet 2021; 12:654865. [PMID: 33796134 PMCID: PMC8007926 DOI: 10.3389/fgene.2021.654865] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Aquaporins (AQPs) are integral membrane proteins and found in all living organisms from bacteria to human. AQPs mainly involved in the transmembrane diffusion of water as well as various small solutes in a bidirectional manner are widely distributed in various human tissues. Human contains 13 AQPs (AQP0-AQP12) which are divided into three sub-classes namely orthodox aquaporin (AQP0, 1, 2, 4, 5, 6, and 8), aquaglyceroporin (AQP3, 7, 9, and 10) and super or unorthodox aquaporin (AQP11 and 12) based on their pore selectivity. Human AQPs are functionally diverse, which are involved in wide variety of non-infectious diseases including cancer, renal dysfunction, neurological disorder, epilepsy, skin disease, metabolic syndrome, and even cardiac diseases. However, the association of AQPs with infectious diseases has not been fully evaluated. Several studies have unveiled that AQPs can be regulated by microbial and parasitic infections that suggest their involvement in microbial pathogenesis, inflammation-associated responses and AQP-mediated cell water homeostasis. This review mainly aims to shed light on the involvement of AQPs in infectious and non-infectious diseases and potential AQPs-target modulators. Furthermore, AQP structures, tissue-specific distributions and their physiological relevance, functional diversity and regulations have been discussed. Altogether, this review would be useful for further investigation of AQPs as a potential therapeutic target for treatment of infectious as well as non-infectious diseases.
Collapse
Affiliation(s)
- Abul Kalam Azad
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Topu Raihan
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Jahed Ahmed
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Al Hakim
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Tanvir Hossain Emon
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | | |
Collapse
|
14
|
Wang L, Huo D, Zhu H, Xu Q, Gao C, Chen W, Zhang Y. Deciphering the structure, function, expression and regulation of aquaporin-5 in cancer evolution. Oncol Lett 2021; 21:309. [PMID: 33732385 DOI: 10.3892/ol.2021.12571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/08/2021] [Indexed: 11/06/2022] Open
Abstract
In recent years, the morbidity rate resulting from numerous types of malignant tumor has increased annually, and the treatment of tumors has been attracting an increasing amount of attention. A number of recent studies have revealed that the water channel protein aquaporin-5 (AQP5) has become a major player in multiple types of cancer. AQP5 is abnormally expressed in a variety of tumor tissues or cells and has multiple effects on certain biological functions of tumors, such as regulating the proliferation, apoptosis and migration of tumor cells. It has been suggested that AQP5 may play an important role in the process of tumor development, opening up a new field of tumor research. The present review highlighted the structure of AQP5 and its role in tumor progression. Furthermore, the expression of AQP5 in different malignant neoplasms was summarized. In addition, the influence of not only drugs, but also different compounds on AQP5 were summarized. In conclusion, according to the findings in the present review, AQP5 has potential as a novel therapeutic target in human cancer, and other AQPs should be similarly investigated.
Collapse
Affiliation(s)
- Liping Wang
- Department of Oncology, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Da Huo
- Department of Oncology, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Haiyan Zhu
- Department of Oncology, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Qian Xu
- Department of Oncology, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Chengpeng Gao
- Department of Respiratory, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Wenfeng Chen
- Department of Science and Education, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Yixiang Zhang
- Department of Respiratory, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| |
Collapse
|
15
|
Hara-Chikuma M, Tanaka M, Verkman AS, Yasui M. Inhibition of aquaporin-3 in macrophages by a monoclonal antibody as potential therapy for liver injury. Nat Commun 2020; 11:5666. [PMID: 33168815 PMCID: PMC7653938 DOI: 10.1038/s41467-020-19491-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Aquaporin 3 (AQP3) is a transporter of water, glycerol and hydrogen peroxide (H2O2) that is expressed in various epithelial cells and in macrophages. Here, we developed an anti-AQP3 monoclonal antibody (mAb) that inhibited AQP3-facilitated H2O2 and glycerol transport, and prevented liver injury in experimental animal models. Using AQP3 knockout mice in a model of liver injury and fibrosis produced by CCl4, we obtained evidence for involvement of AQP3 expression in nuclear factor-κB (NF-κB) cell signaling, hepatic oxidative stress and inflammation in macrophages during liver injury. The activated macrophages caused stellate cell activation, leading to liver injury, by a mechanism involving AQP3-mediated H2O2 transport. Administration of an anti-AQP3 mAb, which targeted an extracellular epitope on AQP3, prevented liver injury by inhibition of AQP3-mediated H2O2 transport and macrophage activation. These findings implicate the involvement of macrophage AQP3 in liver injury, and provide evidence for mAb inhibition of AQP3-mediated H2O2 transport as therapy for macrophage-dependent liver injury.
Collapse
Affiliation(s)
- Mariko Hara-Chikuma
- Department of Pharmacology, School of Medicine, Keio University, Tokyo, Japan.
| | - Manami Tanaka
- Department of Pharmacology, School of Medicine, Keio University, Tokyo, Japan.,Keio Global Research Institute, Center for Water Biology and Medicine, Tokyo, Japan
| | - Alan S Verkman
- Departments of Medicine and Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Masato Yasui
- Department of Pharmacology, School of Medicine, Keio University, Tokyo, Japan.,Keio Global Research Institute, Center for Water Biology and Medicine, Tokyo, Japan
| |
Collapse
|
16
|
Lekshmy MS, Sivakumar TT, Joseph AP, Varun BR, Mony V, Reshmi A. Expression of transmembrane protein aquaporin-3 in oral epithelial dysplasia and oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2020; 131:202-208. [PMID: 33187942 DOI: 10.1016/j.oooo.2020.10.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 07/14/2020] [Accepted: 10/11/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVES The objective of this study was to evaluate aquaporin-3 (AQP3) expression in patient samples of oral epithelial dysplasia (OED) and oral squamous cell carcinoma (OSCC), thereby assessing the potential of AQP3 as a molecular marker for tumor progression. STUDY DESIGN An in vitro comparative study was done to determine the AQP3 expression on 20 surgical biopsy specimens each of OED and OSCC using immunohistochemistry. Twenty specimens of normal oral mucosa were kept as controls. The results were statistically analyzed using one-way analysis of variance and post hoc analysis. RESULTS The expression of AQP3 was analyzed and further semiquantified using H-scores. The mean H-score showed a statistically significant difference between OSCC, OED, and normal oral mucosa (P < .05). There was a significant increase in the expression of AQP3 in OSCC and OED compared to normal oral mucosa. The highest expression was observed in OSCC (P < .01). CONCLUSION The observations of the study indicate that staining intensity of AQP3 increased from dysplastic noninvasive lesion to invasive OSCC, suggesting a possible role of AQP3 as a biomarker for tumor progression.
Collapse
Affiliation(s)
- M S Lekshmy
- Postgraduate student, Department of Oral and Maxillofacial Pathology, PMS College of Dental Science and Research, Thiruvananthapuram, Kerala, India
| | - T T Sivakumar
- Professor, Department of Oral and Maxillofacial Pathology, PMS College of Dental Science and Research, Thiruvananthapuram, Kerala, India
| | - Anna P Joseph
- Professor, Department of Oral and Maxillofacial Pathology, PMS College of Dental Science and Research, Thiruvananthapuram, Kerala, India
| | - B R Varun
- Professor, Department of Oral and Maxillofacial Pathology, PMS College of Dental Science and Research, Thiruvananthapuram, Kerala, India
| | - Vinod Mony
- Reader, Department of Oral and Maxillofacial Pathology, PMS College of Dental Science and Research, Thiruvananthapuram, Kerala, India
| | - A Reshmi
- Assistant Professor, Department of Oral and Maxillofacial Pathology, PMS College of Dental Science and Research, Thiruvananthapuram, Kerala, India
| |
Collapse
|
17
|
Chow PH, Bowen J, Yool AJ. Combined Systematic Review and Transcriptomic Analyses of Mammalian Aquaporin Classes 1 to 10 as Biomarkers and Prognostic Indicators in Diverse Cancers. Cancers (Basel) 2020; 12:E1911. [PMID: 32679804 PMCID: PMC7409285 DOI: 10.3390/cancers12071911] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/24/2022] Open
Abstract
Aquaporin (AQP) channels enable regulated transport of water and solutes essential for fluid homeostasis, but they are gaining attention as targets for anticancer therapies. Patterns of AQP expression and survival rates for patients were evaluated by systematic review (PubMed and Embase) and transcriptomic analyses of RNAseq data (Human Protein Atlas database). Meta-analyses confirmed predominantly negative associations between AQP protein and RNA expression levels and patient survival times, most notably for AQP1 in lung, breast and prostate cancers; AQP3 in esophageal, liver and breast cancers; and AQP9 in liver cancer. Patterns of AQP expression were clustered for groups of cancers and associated with risk of death. A quantitative transcriptomic analysis of AQP1-10 in human cancer biopsies similarly showed that increased transcript levels of AQPs 1, 3, 5 and 9 were most frequently associated with poor survival. Unexpectedly, increased AQP7 and AQP8 levels were associated with better survival times in glioma, ovarian and endometrial cancers, and increased AQP11 with better survival in colorectal and breast cancers. Although molecular mechanisms of aquaporins in pathology or protection remain to be fully defined, results here support the hypothesis that overexpression of selected classes of AQPs differentially augments cancer progression. Beyond fluid homeostasis, potential roles for AQPs in cancers (suggested from an expanding appreciation of their functions in normal tissues) include cell motility, membrane process extension, transport of signaling molecules, control of proliferation and apoptosis, increased mechanical compliance, and gas exchange. AQP expression also has been linked to differences in sensitivity to chemotherapy treatments, suggesting possible roles as biomarkers for personalized treatments. Development of AQP pharmacological modulators, administered in cancer-specific combinations, might inspire new interventions for controlling malignant carcinomas.
Collapse
Affiliation(s)
| | | | - Andrea J Yool
- Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia; (P.H.C.); (J.B.)
| |
Collapse
|
18
|
Abstract
Aquaporins (AQPs) are transmembrane channel proteins that mainly facilitate the water translocation through the plasma cell membrane. For several years these proteins have been extensively examined for their biologic role in health and their potential implication in different diseases. Technological improvements associated with the methods employed to evaluate the functions of the AQPs have provided us with significant new knowledge. In this chapter, we will examine the role of AQPs in health and disease based on the latest currently available evidence.
Collapse
Affiliation(s)
- Dimitrios E Magouliotis
- Division of Surgery and Interventional Sciences, UCL, London, United Kingdom; Department of Surgery, University of Thessaly, Biopolis, Larissa, Greece.
| | | | - Alexis A Svokos
- Geisinger Lewisburg-Women's Health, Lewisburg, PA, United States
| | - Konstantina A Svokos
- The Warren Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|
19
|
Malale K, Fu J, Qiu L, Zhan K, Gan X, Mei Z. Hypoxia-Induced Aquaporin-3 Changes Hepatocellular Carcinoma Cell Sensitivity to Sorafenib by Activating the PI3K/Akt Signaling Pathway. Cancer Manag Res 2020; 12:4321-4333. [PMID: 32606928 PMCID: PMC7294049 DOI: 10.2147/cmar.s243918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/12/2020] [Indexed: 12/29/2022] Open
Abstract
Purpose Hypoxia-induced changes are primarily activated in patients with hepatocellular carcinoma (HCC) and long-term sorafenib exposure, thereby reducing the sensitivity to the drug. Aquaporin-3 (AQP3), a member of the aquaporin family, is a hypoxia-induced substance that affects the chemosensitivity of non-hepatocellular tumors. However, its expression and role in the sensitivity of hypoxic HCC cells to sorafenib-induced apoptosis remain unclear. The purpose of this study was to detect changes in AQP3 expression in hypoxic HCC cells and to determine whether these changes alter the sensitivity of these cells to sorafenib. Materials and Methods Huh7 and HepG2 hypoxic cell models were established and AQP3 expression was detected using quantitative real-time polymerase chain reaction (qPCR) and Western blotting. Furthermore, the role of AQP3 in cell sensitivity to sorafenib was evaluated via flow cytometry, Western blotting, and a CCK-8 assay. Results The results of qPCR and Western blotting showed that AQP3 was overexpressed in the Huh7 and HepG2 hypoxic cell models. Furthermore, AQP3 protein levels were positively correlated with hypoxia-inducible factor-1α (HIF-1α) levels. Compared with cells transfected with lentivirus-GFP (Lv-GFP), hypoxic cells transfected with lentivirus-AQP3 (Lv-AQP3) were less sensitive to sorafenib-induced apoptosis. However, the sensitivity to the drug increased in cells transfected with lentivirus-AQP3RNAi (Lv-AQP3RNAi). Akt and Erk phosphorylation was enhanced in Lv-AQP3-transfected cells. Compared with UO126 (a Mek1/2 inhibitor), LY294002 (a PI3K inhibitor) attenuated the AQP3-induced insensitivity to sorafenib observed in hypoxic cells transfected with Lv-AQP3. Combined with LY294002-treated cells, hypoxic cells transfected with Lv-AQP3RNAi were more sensitive to sorafenib. Conclusion The study results show that AQP3 is a potential therapeutic target for improving the sensitivity of hypoxic HCC cells to sorafenib.
Collapse
Affiliation(s)
- Kija Malale
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jili Fu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Liewang Qiu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Ke Zhan
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xiuni Gan
- Department of Nursing, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhechuan Mei
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
20
|
AQP1 and AQP3 Expression are Associated With Severe Symptoms and Poor-prognosis of the Pancreatic Ductal Adenocarcinoma. Appl Immunohistochem Mol Morphol 2020; 27:40-47. [PMID: 30531392 DOI: 10.1097/pai.0000000000000523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Approximately 80% of patients with pancreatic ductal adenocarcinoma (PDAC) have metastatic disease with poor prognosis, but clinically available biomarkers for the diagnosis, prediction of prognosis, and target therapy have not yet been identified. OBJECTIVE To investigate the expression of aquaporin-1 (AQP1) and AQP3 protein and their clinicopathological significances in PDACs. MATERIALS AND METHOD AQP1 and AQP3 protein expression in 106 PDAC, 35 peritumoral tissues, 55 benign pancreatic lesions, and 13 normal pancreatic tissues was measured by immunohistochemistry. RESULTS Western blot showed that AQP1 and AQP3 protein expression was significantly higher in PDAC tissues than that in benign pancreatic tissues (P<0.01). Immunohistochemistry showed that the percentages of positive AQP1 and AQP3 expressions were significantly higher in PDAC tumors than that in peritumoral tissues, benign, and normal pancreatic tissues (P<0.01). Benign pancreatic lesions with positive AQP1 and AQP3 expression exhibited a dysplasia or intraepithelial neoplasia. The percentage of cases with positive AQP1 and AQP3 expression was significantly lower in PDAC patients without lymph node metastasis and invasion, and having low Tumor, Node and Metastasis (TNM) stage disease than in patients with lymph node metastasis, invasion, and high TNM stage disease (P<0.05 or <0.01). Kaplan-Meier survival analysis showed that positive AQP1 and AQP3 expression were significantly associated with survival in PDAC patients (P<0.001). Cox multivariate analysis revealed that positive AQP1 and AQP3 expression was independent poor prognosis factors in PDAC patients. The area under the curve of receiver operating characteristic curve was 0.669 for AQP1 and 0.707 for AQP3, respectively. CONCLUSIONS Positive AQP1 and AQP3 expressions are associated with the tumorigenesis and progression of PDAC. Both AQP1 and AQP3 are a diagnostic marker of PDAC and a predictive marker of poor prognosis in PDAC patients.
Collapse
|
21
|
Aquaporin 1, 3, and 5 Patterns in Salivary Gland Mucoepidermoid Carcinoma: Expression in Surgical Specimens and an In Vitro Pilot Study. Int J Mol Sci 2020; 21:ijms21041287. [PMID: 32075009 PMCID: PMC7073006 DOI: 10.3390/ijms21041287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 12/20/2022] Open
Abstract
Salivary gland aquaporins (AQPs) are essential for the control of saliva production and maintenance of glandular structure. However, little is known of their role in salivary gland neoplasia. Salivary gland tumors comprise a heterogeneous group of lesions, featuring variable histological characteristics and diverse clinical behaviors. Mucoepidermoid carcinoma (MEC) is the most common salivary gland malignancy. The aim of this study was to evaluate the expression of AQP1, AQP3, and AQP5 in 24 MEC samples by immunohistochemistry. AQP1 expression was observed in vascular endothelium throughout the tumor stroma. AQP3 was expressed in epidermoid and mucosal cells and AQP5 was expressed in mucosal cells of MEC. These proteins were expressed in the human MEC cell line UH-HMC-3A. Cellular ultrastructural aspects were analyzed by electron microscopy to certificate the tumor cell phenotype. In summary, our results show that, despite the fact that these molecules are important for salivary gland physiology, they may not play a distinct role in tumorigenesis in MEC. Additionally, the in vitro model may offer new possibilities to further investigate mechanisms of these molecules in tumor biology and their real significance in prognosis and possible target therapies.
Collapse
|
22
|
Ahmad AE, Khajah MA, Khushaish S, Luqmani YA. Aquaporin expression in breast cancer and their involvement in bleb formation, cell motility and invasion in endocrine resistant variant cells. Int J Oncol 2020; 56:1014-1024. [PMID: 32319574 DOI: 10.3892/ijo.2020.4976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/16/2020] [Indexed: 11/05/2022] Open
Abstract
Estrogen receptor (ER)‑silenced breast cancer cell lines exhibit endocrine resistance and morphological changes from an epithelial to a mesenchymal phenotype. These cells also display increased motility and invasive properties that are further accentuated by exposure to an alkaline pH, exhibiting dynamic plasma membrane blebbing and cytoplasmic streaming. These latter morphological changes are hypothesized to involve substantial water movement across the plasma membrane, contributing to bleb formation; this may involve aquaporin channel proteins (AQPs). AQP 1, 3, 4 and 5 expression/localization was examined via reverse transcription‑quantitative PCR, western blotting and confocal microscopy in endocrine‑sensitive (YS1.2) and ‑resistant (pII and MDA‑MB‑231) breast cancer cells, as well as normal breast epithelial cells (MCF10A). The effects of osmotic changes on bleb formation were examined via live cell imaging. AQP3 protein expression was knocked down by small interfering RNA (siRNA) transfection, and the effect of its reduced expression on bleb formation, cell motility and invasion were determined via immunofluorescence, scratch and Cultrex assays, respectively. Expression of the four AQPs varied across the different cell lines, and exhibited nuclear, cytoplasmic and membranous localization. Osmotic changes affected the formation of blebs. In pII cells exposed to alkaline pH, AQP3 was observed to be redistributed from the nucleus into the newly formed blebs. siRNA‑mediated knockdown of AQP3 in pII cells significantly reduced cellular blebbing induced by alkaline pH, as well as motility and invasion. These data suggested that AQP3, and potentially other aquaporins, may participate in the processes leading to blebbing of endocrine‑resistant cells which is proposed to be a mechanism that drives tumor metastasis.
Collapse
Affiliation(s)
- Ayah E Ahmad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait
| | - Maitham A Khajah
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait
| | - Sarah Khushaish
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait
| | - Yunus A Luqmani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait
| |
Collapse
|
23
|
Elkhider A, Wang B, Ouyang X, Al-Azab M, Walana W, Sun X, Li H, Tang Y, Wei J, Li X. Aquaporin 5 promotes tumor migration and angiogenesis in non-small cell lung cancer cell line H1299. Oncol Lett 2020; 19:1665-1672. [PMID: 32194658 PMCID: PMC7039099 DOI: 10.3892/ol.2020.11251] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 07/03/2019] [Indexed: 01/08/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) constitutes the majority of all lung-cancer cases. Aquaporin 5 (AQP5) may be involved in NSCLC by promoting lung-cancer initiation and progression. The present study aimed to determine the role of AQP5 in migration and angiogenesis using NSCLC cells and HUVECs. AQPs 1, 3, 4, 5, 8 and 9 were screened in the NSCLC cell line H1299, and the present results showed that AQP5 mRNA was upregulated compared with the other AQP genes. At the protein level, AQP5 was significantly increased in H1299 cells compared with 16HBE cells. AQP5 knockdown in H1299 cells significantly decreased cell migration compared with untransfected cells, as demonstrated by both Transwell and wound closure assays. The present study further investigated H1299 ability to promote HUVEC vascularisation. The supernatants of both transfected and untransfected H1299 cells were used as conditioned medium for HUVECs, and tube formation was measured. The supernatant of AQP5-downregulated cells exhibited significantly low tube formation potential compared with untransfected cells. Similarly, vascular endothelial growth factor was significantly increased in control cells (si-NC) compared with cells transfected with small interfering RNA targeting AQP5. The present study found that AQP5 downregulation significantly decreased the phosphorylation level of epidermal growth factor receptor and the activity of the ERK1/2 pathway. In summary, the present study suggested that AQP5 influenced migration and angiogenesis in NSCLCs in vitro and may potentially exhibit similar in vivo effects.
Collapse
Affiliation(s)
- Abdalkhalig Elkhider
- Department of Immunology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Bing Wang
- Department of Immunology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Xunli Ouyang
- Department of Immunology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Mahmoud Al-Azab
- Department of Immunology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Williams Walana
- Department of Immunology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Xiaotong Sun
- Department of Immunology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Han Li
- Department of Immunology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Yawei Tang
- Department of Immunology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Jing Wei
- Department of Immunology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Xia Li
- Department of Immunology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
24
|
Kasa P, Farran B, Prasad GLV, Nagaraju GP. Aquaporins in female specific cancers. Gene 2019; 700:60-64. [DOI: 10.1016/j.gene.2019.03.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/04/2019] [Accepted: 03/17/2019] [Indexed: 01/22/2023]
|
25
|
Aquaporins 1, 3 and 5 in Different Tumors, their Expression, Prognosis Value and Role as New Therapeutic Targets. Pathol Oncol Res 2019; 26:615-625. [PMID: 30927206 DOI: 10.1007/s12253-019-00646-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
Abstract
All different types of metabolism of tumors are dependent on the flow of water molecules through the biological membrane, where fluid transfer interceded by aquaporins (AQPs) are the basis means for water entrance into the cells or outside them. Aquaporins play other roles including cellular migration, cellular expansion and cellular adhesion facilitation. Therefore, regulators of AQPs may be useful anticancer agents. Medline, Scopus, Embase, and Web of Sciences were searched. From among the papers found, 106 were related to the subject. All of the examined cancers in relation to AQP1 included adenoid cystic carcinoma, bladder, breast, cervical, colon, colorectal, hepatocellular, lung, ovarian, plural mesothelioma, prostate, renal cell carcinoma and squamous cell carcinoma. All of the studied cancers in relation with AQP3 included gastric, breast, prostate, lung, pancreas, skin, bladder, squamous cell carcinoma, cervical, adenoid cystic carcinoma, colon, colorectal, ovarian, and hepatocellular cancers and with regard to AQP5 were lung, squamous cell carcinoma, ovarian, adenoid cystic carcinoma, breast, colon, colorectal, hepatic, pancreas, gallbladder, prostate, and gastric cancers. Over or under-expression of AQP1, 3 and is exist in the mentioned cancers across different studies. Over-expression of AQP1, AQP3 and AQP5 is clearly associated with carcinogenesis, metastasis, reduced survival rate, lymph node metastasis, poorer prognosis, and cellular migration. Also, cancer treatments in relation to these markers suggest AQP reduction during the treatment.
Collapse
|
26
|
Peroxiporins in Cancer. Int J Mol Sci 2019; 20:ijms20061371. [PMID: 30893772 PMCID: PMC6471688 DOI: 10.3390/ijms20061371] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/09/2019] [Accepted: 03/15/2019] [Indexed: 02/07/2023] Open
Abstract
The transport of H2O2 across membranes by specific aquaporins (AQPs) has been considered the last milestone in the timeline of hydrogen peroxide discoveries in biochemistry. According to its concentration and localization, H2O2 can be dangerous or acts as a signaling molecule in various cellular processes as either a paracrine (intercellular) and/or an autocrine (intracellular) signal. In this review, we investigate and critically examine the available information on AQP isoforms able to facilitate H2O2 across biological membranes (“peroxiporins”), focusing in particular on their role in cancer. Moreover, the ability of natural compounds to modulate expression and/or activity of peroxiporins is schematically reported and discussed.
Collapse
|
27
|
Aikman B, de Almeida A, Meier-Menches SM, Casini A. Aquaporins in cancer development: opportunities for bioinorganic chemistry to contribute novel chemical probes and therapeutic agents. Metallomics 2019; 10:696-712. [PMID: 29766198 DOI: 10.1039/c8mt00072g] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aquaporins (AQPs) are membrane proteins allowing permeation of water, glycerol & hydrogen peroxide across biomembranes, and playing an important role in water homeostasis in different organs, exocrine gland secretion, urine concentration, skin moisturization, fat metabolism and neural signal transduction. Notably, a large number of studies showed that AQPs are closely associated with cancer biological functions and expressed in more than 20 human cancer cell types. Furthermore, AQP expression is positively correlated with tumour types, grades, proliferation, migration, angiogenesis, as well as tumour-associated oedema, rendering these membrane channels attractive as both diagnostic and therapeutic targets in cancer. Recent developments in the field of AQPs modulation have identified coordination metal-based complexes as potent and selective inhibitors of aquaglyceroporins, opening new avenues in the application of inorganic compounds in medicine and chemical biology. The present review is aimed at providing an overview on AQP structure and function, mainly in relation to cancer. In this context, the exploration of coordination metal compounds as possible inhibitors of aquaporins may open the way to novel chemical approaches to study AQP roles in tumour growth and potentially to new drug families. Thus, we describe recent results in the field and reflect upon the potential of inorganic chemistry in providing compounds to modulate the activity of "elusive" membrane targets as the aquaporins.
Collapse
Affiliation(s)
- Brech Aikman
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK.
| | | | | | | |
Collapse
|
28
|
Yu HX, Wang XL, Zhang LN, Zhang J, Zhao W. MicroRNA-384 inhibits the progression of esophageal squamous cell carcinoma through blockade of the LIMK1/cofilin signaling pathway by binding to LIMK1. Biomed Pharmacother 2018; 109:751-761. [PMID: 30551528 DOI: 10.1016/j.biopha.2018.09.110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/19/2018] [Accepted: 09/19/2018] [Indexed: 10/27/2022] Open
Abstract
INTRODUCTION Esophageal squamous cell carcinoma (ESCC) represents an aggressive malignancy often accompanied with a poor prognosis. Owing to the poor mortality and morbidity rates associated with this malignancy, a deeper understanding of the finer molecular changes that occur in ESCC is required in order to identify novel potential targets for early detection and therapy. At present the mechanism by which ESCC functions on a molecular level is not fully understood. Hence, the aim of the present study was to ascertain as to whether microRNA-384 (miR-384) influences the progression of ESCC. MATERIAL AND METHODS Bioinformatics analysis was initially conducted to identify ESCC-related differentially expressed genes and predict regulatory miRs. After the target relationship between miR-384 and LIMK1 had been verified, the expression of miR-384 and LIMK1 in the EC9706 cell line was altered in an attempt to investigate the regulatory roles of miR-384 in the expression of the LIMK1/cofilin signaling pathway-related genes, cell proliferation, invasion, cell cycle distribution and apoptosis, in addition to lymph node metastasis (LNM) and tumor growth in nude mice. RESULTS Microarray-based gene expression profiling indicated that miR-384 affected the progression of ESCC through the LIMK1-mediated LIMK1/cofilin signaling pathway. Furthermore, miR-384 and Bax were observed to be poorly expressed, while LIMK1, cofilin and Bcl-2 were highly expressed in ESCC. The obtained evidences indicating that miR-384 targeted and negatively regulated LIMK1. Upregulation of miR-384 or LIMK1 inhibition was determined to block the LIMK1/cofilin signaling pathway, repress cell proliferation, invasion, cell cycle, LNM and tumor growth, while promote cell apoptosis in ESCC. CONCLUSION Collectively, based on the key findings of the study, miR-384 could sequester LIMK1, which acts to suppress activation of the LIMK1/cofilin signaling pathway, thus ultimately inhibiting the development and progression of ESCC.
Collapse
Affiliation(s)
- Hai-Xiang Yu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China
| | - Xiao-Long Wang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China
| | - Le-Ning Zhang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China
| | - Ji Zhang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China
| | - Wei Zhao
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China.
| |
Collapse
|
29
|
Yamazato Y, Shiozaki A, Ichikawa D, Kosuga T, Shoda K, Arita T, Konishi H, Komatsu S, Kubota T, Fujiwara H, Okamoto K, Kishimoto M, Konishi E, Marunaka Y, Otsuji E. Aquaporin 1 suppresses apoptosis and affects prognosis in esophageal squamous cell carcinoma. Oncotarget 2018; 9:29957-29974. [PMID: 30042826 PMCID: PMC6057448 DOI: 10.18632/oncotarget.25722] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/19/2018] [Indexed: 12/31/2022] Open
Abstract
Aquaporin 1 (AQP1) is a membrane protein whose main function is to transfer water across cellular membranes. Recent studies have described important roles for AQP1 in epithelial carcinogenesis and tumor behavior. The objectives of the present study were to investigate the role of AQP1 in the regulation of genes involved in tumor progression and the clinicopathological significance of its expression in esophageal squamous cell carcinoma (ESCC). An immunohistochemical analysis was performed on 50 primary tumor samples underwent esophagectomy. AQP1 was primarily located in the cytoplasm and/or the nuclear membrane of carcinoma cells. The 5-year survival rate of patients with the “cytoplasm dominant” expression of AQP1 (47.1%) was significantly lower than other patients (83.2%). The depletion of AQP1 using siRNA induced apoptosis in TE5 and TE15 cells. The results of microarray analysis revealed that Death receptor signaling pathway-related genes were changed in AQP1-depleted TE5 cells. In conclusion, the results of the present study suggested that the cytoplasm dominant expression of AQP1 is related to a poor prognosis in patients with ESCC, and that it activates tumor progression by affecting Death receptor signaling pathway. These results provide insights into the role of AQP1 as a mediator of and/or a biomarker for ESCC.
Collapse
Affiliation(s)
- Yuzo Yamazato
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Daisuke Ichikawa
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.,Department of Gastrointestinal, Breast & Endocrine Surgery, Faculty of Medicine, University of Yamanashi, Chuo, 409-3898, Japan
| | - Toshiyuki Kosuga
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Katsutoshi Shoda
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Tomohiro Arita
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Takeshi Kubota
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Kazuma Okamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Mitsuo Kishimoto
- Department of Pathology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Eiichi Konishi
- Department of Pathology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yoshinori Marunaka
- Departments of Molecular Cell Physiology and Bio-Ionomics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.,Japan Institute for Food Education and Health, St. Agnes' University, Kyoto, 602-8013, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| |
Collapse
|
30
|
Zhu Z, Jiao L, Li T, Wang H, Wei W, Qian H. Expression of AQP3 and AQP5 as a prognostic marker in triple-negative breast cancer. Oncol Lett 2018; 16:2661-2667. [PMID: 30013662 DOI: 10.3892/ol.2018.8955] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/30/2018] [Indexed: 12/16/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a common type of breast malignancy with high a propensity for metastasis and locoregional recurrence. The aim of the present study was to investigate the expression of aquaporin (AQP) 3 and AQP5, analyze their association with clinicopathological parameters and explore their clinical significance in tissue samples from patients with TNBC. Immunohistochemistry was performed to detect the expression patterns of AQP3 and AQP5 in 96 patients with TNBC who underwent surgery between 2007 and 2012. AQP3 and AQP5 were expressed primarily in the membrane and cytoplasm of tumor cells within TNBC tissues. AQP3 and AQP5 expression was notably stronger in carcinoma tissue compared with adjacent normal tissue. Overexpression of AQP3 and AQP5 was significantly associated with tumor size, lymph node status and local relapse/distant metastasis. In addition, aberrant overexpression of AQP5 was observed more frequently in TNBC tissues with higher Ki-67 expression than in those with lower Ki-67 expression. In univariate analysis, patients with TNBC with high AQP3 and AQP5 expression demonstrated poorer 5-year disease-free survival and overall survival compared with patients with low AQP3 and AQP5 expression. In multivariate analysis, the combined expression of AQP3 and AQP5 was an independent prognostic marker in patients with TNBC. The results of the present study suggest that the overexpression of AQP3 and AQP5 may serve as a novel therapeutic marker in patients with TNBC.
Collapse
Affiliation(s)
- Zhengcai Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China.,Department of General Surgery, Taizhou People's Hospital, Taizhou, Jiangsu 215300, P.R. China
| | - Lianghe Jiao
- Department of General Surgery, Taizhou People's Hospital, Taizhou, Jiangsu 215300, P.R. China
| | - Tao Li
- Department of General Surgery, Taizhou People's Hospital, Taizhou, Jiangsu 215300, P.R. China
| | - Honggang Wang
- Department of General Surgery, Taizhou People's Hospital, Taizhou, Jiangsu 215300, P.R. China
| | - Wei Wei
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Haixin Qian
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
31
|
Direito I, Paulino J, Vigia E, Brito MA, Soveral G. Differential expression of aquaporin-3 and aquaporin-5 in pancreatic ductal adenocarcinoma. J Surg Oncol 2017; 115:980-996. [PMID: 28471475 DOI: 10.1002/jso.24605] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/14/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVES Aquaporin-5 (AQP5) and -3 (AQP3) are protein channels that showed to be up-regulated in a variety of tumors. Our goal was to investigate the expression pattern of AQP5 and AQP3 in pancreatic ductal adenocarcinomas (PDA) and correlate with cell proliferation, tumor stage and progression, and clinical significance. METHODS 35 PDA samples in different stages of differentiation and locations were analyzed by immunohistochemistry for expression of AQP5, AQP3 and several markers of cell proliferation and tumorigenesis. RESULTS In PDA samples AQP5 was overexpressed in the apical membrane of intercalated and intralobular ductal cells while AQP3 was expressed at the plasma membrane of ductal cells. AQP5 was also found in infiltrative cancer cells in duodenum. Simultaneous overexpression of EGFR, Ki-67, and CK7, with decreased E-cad and increased Vim that characterize epithelial mesenchymal transition, tumor formation and invasion, strongly suggest AQP3 and AQP5 involvement in cell proliferation and transformation. AQP3 overexpression is reinforced in late and more aggressive PDA stages whereas AQP5 is related with tumor differentiation, suggesting it may represent a novel marker for PDA aggressiveness and intestinal infiltration. CONCLUSIONS These findings suggest AQP3 and AQP5 involvement in PDA development and the usefulness of AQP5 in early PDA diagnosis.
Collapse
Affiliation(s)
- Inês Direito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Jorge Paulino
- Centro Hepatobiliopancreático e de Transplantação, Centro Hospitalar de Lisboa Central, Lisbon, Portugal
| | - Emanuel Vigia
- Centro Hepatobiliopancreático e de Transplantação, Centro Hospitalar de Lisboa Central, Lisbon, Portugal
| | - Maria Alexandra Brito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
32
|
Huang X, Huang L, Shao M. Aquaporin 3 facilitates tumor growth in pancreatic cancer by modulating mTOR signaling. Biochem Biophys Res Commun 2017; 486:1097-1102. [PMID: 28377226 DOI: 10.1016/j.bbrc.2017.03.168] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 03/31/2017] [Indexed: 02/07/2023]
Abstract
Aquaporins (AQP) have been demonstrated to be dysregulated in many human cancers and is thought to be involved in pancreatic carcinogenesis and progression. However, the oncogenic roles and underlying mechanism of AQP in pancreatic ductal adenocarcinoma (PDAC) remain largely unknown. In this study, by data mining of TCGA dataset and CCLE database, we identified that AQP3 is the major AQP expressed in PDAC. Then, the microRNA-874, was demonstrated to be a key regulator of AQP3 expression in PDAC cells. Genetic silencing of AQP3 expression had pronounced effects on cell proliferation and apoptosis of the PDAC cell lines BXPC3 and HPAFII. Introduction of microRNA-874 suppressed cell proliferation and promoted cell apoptosis, whereas inhibition of microRNA-874 had the opposite effect. Mechanistically, by a large-scale proteomic analysis, we revealed that AQP3 was significantly associated the activity of mTOR signaling. Moreover, modulation of AQP3 or microRNA-874 altered mTOR activity as demonstrated by the phosphorylation level of mTOR and its downstream target S6. Taken together, our data, as a proof of principle, suggest that AQP3 can promote tumor growth of pancreatic cancer cells by activating the Mtor signaling pathway and provide a potential therapeutic target in the treatment of PDAC.
Collapse
Affiliation(s)
- Xunwei Huang
- School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Li Huang
- School of Materials Science and Engineering, Shanghai Key Laboratory of D&A for Metal-Functional Materials, Tongji University, Shanghai 201804, PR China
| | - Minhua Shao
- Personal Health (Shanghai) Co., Ltd, Shanghai 200433, PR China.
| |
Collapse
|
33
|
The role of aquaporin-5 in cancer cell migration: A potential active participant. Int J Biochem Cell Biol 2016; 79:271-276. [PMID: 27609140 DOI: 10.1016/j.biocel.2016.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/01/2016] [Accepted: 09/03/2016] [Indexed: 11/23/2022]
Abstract
Emerging data identifies the water channel aquaporin-5 as a major player in multiple cancers. Over-expression of aquaporin-5 has been associated with increased metastasis and poor prognosis, suggesting that aquaporin-5 may enhance cancer cell migration. This review aims to highlight the current knowledge and hypothesis regarding downstream signaling partners of aquaporin-5 in relation to cancer cell migration. The molecular mechanisms that link aquaporin-5 to cell migration are not completely understood. Aquaporin-5 may promote cell movement by increasing water uptake into the front of the cell allowing local swelling. Aquaporin-5 may also activate extracellular-regulated kinases, increasing proliferation and potentially stimulating the migration machinery. Thus, further studies are warranted to identify the underlying mechanisms and signaling pathways. This will reveal whether aquaporin-5 and downstream effectors could be targets for developing new cancer therapeutics.
Collapse
|
34
|
Direito I, Madeira A, Brito MA, Soveral G. Aquaporin-5: from structure to function and dysfunction in cancer. Cell Mol Life Sci 2016; 73:1623-40. [PMID: 26837927 PMCID: PMC11108570 DOI: 10.1007/s00018-016-2142-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/29/2015] [Accepted: 01/18/2016] [Indexed: 01/05/2023]
Abstract
Aquaporins, a highly conserved group of membrane proteins, are involved in the bidirectional transfer of water and small solutes across cell membranes taking part in many biological functions all over the human body. In view of the wide range of cancer malignancies in which aquaporin-5 (AQP5) has been detected, an increasing interest in its implication in carcinogenesis has emerged. Recent publications suggest that this isoform may enhance cancer cell proliferation, migration and survival in a variety of malignancies, with strong evidences pointing to AQP5 as a promising drug target and as a novel biomarker for cancer aggressiveness with high translational potential for therapeutics and diagnostics. This review addresses the structural and functional features of AQP5, detailing its tissue distribution and functions in human body, its expression pattern in a variety of tumors, and highlighting the underlying mechanisms involved in carcinogenesis. Finally, the actual progress of AQP5 research, implications in cancer biology and potential for cancer detection and prognosis are discussed.
Collapse
Affiliation(s)
- Inês Direito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Madeira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Maria Alexandra Brito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal.
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
35
|
Aquaporin-3 Controls Breast Cancer Cell Migration by Regulating Hydrogen Peroxide Transport and Its Downstream Cell Signaling. Mol Cell Biol 2016; 36:1206-18. [PMID: 26830227 DOI: 10.1128/mcb.00971-15] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/22/2016] [Indexed: 12/25/2022] Open
Abstract
Most breast cancer mortality is due to clinical relapse associated with metastasis. CXCL12/CXCR4-dependent cell migration is a critical process in breast cancer progression; however, its underlying mechanism remains to be elucidated. Here, we show that the water/glycerol channel protein aquaporin-3 (AQP3) is required for CXCL12/CXCR4-dependent breast cancer cell migration through a mechanism involving its hydrogen peroxide (H2O2) transport function. Extracellular H2O2, produced by CXCL12-activated membrane NADPH oxidase 2 (Nox2), was transported into breast cancer cells via AQP3. Transient H2O2 accumulation was observed around the membrane during CXCL12-induced migration, which may be facilitated by the association of AQP3 with Nox2. Intracellular H2O2 then oxidized PTEN and protein tyrosine phosphatase 1B (PTP1B) followed by activation of the Akt pathway. This contributed to directional cell migration. The expression level of AQP3 in breast cancer cells was related to their migration ability both in vitro and in vivo through CXCL12/CXCR4- or H2O2-dependent pathways. Coincidentally, spontaneous metastasis of orthotopic xenografts to the lung was reduced upon AQP3 knockdown. These findings underscore the importance of AQP3-transported H2O2 in CXCL12/CXCR4-dependent signaling and migration in breast cancer cells and suggest that AQP3 has potential as a therapeutic target for breast cancer.
Collapse
|
36
|
Aquaporins: Their role in gastrointestinal malignancies. Cancer Lett 2016; 373:12-18. [PMID: 26780474 DOI: 10.1016/j.canlet.2016.01.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/28/2015] [Accepted: 01/06/2016] [Indexed: 12/15/2022]
Abstract
Aquaporins (AQPs) are small (~30 kDa monomers) integral membrane water transport proteins that allow water to flow through cell membranes in reaction to osmotic gradients in cells. In mammals, the family of AQPs has thirteen (AQP0-12) unique members that mediate critical biological functions. Since AQPs can impact cell proliferation, migration and angiogenesis, their role in various human cancers is well established. Recently, AQPs have been explored as potential diagnostic and therapeutic targets in gastrointestinal (GI) cancers. GI cancers encompass multiple sites including the colon, esophagus, stomach and pancreas. Research in the last three decades has revealed biological aspects and signaling pathways critical for the development of GI cancers. Since the majority of these cancers are very aggressive and rapidly metastasizes, identifying effective targets is crucial for treatment. Preclinical studies have utilized inhibitors of specific AQPs and knock down of AQP expression using siRNA. Although several studies have explored the role of AQPs in colorectal, esophageal, gastric, hepatocellular and pancreatic cancers, there is no comprehensive review compiling the available information on GI cancers as has been published for other malignancies such as ovarian cancer. Due to the similarities and association of various sites of GI cancers, it is helpful to consider these results collectively in order to better understand the role of specific AQPs in critical GI cancers. This review summarizes the current knowledge of the role of AQPs in GI malignancies with particular focus on diagnosis and therapeutic applications.
Collapse
|
37
|
Toward understanding the selective anticancer capacity of cold atmospheric plasma--a model based on aquaporins (Review). Biointerphases 2015; 10:040801. [PMID: 26700469 DOI: 10.1116/1.4938020] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Selectively treating tumor cells is the ongoing challenge of modern cancer therapy. Recently, cold atmospheric plasma (CAP), a near room-temperature ionized gas, has been demonstrated to exhibit selective anticancer behavior. However, the mechanism governing such selectivity is still largely unknown. In this review, the authors first summarize the progress that has been made applying CAP as a selective tool for cancer treatment. Then, the key role of aquaporins in the H2O2 transmembrane diffusion is discussed. Finally, a novel model, based on the expression of aquaporins, is proposed to explain why cancer cells respond to CAP treatment with a greater rise in reactive oxygen species than homologous normal cells. Cancer cells tend to express more aquaporins on their cytoplasmic membranes, which may cause the H2O2 uptake speed in cancer cells to be faster than in normal cells. As a result, CAP treatment kills cancer cells more easily than normal cells. Our preliminary observations indicated that glioblastoma cells consumed H2O2 much faster than did astrocytes in either the CAP-treated or H2O2-rich media, which supported the selective model based on aquaporins.
Collapse
|
38
|
Han G, Ma L, Guo Y, Li L, Li D, Liu H. Hyperbaric oxygen therapy palliates lipopolysaccharide-induced acute lung injury in rats by upregulating AQP1 and AQP5 expression. Exp Lung Res 2015; 41:444-9. [PMID: 26317897 DOI: 10.3109/01902148.2015.1064189] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PURPOSE Hyperbaric oxygen (HBO) therapy has been suggested to palliate acute lung injury (ALI), but the mechanisms involved are not well understood. This study is to elucidate the involvement of AQP1 and AQP5 in the HBO related ALI therapy. MATERIALS AND METHODS lipopolysaccharide (LPS) was administrated into SD rats to obtain ALI models. Pressure of oxygen (PaO2) and carbon dioxide (PaCO2) in arterial blood and oxygenation index in rats after LPS and HBO treatments were determined. Pathological changes of the lungs were examined by hematoxylin and eosin staining. Alteration of TNF-α level during LPS and HBO treatments was evaluated with ELISA analysis. Western blot was employed to assess the expression of AQP1 and AQP5. RESULTS Blood gas indexes were largely decreased by LPS administration, which responded to HBO. Pathological examination showed that the inflammation symptoms in lungs induced by LPS were also palliated after HBO preconditioning. LPS induced the expression of TNF-α at a high level which could be downregulated by HBO and TNF-α antagonist treatments. Results of AQP1 and AQP5 determination found that HBO and TNF-α antagonist would upregulate the expression of AQP1 and AQP5 which was inhibited in rats with ALI. CONCLUSIONS HBO therapy palliated LPS-induced ALI in rats by downregulating TNF-α expression. HBO also upregulated AQP1 and AQP5 expression. These results could serve as guidelines for the full understanding of ALI therapy by HBO, thus achieving maximized therapeutic efficiency.
Collapse
Affiliation(s)
- Guang Han
- a Department of Anesthesia , Shengjing Hospital of China Medical University , Shenyang , Liaoning , China
| | - Ling Ma
- a Department of Anesthesia , Shengjing Hospital of China Medical University , Shenyang , Liaoning , China
| | - Yao Guo
- a Department of Anesthesia , Shengjing Hospital of China Medical University , Shenyang , Liaoning , China
| | - Lu Li
- a Department of Anesthesia , Shengjing Hospital of China Medical University , Shenyang , Liaoning , China
| | - Dan Li
- a Department of Anesthesia , Shengjing Hospital of China Medical University , Shenyang , Liaoning , China
| | - Hongtao Liu
- a Department of Anesthesia , Shengjing Hospital of China Medical University , Shenyang , Liaoning , China
| |
Collapse
|
39
|
Wang J, Feng L, Zhu Z, Zheng M, Wang D, Chen Z, Sun H. Aquaporins as diagnostic and therapeutic targets in cancer: how far we are? J Transl Med 2015; 13:96. [PMID: 25886458 PMCID: PMC4382841 DOI: 10.1186/s12967-015-0439-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 02/17/2015] [Indexed: 01/05/2023] Open
Abstract
Aquaporins (AQPs) are a family of water channel proteins distributed in various human tissues, responsible for the transport of small solutes such as glycerol, even gas and ions. The expression of AQPs has been found in more than 20 human cancer types and is significantly correlated with the severity of histological tumors and prognosis of patients with cancer. More recent evidence showed that AQPs could also play a role in tumor-associated edema, tumor cell proliferation and migration, and tumor angiogenesis in solid and hematological tumors. Inhibitors of AQPs in tumor cells and microvessels have been suggested as new therapeutic strategies. The present review overviews AQPs structures, expression variation among normal tissues and tumors, AQPs functions and roles in the development of cancer with special focuses on lung, colorectal, liver, brain and breast cancers, and potential AQPs-target inhibitors. We call the special attention to consider AQPs important as diagnostic and therapeutic biomarkers. It may be a novel anticancer therapy by the AQPs inhibition.
Collapse
Affiliation(s)
- Jian Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Li Feng
- Minghang Hospital, Fudan University, Shanghai, China.
| | - Zhitu Zhu
- The First Hospital of Liaoning Medical University, Jingzhou, China.
| | - Minghuan Zheng
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Diane Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Zhihong Chen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Hongzhi Sun
- The First Hospital of Liaoning Medical University, Jingzhou, China.
| |
Collapse
|
40
|
Ion channel expression as promising cancer biomarker. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2685-702. [PMID: 25542783 DOI: 10.1016/j.bbamem.2014.12.016] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/10/2014] [Accepted: 12/16/2014] [Indexed: 12/11/2022]
Abstract
Cancer is a disease with marked heterogeneity in both response to therapy and survival. Clinical and histopathological characteristics have long determined prognosis and therapy. The introduction of molecular diagnostics has heralded an explosion in new prognostic factors. Overall, histopathology, immunohistochemistry and molecular biology techniques have described important new prognostic subgroups in the different cancer categories. Ion channels and transporters (ICT) are a new class of membrane proteins which are aberrantly expressed in several types of human cancers. Besides regulating different aspect of cancer cell behavior, ICT can now represent novel cancer biomarkers. A summary of the data obtained so far and relative to breast, prostate, lung, colorectal, esophagus, pancreatic and gastric cancers are reported. Special emphasis is given to those studies aimed at relating specific ICT or a peculiar ICT profile with current diagnostic methods. Overall, we are close to exploit ICTs for diagnostic, prognostic or predictive purposes in cancer. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
|
41
|
Aquaporin 3 promotes prostate cancer cell motility and invasion via extracellular signal-regulated kinase 1/2-mediated matrix metalloproteinase-3 secretion. Mol Med Rep 2014; 11:2882-8. [DOI: 10.3892/mmr.2014.3097] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 11/03/2014] [Indexed: 11/05/2022] Open
|
42
|
Papadopoulos MC, Saadoun S. Key roles of aquaporins in tumor biology. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2576-83. [PMID: 25204262 DOI: 10.1016/j.bbamem.2014.09.001] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 08/25/2014] [Accepted: 09/01/2014] [Indexed: 12/13/2022]
Abstract
Aquaporins are protein channels that facilitate the flow of water across plasma cell membranes in response to osmotic gradients. This review summarizes the evidence that aquaporins play key roles in tumor biology including tumor-associated edema, tumor cell migration, tumor proliferation and tumor angiogenesis. Aquaporin inhibitors may thus be a novel class of anti-tumor agents. However, attempts to produce small molecule aquaporin inhibitors have been largely unsuccessful. Recently, monoclonal human IgG antibodies against extracellular aquaporin-4 domains have become available and could be engineered to kill aquaporin-4 over-expressing cells in the malignant brain tumor glioblastoma. We conclude this review by discussing future directions in aquaporin tumor research. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
| | - Samira Saadoun
- Academic Neurosurgery Unit, St. George's, University of London, London SW17 0RE, UK.
| |
Collapse
|
43
|
The emerging role of aquaporin 5 (AQP5) expression in systemic malignancies. Tumour Biol 2014; 35:6191-2. [DOI: 10.1007/s13277-014-2169-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 05/27/2014] [Indexed: 11/25/2022] Open
|