1
|
Lv K, Li Q, Jiang N, Chen Q. Role of TRIM29 in disease: What is and is not known. Int Immunopharmacol 2025; 147:113983. [PMID: 39755113 DOI: 10.1016/j.intimp.2024.113983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/17/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025]
Abstract
Tripartite motif-containing proteins (TRIMs), comprising the greatest subfamily of E3 ubiquitin ligases with approximately 80 members of this family, are widely distributed in mammalian cells. TRIMs actively participate in ubiquitination of target proteins, a type of post-translational modification associated with protein degradation and other functions. Tripartite motif-containing protein 29 (TRIM29), a member of the TRIM family, differs from other members of this family in that it lacks the RING finger structural domain containing cysteine and histidine residues that mediates DNA binding, protein-protein interactions, and ubiquitin ligase, at its N-terminus. The expression of TRIM29 was initially found to be associated with cancer and diabetic nephropathy progression, and antiviral immunity which is triggered by virus-derived nucleic acids binding to pattern recognition receptors (PRRs) on immune cells. Recently, TRIM29 has also been explored as a diagnostic biomarker and therapeutic target for some immune-related diseases. Here, we review the functions of TRIM29 in the progression of diseases and the inherent mechanisms, as well as the remaining gaps in the literature. A thorough understanding of the detailed regulatory mechanisms of TRIM29 will ultimately facilitate the development of different therapeutic strategies for various diseases.
Collapse
Affiliation(s)
- Kunying Lv
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China
| | - Qilong Li
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China.
| |
Collapse
|
2
|
Jiang T, Xia Y, Li Y, Lu C, Lin J, Shen Y, Lv J, Xie L, Gu C, Xu Z, Wang L. TRIM29 promotes antitumor immunity through enhancing IGF2BP1 ubiquitination and subsequent PD-L1 downregulation in gastric cancer. Cancer Lett 2024; 581:216510. [PMID: 38029830 DOI: 10.1016/j.canlet.2023.216510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/05/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
Tripartite motif-containing protein 29 (TRIM29) is a member of TRIM family protein which has been reported to play a role in the progress of inflammatory and cancer diseases. However, its specific role in gastric cancer (GC) has yet to be fully understood. Here, we investigated the expression of TRIM29 in gastric cancer and its functions in the antitumor immunity. TRIM29 expression was lower in tumor tissues than that in paired normal tissues. Lower expression of TRIM29 was related to aberrant hypermethylation of CpG islands in TRIM29 gene. Comprehensive proteomics and immunoprecipitation analyses identified IGF2BP1 as TRIM29 interactors. TRIM29 interacted with IGF2BP1 and induced its ubiquitination at Lys440 and Lys450 site by K48-mediated linkage for protein degradation. IGF2BP1 promoted PD-L1 mRNA stability and expression in a 3'UTR and m6A-dependent manner. Functionally, TRIM29 enhanced antitumor T-cell immunity in gastric cancer dependent on the IGF2BP1/PD-L1 axis in vivo and in vitro. Clinical correlation analysis revealed that TRIM29 expression in patient samples was associated with CD8+ immune cell infiltration in the GC microenvironment and the overall survival rates of GC patients. Our findings revealed a crucial role of TRIM29 in regulating the antitumor T-cell immunity in GC. We also suggested that the TRIM29/IGF2BP1/PD-L1 axis could be used as a diagnostic and prognostic marker of gastric cancer and a promising target for GC immunotherapy.
Collapse
Affiliation(s)
- Tianlu Jiang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yiwen Xia
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ying Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chen Lu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jie Lin
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yikai Shen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jialun Lv
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Li Xie
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chao Gu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Linjun Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
3
|
Gu J, Chen J, Xiang S, Zhou X, Li J. Intricate confrontation: Research progress and application potential of TRIM family proteins in tumor immune escape. J Adv Res 2023; 54:147-179. [PMID: 36736694 DOI: 10.1016/j.jare.2023.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Tripartite motif (TRIM) family proteins have more than 80 members and are widely found in various eukaryotic cells. Most TRIM family proteins participate in the ubiquitin-proteasome degradation system as E3-ubiquitin ligases; therefore, they play pivotal regulatory roles in the occurrence and development of tumors, including tumor immune escape. Due to the diversity of functional domains of TRIM family proteins, they can extensively participate in multiple signaling pathways of tumor immune escape through different substrates. In current research and clinical contexts, immune escape has become an urgent problem. The extensive participation of TRIM family proteins in curing tumors or preventing postoperative recurrence and metastasis makes them promising targets. AIM OF REVIEW The aim of the review is to make up for the gap in the current research on TRIM family proteins and tumor immune escape and propose future development directions according to the current progress and problems. KEY SCIENTIFIC CONCEPTS OF REVIEW This up-to-date review summarizes the characteristics and biological functions of TRIM family proteins, discusses the mechanisms of TRIM family proteins involved in tumor immune escape, and highlights the specific mechanism from the level of structure-function-molecule-pathway-phenotype, including mechanisms at the level of protein domains and functions, at the level of molecules and signaling pathways, and at the level of cells and microenvironments. We also discuss the application potential of TRIM family proteins in tumor immunotherapy, such as possible treatment strategies for combination targeting TRIM family protein drugs and checkpoint inhibitors for improving cancer treatment.
Collapse
Affiliation(s)
- Junjie Gu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingyi Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuaixi Xiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
4
|
Chen Y, Ma J, Zhang M. TRIM29 promotes the progression of colorectal cancer by suppressing EZH2 degradation. Exp Biol Med (Maywood) 2023; 248:1527-1536. [PMID: 37837384 PMCID: PMC10676129 DOI: 10.1177/15353702231199070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/08/2023] [Indexed: 10/16/2023] Open
Abstract
Colorectal cancer (CRC) is commonly diagnosed at the advanced stage and has a high mortality rate. Tripartite Motif Containing 29 (TRIM29) is an oncogene in numerous malignancies including CRC. However, the molecular mechanism of TRIM29 is largely unknown. In this study, we investigated the biological functions of TRIM29 and the underlying mechanisms. The expression of TRIM29 and Enhancer of Zeste Homolog 2 (EZH2) was predicted using the bioinformatic analysis and measured using a quantitative real-time polymerase chain reaction (PCR) and immunohistochemical assay. The biological functions of TRIM29 were analyzed using a cell counting kit-8, EdU and transwell assays, scratch test, and flow cytometry. The interaction between TRIM29 and EZH2 was assessed using protein immunoprecipitation. The stability of EZH2 was evaluated by treating it with cycloheximide. Our results indicated that TRIM29 levels were upregulated in CRC. Overexpression of TRIM29 promoted CRC cell proliferation and migration and suppressed apoptosis. The opposite result was obtained when TRIM29 was silenced. TRIM29 interacted with EZH2 mechanically and enhanced the protein stability of EZH2. Depletion of EZH2 reversed the effects of TRIM29, regarding its biological behaviors. Moreover, downregulation of TRIM29 inhibited tumor growth and improved the histopathological prognosis. In conclusion, EZH2 interacted with silenced TRIM29 to suppress its stability, thereby inhibiting cell proliferation, migration, and tumor growth, and promoting apoptosis in CRC. Our findings suggested that TRIM29 is a promising target for CRC therapy.
Collapse
Affiliation(s)
| | | | - Mingming Zhang
- Department of Gastrointestinal Surgery, Liuzhou People’s Hospital, Liuzhou 545006, Guangxi, China
| |
Collapse
|
5
|
Kishani Farahani R, Soleimanpour S, Golmohammadi M, Soleimanpour-lichaei HR. PIWIL2 Regulates the Proliferation, Apoptosis and Colony Formation of Colorectal Cancer Cell Line. IRANIAN JOURNAL OF BIOTECHNOLOGY 2023; 21:e3176. [PMID: 36811102 PMCID: PMC9938935 DOI: 10.30498/ijb.2022.307054.3176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 07/06/2022] [Indexed: 02/24/2023]
Abstract
Background Tumor cells proliferation and apoptosis inhibition are the mechanisms through which the Colorectal Cancer (CRC) progression, metastasis and chemoresistance are promoted pathologically, offering clinical advantages for characterizing their molecular regulators. Objectives In this study, to unravel the role of PIWIL2 as a potential CRC oncogenic regulator, we examined the effect of its overexpression on proliferation, apoptosis and colony formation of SW480 colon cancer cell line. Material and Methods Established SW480-P (overexpression of PIWIL2) and SW480-control (SW480-empty vector) cell lines were cultured in DMEM containing 10% FBS with 1% penicillin-streptomycin. The total DNA and RNA was extracted for further experiments. Real-Time PCR and western blotting assay were performed to measure the differential expression of proliferation associated genes including the expression of cell cycle and anti-apoptotic genes as well as Ki-67 and PIWIL2 in both cell lines. Cell proliferation was determined using MTT assay, doubling time assay and the colony formation rate of transfected cells was measured with the 2D colony formation assay. Results At the molecular level, PIWIL2 overexpression was associated with significant up-regulation of cyclin D1, STAT3, BCL2-L1, BCL2-L2 and Ki-67 genes. MTT and doubling time assay showed that PIWIL2 expression induced time-related effects on proliferation rate of SW480 cells. Moreover, SW480-P cells had markedly greater capacity to form colonies. Conclusions PIWIL2 plays important roles to promote cancer cell proliferation and colonization via the cell cycle acceleration and inhibition of apoptosis, the mechanisms through which this gene seems to contribute to CRC development, metastasis and chemoresistance, hence potentially highlighting PIWIL2 targeted therapy as a valuable tool for CRC treatment.
Collapse
Affiliation(s)
- Roya Kishani Farahani
- Department of Stem Cells and Regenerative Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | | | | | - Hamid Reza Soleimanpour-lichaei
- Department of Stem Cells and Regenerative Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
6
|
Hsu CY, Yanagi T, Ujiie H. TRIM29 in Cutaneous Squamous Cell Carcinoma. Front Med (Lausanne) 2022; 8:804166. [PMID: 34988104 PMCID: PMC8720877 DOI: 10.3389/fmed.2021.804166] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
Tripartite motif (TRIM) proteins play important roles in a wide range of cell physiological processes, such as signal transduction, transcriptional regulation, innate immunity, and programmed cell death. TRIM29 protein, encoded by the ATDC gene, belongs to the RING-less group of TRIM protein family members. It consists of four zinc finger motifs in a B-box domain and a coiled-coil domain, and makes use of the B-box domain as E3 ubiquitin ligase in place of the RING. TRIM29 was found to be involved in the formation of homodimers and heterodimers in relation to DNA binding; additional studies have also demonstrated its role in carcinogenesis, DNA damage signaling, and the suppression of radiosensitivity. Recently, we reported that TRIM29 interacts with keratins and FAM83H to regulate keratin distribution. Further, in cutaneous SCC, the expression of TRIM29 is silenced by DNA methylation, leading to the loss of TRIM29 and promotion of keratinocyte migration. This paper reviews the role of TRIM family proteins in malignant tumors, especially the role of TRIM29 in cutaneous SCC.
Collapse
Affiliation(s)
- Che-Yuan Hsu
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Teruki Yanagi
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hideyuki Ujiie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
7
|
Shen Y, Sun C, Zhao B, Guo H, Li J, Xia Y, Liu M, Piao S, Saiyin W. miR-34c-5p mediates the cellular malignant behaviors of oral squamous cell carcinoma through targeted binding of TRIM29. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1537. [PMID: 34790743 PMCID: PMC8576676 DOI: 10.21037/atm-21-4679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/21/2021] [Indexed: 12/23/2022]
Abstract
Background This investigation examined the effects of the microRNA miR-34c-5p on the proliferation, migration, and invasion of oral squamous cell carcinoma (OSCC) and the mechanisms involved. Methods The Gene Expression Omnibus (GEO) database was used to filter the chips, and the GEO2R software (https://www.ncbi.nlm.nih.gov/geo/geo2r/) was used to analyze the microarray data (GSE28100 and GSE45238). Gene set enrichment analysis (GSEA) was used to study the relationship between the expression of miR-34c-5p and the distant metastasis and pathological grade of OSCC. The correlation between TRIM29 (tripartite motif containing 29) expression and the malignant clinical phenotype of OSCC was also examined. The mRNA and protein expression levels of miR-34c-5p and TRIM29 were measured by real time quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blot analysis. The proliferation, migration, invasion and apoptosis of the human oral squamous carcinoma cell lines CAL-27 and Tca8113 was assessed by performing cell-counting kit-8 (CCK-8) assays, colony formation assays, transwell tests, wound scratch tests and flow cytometry. Luciferase reporter assays were used to predict the relationship between miR-34c-5p and TRIM29. A xenograft nude model was established and used to evaluate the effect of miR-34c-5p on tumor growth in female BALB/c mice. Results The expression of miR-34c-5p was significantly correlated with the proliferation, migration, and metastasis of OSCC. Overexpression of miR-34c-5p promoted the proliferation, migration, and invasion of CAL-27 and Tca8113 cells, and suppressed their apoptosis. Inversely, low expression of miR-34c-5p suppressed the proliferation, migration, and invasion of CAL-27 and Tca8113 cells, and promoted their apoptosis. Overexpression of miR-34c-5p promoted tumor growth in the xenograft nude mice model. The expression of TRIM29 was related to malignant clinical phenotype of OSCC. Overexpression of TRIM29 inhibited the proliferation, migration and invasion of CAL-27 and Tca8113 cell, and induced their apoptosis. TRIM29 knockout had just the opposite effect. Importantly, miR-34c-5p binds to TRIM29 and inhibited TRIM29 expression. Conclusions MiR-34c-5p regulates the proliferation, migration, invasion, and apoptosis of OSCC through targeted binding of TRIM29. This may represent a novel therapeutic target for the treatment of patients with OSCC.
Collapse
Affiliation(s)
- Yuchen Shen
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,School of Stomatology, Harbin Medical University, Harbin, China
| | - Changsheng Sun
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,School of Stomatology, Harbin Medical University, Harbin, China
| | - Bowen Zhao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,School of Stomatology, Harbin Medical University, Harbin, China
| | - Haobing Guo
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,School of Stomatology, Harbin Medical University, Harbin, China
| | - Jianhao Li
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,School of Stomatology, Harbin Medical University, Harbin, China
| | - Yanyun Xia
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,School of Stomatology, Harbin Medical University, Harbin, China
| | - Miaomiao Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,School of Stomatology, Harbin Medical University, Harbin, China
| | - Songlin Piao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,School of Stomatology, Harbin Medical University, Harbin, China
| | - Wuliji Saiyin
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,School of Stomatology, Harbin Medical University, Harbin, China
| |
Collapse
|
8
|
Lei G, Liu S, Yang X, He C. TRIM29 Reverses Oxaliplatin Resistance of P53 Mutant Colon Cancer Cell. Can J Gastroenterol Hepatol 2021; 2021:8870907. [PMID: 33824865 PMCID: PMC8007381 DOI: 10.1155/2021/8870907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/25/2021] [Accepted: 03/09/2021] [Indexed: 02/08/2023] Open
Abstract
Background Oxaliplatin is the first-choice chemotherapy method for patients with advanced colon cancer. However, its resistance leads to treatment failure for many patients. In our experiments, we aim to elucidate the associations among TRIM29 protein, mutant P53, and the resistance of colon cancer cells to oxaliplatin. Methods HCT116 and HT-29 cells were cultured and transfected with plasmids pIRES2-ZsGreen1-TRIM29-flag. Western blot and real-time qRT-PCR were utilized to examine the protein and mRNA expressions of TRIM29 and other related markers, respectively. MTT assay was utilized to determine the cell growth rate and generate the inhibition curve. Continuous culture in low-concentration oxaliplatin was conducted to construct oxaliplatin-resistant cell lines. The coimmunoprecipitation method and immunofluorescence detection were used to examine the interaction between TRIM29 and mutant P53 protein in HT29 cells. Results We successfully transfected pIRES2-ZsGreen1-TRIM29-flag into HCT116 and HT29 cells, which were utilized in the whole experiments. TRIM29 significantly increased the sensitivity of P53 mutant colon cancer cell HT29 to oxaliplatin. The oxaliplatin-resistant model of P53 mutant colon cancer cell HT29 was successfully constructed. TRIM29 physically bound with mutant P53 and retained it in the cytoplasm from the nucleus, which inhibited its transcription function of downstream genes such as MDR1. In addition, TRIM29 successfully reversed the resistance of HT29-OX resistant cell model to oxaliplatin. Conclusion In mutant P53 colon cancer cell HT29, TRIM29 greatly increased the sensitivity of HT29 to oxaliplatin and reverse oxaliplatin resistance. The underlying mechanism is TRIM29 may increase the sensitivity of HT29 to oxaliplatin by blocking the transcriptional function of mutant P53, which inhibits the transcription function of its downstream gene such as MDR1.
Collapse
Affiliation(s)
- Guoqiong Lei
- Department of Neurosurgery, The Second People's Hospital of Hunan Province, Changsha, Hunan 410007, China
| | - Sushun Liu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xin Yang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Chao He
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
9
|
Han J, Zhao Z, Zhang N, Yang Y, Ma L, Feng L, Zhang X, Zuo J, Fan Z, Wang Y, Song Y, Wang G. Transcriptional dysregulation of TRIM29 promotes colorectal cancer carcinogenesis via pyruvate kinase-mediated glucose metabolism. Aging (Albany NY) 2021; 13:5034-5054. [PMID: 33495406 PMCID: PMC7950264 DOI: 10.18632/aging.202414] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022]
Abstract
Targeted molecular therapy is the most effective treatment for cancer. An effective therapeutic target for colorectal cancer (CRC) is urgently needed. However, the mechanisms of CRC remain poorly understood, which has hampered research and development of CRC-targeted therapy. TRIM29 is a ubiquitin E3 ligase that has been reported as an oncogene in several human tumors. In this study, we show that increased levels of TRIM29 were detected in CRC compared with normal tissues and were associated with poor clinical outcome, advanced stage and lymph node metastasis, particularly those with right-sided colorectal cancer (RSCC). Notably, GATA2 (GATA Binding Protein 2) transcriptionally repressed TRIM29 expression. The loss of GATA2 and high expression of TRIM29 occur more frequently in RSCC than in left-sided colorectal cancer (LSCC). Functional assays revealed that TRIM29 promotes the malignant CRC phenotype in vitro and in vivo. Mechanistic analyses indicate that TRIM29 promotes pyruvate kinase (mainly PKM1) degradation via the ubiquitin-proteasome pathway. TRIM29 directly targets PKM1 to reduce PKM1/PKM2 ratio, which results in PKM2-mediated aerobic glycolysis (Warburg effect) acting as the dominant energy source in CRC. Our findings suggest that TRIM29 acts as a tumor promoter in CRC, especially in RSCC, and is a potential therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Jing Han
- Department of Medical Oncology, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang 050000, Hebei, P.R. China
| | - Zitong Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Nan Zhang
- Department of Thoracic Surgery, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang 050000, Hebei, P.R. China
| | - Yang Yang
- Department of General Surgery, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang 050000, Hebei, P.R. China
| | - Liying Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Li Feng
- Department of Medical Oncology, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang 050000, Hebei, P.R. China
| | - Xue Zhang
- Department of Medical Oncology, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang 050000, Hebei, P.R. China
| | - Jing Zuo
- Department of Medical Oncology, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang 050000, Hebei, P.R. China
| | - Zhisong Fan
- Department of Medical Oncology, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang 050000, Hebei, P.R. China
| | - Yudong Wang
- Department of Medical Oncology, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang 050000, Hebei, P.R. China
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Guiying Wang
- Department of General Surgery, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang 050000, Hebei, P.R. China.,Department of General Surgery, The 3rd Affiliated Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, P.R. China
| |
Collapse
|
10
|
Eberhardt W, Haeussler K, Nasrullah U, Pfeilschifter J. Multifaceted Roles of TRIM Proteins in Colorectal Carcinoma. Int J Mol Sci 2020; 21:ijms21207532. [PMID: 33066016 PMCID: PMC7590211 DOI: 10.3390/ijms21207532] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most frequently diagnosed tumor in humans and one of the most common causes of cancer-related death worldwide. The pathogenesis of CRC follows a multistage process which together with somatic gene mutations is mainly attributed to the dysregulation of signaling pathways critically involved in the maintenance of homeostasis of epithelial integrity in the intestine. A growing number of studies has highlighted the critical impact of members of the tripartite motif (TRIM) protein family on most types of human malignancies including CRC. In accordance, abundant expression of many TRIM proteins has been observed in CRC tissues and is frequently correlating with poor survival of patients. Notably, some TRIM members can act as tumor suppressors depending on the context and the type of cancer which has been assessed. Mechanistically, most cancer-related TRIMs have a critical impact on cell cycle control, apoptosis, epithelial–mesenchymal transition (EMT), metastasis, and inflammation mainly through directly interfering with diverse oncogenic signaling pathways. In addition, some recent publications have emphasized the emerging role of some TRIM members to act as transcription factors and RNA-stabilizing factors thus adding a further level of complexity to the pleiotropic biological activities of TRIM proteins. The current review focuses on oncogenic signaling processes targeted by different TRIMs and their particular role in the development of CRC. A better understanding of the crosstalk of TRIMs with these signaling pathways relevant for CRC development is an important prerequisite for the validation of TRIM proteins as novel biomarkers and as potential targets of future therapies for CRC.
Collapse
|
11
|
Wu T, Zhang DL, Wang JM, Jiang JY, Du X, Zeng XY, Du ZX. TRIM29 inhibits miR-873-5P biogenesis via CYTOR to upregulate fibronectin 1 and promotes invasion of papillary thyroid cancer cells. Cell Death Dis 2020; 11:813. [PMID: 32994394 PMCID: PMC7525524 DOI: 10.1038/s41419-020-03018-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 02/08/2023]
Abstract
Papillary thyroid cancer (PTC) is the most common endocrine tumor with an increasing incidence, has a strong propensity for neck lymph node metastasis. Limited treatment options are available for patients with advanced or recurrent metastatic disease, resulting in a poor prognosis. Tripartite motif protein 29 (TRIM29) is dysregulated in various cancer and functions as oncogene or tumor suppressor in discrete cancers. In this study, we found that both TRIM29 and fibronectin 1 (FN1) were upregulated with positive correlation in PTC tissues. Neither overexpression nor downregulation of TRIM29 altered the proliferation of PTC cells significantly. Overexpression of TRIM29 significantly promotes, while knockdown of TRIM29 significantly decreases migration and invasion by regulating FN1 expression in PTC cells. In terms of mechanism, we found that TRIM29 altered the stability of FN1 mRNA via regulation of miR-873-5p expression. The current study also demonstrated that long non-coding RNA (LncRNA) CYTOR suppressed maturation of miR-873-5p via interaction with premiR-873, and TRIM29 decreased miR-873-5p via upregulation of CYTOR. This study suggests that involvement of TRIM29 in migration and invasion in PTC cells may reveal potential metastatic mechanism of PTC and represent a novel therapeutic target and strategy.
Collapse
Affiliation(s)
- Tong Wu
- Department of Endocrinology & Metabolism, the 1st affiliated Hospital, China Medical University, 110001, Shenyang, China
| | - Da-Lin Zhang
- Department of Thyroid Surgery, the 1st affiliated Hospital, China Medical University, 110001, Shenyang, China
| | - Jia-Mei Wang
- Department of Laboratory Medicine, the 1st affiliated hospital, China Medical University, 110001, Shenyang, China
| | - Jing-Yi Jiang
- Department of Biochemistry & Molecular Biology, China Medical University, 110122, Shenyang, China
| | - Xin Du
- Department of Endocrinology & Metabolism, the 1st affiliated Hospital, China Medical University, 110001, Shenyang, China
| | - Xiao-Yan Zeng
- Department of Endocrinology & Metabolism, the 1st affiliated Hospital, China Medical University, 110001, Shenyang, China
| | - Zhen-Xian Du
- Department of Endocrinology & Metabolism, the 1st affiliated Hospital, China Medical University, 110001, Shenyang, China.
| |
Collapse
|
12
|
Liu J, Zhang C, Wang X, Hu W, Feng Z. Tumor suppressor p53 cross-talks with TRIM family proteins. Genes Dis 2020; 8:463-474. [PMID: 34179310 PMCID: PMC8209353 DOI: 10.1016/j.gendis.2020.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
p53 is a key tumor suppressor. As a transcription factor, p53 accumulates in cells in response to various stress signals and selectively transcribes its target genes to regulate a wide variety of cellular stress responses to exert its function in tumor suppression. In addition to tumor suppression, p53 is also involved in many other physiological and pathological processes, e.g. anti-infection, immune response, development, reproduction, neurodegeneration and aging. To maintain its proper function, p53 is under tight and delicate regulation through different mechanisms, particularly the posttranslational modifications. The tripartite motif (TRIM) family proteins are a large group of proteins characterized by the RING, B-Box and coiled-coil (RBCC) domains at the N-terminus. TRIM proteins play important roles in regulation of many fundamental biological processes, including cell proliferation and death, DNA repair, transcription, and immune response. Alterations of TRIM proteins have been linked to many diseases including cancer, infectious diseases, developmental disorders, and neurodegeneration. Interestingly, recent studies have revealed that many TRIM proteins are involved in the regulation of p53, and at the same time, many TRIM proteins are also regulated by p53. Here, we review the cross-talk between p53 and TRIM proteins, and its impact upon cellular biological processes as well as cancer and other diseases.
Collapse
Affiliation(s)
- Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Cen Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Xue Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| |
Collapse
|
13
|
Mandell MA, Saha B, Thompson TA. The Tripartite Nexus: Autophagy, Cancer, and Tripartite Motif-Containing Protein Family Members. Front Pharmacol 2020; 11:308. [PMID: 32226386 PMCID: PMC7081753 DOI: 10.3389/fphar.2020.00308] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a cellular degradative process that has multiple important actions in cancer. Autophagy modulation is under consideration as a promising new approach to cancer therapy. However, complete autophagy dysregulation is likely to have substantial undesirable side effects. Thus, more targeted approaches to autophagy modulation may prove clinically beneficial. One potential avenue to achieving this goal is to focus on the actions of tripartite motif-containing protein family members (TRIMs). TRIMs have key roles in an array of cellular processes, and their dysregulation has been extensively linked to cancer risk and prognosis. As detailed here, emerging data shows that TRIMs can play important yet context-dependent roles in controlling autophagy and in the selective targeting of autophagic substrates. This review covers how the autophagy-related actions of TRIM proteins contribute to cancer and the possibility of targeting TRIM-directed autophagy in cancer therapy.
Collapse
Affiliation(s)
- Michael A Mandell
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.,Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Bhaskar Saha
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Todd A Thompson
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.,Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM, United States
| |
Collapse
|
14
|
Zhang Z, Li B, Xu P, Yang B. Integrated Whole Transcriptome Profiling and Bioinformatics Analysis for Revealing Regulatory Pathways Associated With Quercetin-Induced Apoptosis in HCT-116 Cells. Front Pharmacol 2019; 10:798. [PMID: 31379573 PMCID: PMC6651514 DOI: 10.3389/fphar.2019.00798] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 06/20/2019] [Indexed: 12/24/2022] Open
Abstract
Quercetin (QUE) is a bioactive component that belongs to the natural flavonoids group, and recent researchers found that it could prevent colorectal cancer (CRC). However, the exact mechanism by which QUE exerts its anti-tumor effects in CRC remains unclear. In this study, MTS assay and flow cytometry were used to detect the anti-tumor effects of QUE on HCT-116 cells. The results showed that QUE could inhibit the proliferation and induce apoptosis of HCT-116 cells. Furthermore, whole transcriptome sequencing was employed to establish the microRNA (miRNA), long non-coding RNA (lncRNA), circular RNA (circRNA), and mRNA profiles. A total of 240 differentially expressed lncRNAs (DElncRNAs), 131 circRNAs (DEcircRNAs), 83 miRNAs (DEmiRNAs), and 1415 mRNAs (DEmRNAs) were identified in the QUE-treated HCT-116 cells compared to the untreated HCT-116 cells. Then, quantitative real-time polymerase chain reaction (qRT-PCR) was used to validate the expression of selected circRNAs, miRNAs, lncRNAs, and mRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to further investigate RNAs' biological functions and potential mechanisms. Based on the theory of competing endogenous RNA (ceRNA), the circRNA-miRNA-mRNA and lncRNA-miRNA-mRNA regulatory networks were constructed to illustrate the regulatory relationship between non-coding RNA (ncRNA) and mRNA. Our results provided novel information about the molecular basis of QUE in treating CRC. Our findings indicated that deep RNA sequencing analysis of mRNA and ncRNAs was a promising approach to research anticancer mechanisms.
Collapse
Affiliation(s)
- Zheyu Zhang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Bin Li
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Panpan Xu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bo Yang
- Department of Integrated Traditional Chinese & Western Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Shen W, Jin Z, Tong X, Wang H, Zhuang L, Lu X, Wu S. TRIM14 promotes cell proliferation and inhibits apoptosis by suppressing PTEN in colorectal cancer. Cancer Manag Res 2019; 11:5725-5735. [PMID: 31296997 PMCID: PMC6598940 DOI: 10.2147/cmar.s210782] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/23/2019] [Indexed: 12/13/2022] Open
Abstract
Background Colorectal cancer (CRC) is among the most frequent and lethal malignancies worldwide. Although great advances have been made in the treatment of CRC, prognosis remains poor. Our previous study indicated that tripartite motif-containing 14 (TRIM14) was upregulated in CRC samples. Methods In the current study, the association between TRIM14 and CRC was investigated. Protein expression was determined by Western blotting and immunohistochemistry. Further, the biological roles of TRIM14 in CRC cell proliferation and apoptosis were explored both in vitro and in vivo. Results We observed that increased TRIM14 expression in CRC tissues was closely related with aggressive clinicopathological characteristics and poor prognosis. TRIM14 knockdown markedly reduced proliferation and increased apoptosis in HT-29 and SW620 cells, whereas TRIM14 overexpression in LoVo cells displayed opposite results. Xenograft experiments using HT-29 cells confirmed suppression of tumor growth and induction of apoptosis upon TRIM14 knockdown in vivo. Furthermore, downregulation of TRIM14 inhibited the AKT pathway, as indicated by reduced levels of phosphorylated AKT, Bcl-2 and Cyclin D1, and elevated levels of phosphatase and
tensin homology (PTEN) and p27. In addition, TRIM14 colocalized with PTEN in the cytoplasm and induced PTEN ubiquitination. Moreover, PTEN overexpression significantly inhibited pro-proliferative effects of TRIM14, indicating an involvement of PTEN/AKT signaling in mediating TRIM14 functions. Conclusions The present data demonstrate that TRIM14 overexpression promotes CRC cell proliferation, suggesting TRIM14 as an attractive therapeutic target for CRC.
Collapse
Affiliation(s)
- Weidong Shen
- Department of Gastroenterology, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, People's Republic of China
| | - Zhonghai Jin
- Department of Gastroenterology, Yiwu Hospital, Wenzhou Medical University, Yiwu, People's Republic of China
| | - Xiuping Tong
- Department of Gastroenterology, Yiwu Hospital, Wenzhou Medical University, Yiwu, People's Republic of China
| | - Haiying Wang
- Department of Gastroenterology, Yiwu Hospital, Wenzhou Medical University, Yiwu, People's Republic of China
| | - Lilei Zhuang
- Department of Gastroenterology, Yiwu Hospital, Wenzhou Medical University, Yiwu, People's Republic of China
| | - Xiaofeng Lu
- Department of Gastroenterology, Yiwu Hospital, Wenzhou Medical University, Yiwu, People's Republic of China
| | - Shenbao Wu
- Department of Gastroenterology, Yiwu Hospital, Wenzhou Medical University, Yiwu, People's Republic of China
| |
Collapse
|
16
|
Cao Y, Shi L, Wang M, Hou J, Wei Y, Du C. ATDC contributes to sustaining the growth and invasion of glioma cells through regulating Wnt/β-catenin signaling. Chem Biol Interact 2019; 305:148-155. [DOI: 10.1016/j.cbi.2019.03.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/07/2019] [Accepted: 03/26/2019] [Indexed: 02/09/2023]
|
17
|
Pan S, Deng Y, Fu J, Zhang Y, Zhang Z, Ru X, Qin X. TRIM52 promotes colorectal cancer cell proliferation through the STAT3 signaling. Cancer Cell Int 2019; 19:57. [PMID: 30918473 PMCID: PMC6419475 DOI: 10.1186/s12935-019-0775-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/08/2019] [Indexed: 01/05/2023] Open
Abstract
Background The tripartite motif (TRIM) family proteins are implicated in the pathogenesis of various human malignancies. The up-regulation and oncogenic roles of TRIM52 have been reported in hepatocellular carcinoma. In the current study, we aimed to examine its expression and possible function in colorectal cancer (CRC). Method Immunohistochemical staining or immunoblotting analysis was carried out to detect protein expression. Cell proliferation and apoptosis was evaluated by Cell Counting Kit-8 (CCK-8) and flow cytometry assay, respectively. Results TRIM52 expression was increased in 67.5% of CRC tissues (54/80) compared to matched normal colonic mucosa. TRIM52 expression was closely related with tumor size (p = 0.0376), tumor stage (p = 0.0227) and overall survival (p = 0.0177). Short hairpin RNAs (shRNAs) targeting TRIM52 had the potential anti-proliferative effects on CRC cell lines, SW480 and LoVo, by inducing cell apoptosis. In addition, an in vivo xenograft experiment confirmed the in vitro results. In addition, TRIM52 shRNAs decreased the phosphorylation of STAT3, but increased the protein expression of SHP2, a negative regulator of STAT3 phosphorylation. TRIM52 formed a complex with SHP2 and promoted the ubiquitination of SHP2. Furthermore, inhibition of the STAT3 signaling by AG490 in RKO cells significantly abolished the effects of TRIM52 overexpression on cell proliferation, apoptosis and STAT3 activation. Conclusions TRIM52 might exert oncogenic role in CRC via regulating the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Shengli Pan
- Division of Gastrointestinal Surgery, Department of General Surgery, Shanghai Eighth People's Hospital, No. 8 Caobao Road, Xuhui District, Shanghai, 200232 China
| | - Yingying Deng
- Department of Ophtalmology, Shanghai Eighth People's Hospital, Shanghai, China
| | - Jun Fu
- Division of Gastrointestinal Surgery, Department of General Surgery, Shanghai Eighth People's Hospital, No. 8 Caobao Road, Xuhui District, Shanghai, 200232 China
| | - Yuhao Zhang
- Division of Gastrointestinal Surgery, Department of General Surgery, Shanghai Eighth People's Hospital, No. 8 Caobao Road, Xuhui District, Shanghai, 200232 China
| | - Zhijin Zhang
- Division of Gastrointestinal Surgery, Department of General Surgery, Shanghai Eighth People's Hospital, No. 8 Caobao Road, Xuhui District, Shanghai, 200232 China
| | - Xiaokun Ru
- Division of Gastrointestinal Surgery, Department of General Surgery, Shanghai Eighth People's Hospital, No. 8 Caobao Road, Xuhui District, Shanghai, 200232 China
| | - Xianju Qin
- Division of Gastrointestinal Surgery, Department of General Surgery, Shanghai Eighth People's Hospital, No. 8 Caobao Road, Xuhui District, Shanghai, 200232 China
| |
Collapse
|
18
|
MicroRNA-424-5p acts as a potential biomarker and inhibits proliferation and invasion in hepatocellular carcinoma by targeting TRIM29. Life Sci 2019; 224:1-11. [PMID: 30876939 DOI: 10.1016/j.lfs.2019.03.028] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND miRNA-424-5p (miR-424-5p) has been implicated in the development and progression of various tumors. However, the functional mechanisms of miR-424-5p in hepatocellular carcinoma (HCC) are unclear. In this study, we investigated the specific biological functions of miRNA in HCC. METHODS The expression of miR-424-5p was measured by qRT-PCR in HCC tissues and cell lines. Western blot and immunohistochemistry were used to detect the protein expression level of TRIM29. The relationship between miR-424-5p and the clinicopathological features of HCC patients was analyzed. Cell function experiments were performed to examine proliferation and invasion in HCC cells. The miRNA database was used to predict downstream target genes of miR-424-5p, which were verified by a luciferase reporter assay. Furthermore, cell and animal experiments confirmed that miR-424-5p exerts its biological function through the target gene TRIM29. RESULTS miR-424-5p expression was decreased in HCC tissues and cell lines, and correlated with AFP, TNM stage, intrahepatic metastasis and poor overall survival in HCC. The upregulation of miR-424-5p inhibited cell proliferation and invasion in vitro and suppressed HCC tumor growth in vivo. TRIM29 was confirmed to be the downstream target gene of miR-424-5p. Finally, rescue experiments suggested that the upregulation of TRIM29 could rescue inhibitory effect of miR-424-5p overexpression on cell proliferation and migration. CONCLUSION miR-424-5p is a tumor suppressor miRNA that inhibits cell proliferation and invasion via directly modulating TRIM29, which is related to cell proliferation and invasion in HCC. Thus, miR-424-5p may be a potential therapeutic and new prognostic marker for HCC.
Collapse
|
19
|
Sun J, Zhang T, Cheng M, Hong L, Zhang C, Xie M, Sun P, Fan R, Wang Z, Wang L, Zhong J. TRIM29 facilitates the epithelial-to-mesenchymal transition and the progression of colorectal cancer via the activation of the Wnt/β-catenin signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:104. [PMID: 30813948 PMCID: PMC6391790 DOI: 10.1186/s13046-019-1098-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/08/2019] [Indexed: 12/11/2022]
Abstract
Background Tripartite Motif 29 (TRIM29) has been newly identified as being implicated in cancer progression. However, the biological role and molecular mechanism of TRIM29 in the invasion and metastasis of colorectal cancer (CRC) remain to be determined. Methods The expression levels of TRIM29 and β-catenin in CRC patient specimens were detected by immunohistochemistry. Recombinant lentivirus vectors containing the TRIM29 gene and its small hairpin interfering RNAs were constructed and transduced into CRC cells. Wound-healing and Transwell assays were performed to evaluate the migration and invasion abilities of CRC cells in vitro. Hepatic metastasis models in nude mice were established to validate the function of TRIM29 in vivo. Moreover, the expressions of epithelial-to-mesenchymal transition (EMT)-associated proteins were detected by qRT-PCR and Western blotting in CRC cells. Finally, Western blotting, qRT-PCR, luciferase reporter assays, and immunofluorescence assays were used to explore the molecular mechanisms of TRIM29 in CRC progression. Results Increased TRIM29 expression positively correlated with lymph node metastasis and β-catenin expression in patient CRC tissues. Overexpression of TRIM29 promoted invasion and metastasis of CRC cells in vitro and in vivo by regulating EMT, whereas the knockdown of TRIM29 had the opposite effect. Further mechanistic studies suggest that TRIM29 can activate the Wnt/β-catenin signaling pathway via up-regulating CD44 expression in colorectal cancer. Conclusions TRIM29 induces EMT through activating the Wnt/β-catenin signaling pathway via up-regulating CD44 expression, thus promoting invasion and metastasis of CRC.
Collapse
Affiliation(s)
- Juntao Sun
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tianyu Zhang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mengmeng Cheng
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Liwen Hong
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chen Zhang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mengfan Xie
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Peijun Sun
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Rong Fan
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhengting Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lei Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jie Zhong
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
20
|
Xu M, Hu J, Zhou B, Zhong Y, Lin N, Xu R. TRIM29 prevents hepatocellular carcinoma progression by inhibiting Wnt/β-catenin signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2019; 51:68-77. [PMID: 30566565 DOI: 10.1093/abbs/gmy151] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Indexed: 12/15/2022] Open
Abstract
TRIM29 plays an important role in many neoplasms. In this study, we aimed to elucidate its role in hepatocellular carcinoma (HCC) and explore the corresponding potential mechanism. The expression level of TRIM29 in HCC samples and hepatoma cell lines was detected. We found that TRIM29 was down-regulated in clinical HCC samples and cultured hepatoma cell lines by western blot analysis and quantitative polymerase chain reaction. In addition, we demonstrated that higher TRIM29 expression was associated with higher differentiation grade of HCC. To explore the effect of TRIM29 on hepatoma cells and its possible mechanisms, TRIM29-knockdown and overexpression cell models were constructed. The results showed that the depletion of TRIM29 promoted liver cancer cell proliferation, clone formation, migration and invasion in vitro probably through the Wnt/β-catenin signaling pathway. This study revealed the inhibitory roles of TRIM29 in HCC and the possible mechanisms.
Collapse
Affiliation(s)
- Mingxing Xu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jingxiong Hu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Boxuan Zhou
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuesi Zhong
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Nan Lin
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ruiyun Xu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
21
|
Jin Z, Li H, Hong X, Ying G, Lu X, Zhuang L, Wu S. TRIM14 promotes colorectal cancer cell migration and invasion through the SPHK1/STAT3 pathway. Cancer Cell Int 2018; 18:202. [PMID: 30555277 PMCID: PMC6288942 DOI: 10.1186/s12935-018-0701-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/06/2018] [Indexed: 12/14/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most lethal malignancies. Tripartite Motif Containing 14 (TRIM14) is a member of TRIM family proteins, which are involved in the pathogenesis of various cancers. This study aimed to investigate TRIM14 expression in CRC tissues, and its effects on the migration and invasion of CRC cell lines. Methods TRIM14 mRNA expression was detected by real-time PCR analysis. Cell migration and invasion were measured by Transwell assays. Protein expression was assessed by western blot analysis. Results The expression of TRIM14 was significantly higher in CRC tissues than in matched non-cancerous tissues. TRIM14 knockdown by specific short hairpin RNA (shRNA) attenuated CRC cell migration and invasion, whereas TRIM14 overexpression caused reverse effect. Moreover, TRIM14 positively regulated the protein levels of sphingosine kinase 1 (SPHK1) and phosphorylated STAT3 (p-STAT3), as well as the mRNA and protein expression of matrix metalloproteinase 2, MMP9 and vascular endothelial growth factor, which are transcriptional targets of the STAT3 signaling pathway. Importantly, the blockage of the SPHK1/STAT3 signaling pathway by SKI-II or AG490 could reverse the TRIM14-promoted CRC cell migration and invasion. Conclusions Our results reveal a critical role for TRIM14 in promoting migration and invasion of CRC cells, and suggest TRIM14 may serve as a potential molecular target to prevent CRC metastasis. Electronic supplementary material The online version of this article (10.1186/s12935-018-0701-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhonghai Jin
- Department of Gastroenterology, Yiwu Hospital, Wenzhou Medical University, 699 Jiangdong Middle Road, Yiwu, 322000 China
| | - Hongguang Li
- Department of Gastroenterology, Yiwu Hospital, Wenzhou Medical University, 699 Jiangdong Middle Road, Yiwu, 322000 China
| | - Xiaofei Hong
- Department of Gastroenterology, Yiwu Hospital, Wenzhou Medical University, 699 Jiangdong Middle Road, Yiwu, 322000 China
| | - Guangrong Ying
- Department of Gastroenterology, Yiwu Hospital, Wenzhou Medical University, 699 Jiangdong Middle Road, Yiwu, 322000 China
| | - Xiaofeng Lu
- Department of Gastroenterology, Yiwu Hospital, Wenzhou Medical University, 699 Jiangdong Middle Road, Yiwu, 322000 China
| | - Lilei Zhuang
- Department of Gastroenterology, Yiwu Hospital, Wenzhou Medical University, 699 Jiangdong Middle Road, Yiwu, 322000 China
| | - Shenbao Wu
- Department of Gastroenterology, Yiwu Hospital, Wenzhou Medical University, 699 Jiangdong Middle Road, Yiwu, 322000 China
| |
Collapse
|
22
|
Yanagi T, Watanabe M, Hata H, Kitamura S, Imafuku K, Yanagi H, Homma A, Wang L, Takahashi H, Shimizu H, Hatakeyama S. Loss of TRIM29 Alters Keratin Distribution to Promote Cell Invasion in Squamous Cell Carcinoma. Cancer Res 2018; 78:6795-6806. [PMID: 30389700 DOI: 10.1158/0008-5472.can-18-1495] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/28/2018] [Accepted: 10/10/2018] [Indexed: 11/16/2022]
Abstract
: TRIM29 (tripartite motif-containing protein 29) is a TRIM family protein that has been implicated in breast, colorectal, and pancreatic cancers. However, its role in stratified squamous epithelial cells and tumors has not been elucidated. Here, we investigate the expression of TRIM29 in cutaneous head and neck squamous cell carcinomas (SCC) and its functions in the tumorigenesis of such cancers. TRIM29 expression was lower in malignant SCC lesions than in adjacent normal epithelial tissue or benign tumors. Lower expression of TRIM29 was associated with higher SCC invasiveness. Primary tumors of cutaneous SCC showed aberrant hypermethylation of TRIM29. Depletion of TRIM29 increased cancer cell migration and invasion; conversely, overexpression of TRIM29 suppressed these. Comprehensive proteomics and immunoprecipitation analyses identified keratins and keratin-interacting protein FAM83H as TRIM29 interactors. Knockdown of TRIM29 led to ectopic keratin localization of keratinocytes. In primary tumors, lower TRIM29 expression correlated with the altered expression of keratins. Our findings reveal an unexpected role for TRIM29 in regulating the distribution of keratins, as well as in the migration and invasion of SCC. They also suggest that the TRIM29-keratin axis could serve as a diagnostic and prognostic marker in stratified epithelial tumors and may provide a target for SCC therapeutics. SIGNIFICANCE: These findings identify TRIM29 as a novel diagnostic and prognostic marker in stratified epithelial tissues.
Collapse
Affiliation(s)
- Teruki Yanagi
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Masashi Watanabe
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Hiroo Hata
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shinya Kitamura
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Keisuke Imafuku
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroko Yanagi
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Akihiro Homma
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Lei Wang
- Department of Cancer Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Hokkaido, Japan
| | - Hidehisa Takahashi
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Japan
| | - Hiroshi Shimizu
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan.
| |
Collapse
|
23
|
Li F, Liang J, Bai L. MicroRNA-449a functions as a tumor suppressor in pancreatic cancer by the epigenetic regulation of ATDC expression. Biomed Pharmacother 2018; 103:782-789. [DOI: 10.1016/j.biopha.2018.04.101] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 02/06/2023] Open
|
24
|
Li YJ, Zhang GP, Zhao F, Li RQ, Liu SJ, Zhao ZR, Wang X. Target therapy of TRIM-14 inhibits osteosarcoma aggressiveness through the nuclear factor-κB signaling pathway. Exp Ther Med 2017; 15:2365-2373. [PMID: 29467844 PMCID: PMC5792772 DOI: 10.3892/etm.2017.5679] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 05/05/2017] [Indexed: 12/15/2022] Open
Abstract
Osteosarcoma is the most common cause of cancer-associated mortality and the prognosis is yet to be fully elucidated due to the paucity of effective therapeutic targets that significantly influence the quality of life and mean survival rates of patients with osteosarcoma. Studies have showed that tripartite motif-containing (TRIM)-14 is a member of the TRIM protein family that has a vital role in tumor progression and metastasis and promotes angiogenesis, invasion and apoptotic resistance of bone cancer. In this study, a chimeric antibody targeting TRIM-14 (Chanti-TRIM) was constructed and the molecular mechanism of target therapy for TRIM-14 was investigated in osteosarcoma cells and xenograft mice. The growth, migration and invasion properties of U-2OS cells were analyzed following incubation with 10–160 mg/ml Chanti-TRIM. Apoptosis of U-2OS cells was detected after Chanti-TRIM treatment. Matrix metalloproteinase (MMP)-9-mediated nuclear factor-κB (NF-κB) signal pathway was analyzed in U-2OS cells treated with Chanti-TRIM. The inhibitory efficacy of Chanti-TRIM was studied in U-2OS-bearing xenograft mice. Our results demonstrated that neutralizing TRIM-14 expression markedly inhibited the growth, migration and invasion of osteosarcoma cells, in vitro and in vivo. We found that TRIM-14 depletion decreased cell viability and induced cells apoptosis in vitro. In addition, we identified Chanti-TRIM inhibited growth and promoted apoptosis induced by cisplatin through MMP-9-mediated NF-κB signal pathway. Furthermore, we observed that Chanti-TRIM treatment inhibited osteosarcoma growth in vivo. Histological analysis indicated that apoptotic bodies were increased and NF-κB nuclear translocation factors, including Ikkβ, p65 and IkBα, were decreased in tumors treated by Chanti-TRIM. In conclusion, these results showed that Chanti-TRIM markedly inhibited the progression of osteosarcoma, suggesting Chanti-TRIM may be a potential anti-cancer agent that functions via the activation of the NF-κB pathway for osteosarcoma.
Collapse
Affiliation(s)
- Yi-Jiong Li
- Department of Orthopaedics, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Guo-Ping Zhang
- Department of Orthopaedics, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Feng Zhao
- Department of Orthopaedics, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Rui-Qi Li
- Department of Orthopaedics, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Shao-Jun Liu
- Department of Orthopaedics, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Zeng-Ren Zhao
- Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Xin Wang
- Department of Pathology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| |
Collapse
|
25
|
Liang C, Dong H, Miao C, Zhu J, Wang J, Li P, Li J, Wang Z. TRIM29 as a prognostic predictor for multiple human malignant neoplasms: a systematic review and meta-analysis. Oncotarget 2017; 9:12323-12332. [PMID: 29552313 PMCID: PMC5844749 DOI: 10.18632/oncotarget.23617] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/28/2017] [Indexed: 12/20/2022] Open
Abstract
Recent studies have shown that tripartite motif-containing protein 29 (TRIM29) had prognostic values in several cancers. However, different studies have been inconsistent. We conducted a meta-analysis to elucidate the precise predictive value of TRIM29 in various human malignant disease. Eleven eligible studies with 2046 patients were ultimately enrolled in this meta-analysis. Heterogeneity between studies was assessed using I2 statistics. Pooled Hazard ratios (HRs) with 95% confidence intervals (CIs) for patient survival and disease recurrence were calculated to investigate the correlation between TRIM29 expression and cancer prognosis. The results identified an important link between upregulated TRIM29 expression and poor prognosis in patients with multiple human malignant neoplasms in terms of recurrence-free survival (RFS)/disease-free survival (DFS) (HR = 1.66, 95% CI 1.36–2.04) but favorable progression-free survival (PFS)/metastasis-free survival (MFS) (HR = 0.37, 95% CI 0.16–0.85). We found that high TRIM29 expression predicted no significant impact on overall survival (OS) (HR = 1.32, 95% CI 0.90–1.93). Subgroup analyses showed that high TRIM29 expression predicted poor OS in Asians (HR = 2.21, 95% CI 1.78–2.74) but favorable OS in Caucasian (HR = 0.47, 95% CI 0.25–0.89). TRIM29 might play an essential role in carcinogenesis of multiple human malignant neoplasms and could serve as a biomarker for the prediction of patients’ prognosis.
Collapse
Affiliation(s)
- Chao Liang
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huiyu Dong
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chenkui Miao
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jundong Zhu
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Wang
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pu Li
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Li
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Lu Y, Zabihula B, Yibulayin W, Liu X. Methylation and expression of RECK, P53 and RUNX genes in patients with esophageal cancer. Oncol Lett 2017; 14:5293-5298. [PMID: 29113164 PMCID: PMC5652247 DOI: 10.3892/ol.2017.6863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/17/2017] [Indexed: 01/22/2023] Open
Abstract
The methylation and expression of RECK, P53 and RUNX genes in patients with esophageal cancer was investigated. In order to achieve this aim, a sample of 58 patients with esophageal cancer, treated between February 2013 and February 2014, were considered as the observation group. Additionally, a sample of 42 healthy individuals was selected as the control group. Methylation status of RECK, P53 and RUNX genes from the observation and control groups were detected by MSP. Reverse transcriptase-quantitative PCR (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), western blot and immunohistochemistry were used to detect the mRNA and protein levels of RECK, P53 and RUNX in both the observation and the control groups. Results showed that the methylation rates of RECK, P53 and RUNX genes in patients with esophageal cancer were 72.4% (42/58), 1.7% (1/58) and 3.4% (2/58), respectively, which were significantly different from those in the control group [7.1% (3/42), 90.5 (38/42), and 83.3% (35/42), respectively]. The mRNA expression level of RECK is only equal to the 2.3% of that in the control group, while the mRNA expression levels of P53 and RUNX were 65.1 and 47.2 times higher than those in the control group, respectively (p<0.05). ELISA showed that RECK protein level in the observation group (0.12±0.05) µg/l, was significantly lower than the control group (3.46±0.08) µg/l (p<0.05), while, P53 and RUNX protein levels in observation group were significantly higher than that in healthy people (6.43±0.12 µg/l vs. 0.64±0.06 µg/l and 4.32±0.14 µg/l vs. 0.53±0.09 µg/l, respectively), and the results were similar to western blot. The data of immunohistochemistry showed that the proportion of RECK protein positive cells in the observation group was significantly lower than that in the control group (9.5 vs. 82.3%, P<0.05), while the proportions of P53 and RUNX protein positive cell in the observation group were significantly higher than those in the control group (78.4 vs. 11.1% and 87.3 vs. 9.06%), respectively, (P<0.05). This study concluded that, in patients with esophageal cancer, the methylation of RECK gene is increased and the expression of RECK gene is inhibited, while methylation of RUNX gene decreased and their expression was increased. This change in methylation of these genes may promote the occurrence and development of esophageal cancer.
Collapse
Affiliation(s)
- Yanrong Lu
- Department of Thoracico-Abdominal Radiotherapy, Tumor Hospital Affiliated to Xinjiang Medical University, Ürümqi, Xinjiang 830011, P.R. China
| | - Baerxiaguli Zabihula
- Department of Thoracico-Abdominal Radiotherapy, Tumor Hospital Affiliated to Xinjiang Medical University, Ürümqi, Xinjiang 830011, P.R. China
| | - Waresijiang Yibulayin
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Xinjiang Medical University, Ürümqi, Xinjiang 830011, P.R. China
| | - Xiang Liu
- Department of Medical Administration Management, Tumor Hospital Affiliated to Xinjiang Medical University, Ürümqi, Xinjiang 830011, P.R. China
| |
Collapse
|
27
|
Zeng SX, Cai QC, Guo CH, Zhi LQ, Dai X, Zhang DF, Ma W. High expression of TRIM29 (ATDC) contributes to poor prognosis and tumor metastasis by inducing epithelial‑mesenchymal transition in osteosarcoma. Oncol Rep 2017; 38:1645-1654. [PMID: 28731167 DOI: 10.3892/or.2017.5842] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 07/10/2017] [Indexed: 11/05/2022] Open
Abstract
The association of TRIM29 overexpression with cancer progression and poor clinical prognosis has been reported in the context of several types of cancers. In the present study, we investigated the prognostic relevance of TRIM29 and its involvement in the progression of human osteosarcoma. To the best of our knowledge, this is the first study to demonstrate a major role of TRIM29 in osteosarcoma. Our results showed that the expression of TRIM29 in osteosarcoma tissues was much higher than that in normal bone tissues. Furthermore, TRIM29 expression was significantly correlated with tumor size, recurrence, metastasis and overall survival time. High expression of TRIM29 and presence of metastasis were independent predictors of poor prognosis in these patients. Both protein and mRNA expression of TRIM29 in osteosarcoma cell lines were significantly higher than those in osteoblast cell line, hFOB1.19. Moreover, the results indicated that TRIM29 promoted migration and invasive growth of osteosarcoma cells by inducing epithelial-mesenchymal transition. Therefore, ectopic expression of TRIM29 potentially contributes to metastasis and poor prognosis in patients with osteosarcoma. In summary, TRIM29 is a potential prognostic biomarker and a therapeutic target for patients with osteosarcoma.
Collapse
Affiliation(s)
- Si-Xiang Zeng
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Qing-Chun Cai
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Chi-Hua Guo
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Li-Qiang Zhi
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Xing Dai
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Dang-Feng Zhang
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wei Ma
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
28
|
Yu GH, Li AM, Li X, Yang Z, Peng H. Bispecific antibody suppresses osteosarcoma aggressiveness through regulation of NF-κB signaling pathway. Tumour Biol 2017. [PMID: 28631557 DOI: 10.1177/1010428317705572] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Osteosarcoma is one of the most lethal malignancies, and the prognosis remains dismal due to the paucity of effective therapeutic targets. Bmi-1 and TRIM-14 are associated with the initiation and progression of osteosarcoma, which could promote angiogenesis, invasion, and apoptotic resistance in bone cancer tissue. In this study, we constructed a bispecific antibody of BsAbBmi/TRIM targeting Bmi-1 and TRIM-14 and investigated the therapeutic value in bone carcinoma cells and xenograft mice. Our results showed that Bmi-1 and TRIM-14 expression levels were markedly upregulated correlated with nuclear factor-κB nuclear translocation in bone cancer cells and clinical carcinoma tissues. Results have demonstrated that overexpression of Bmi-1 and TRIM-14 promoted growth, proliferation, aggressiveness, and apoptosis resistance of osteosarcoma cells. BsAbBmi/TRIM administration significantly inhibited nuclear factor-κB expression derived by matrix metalloproteinase-9 promoter. BsAbBmi/TRIM administration inhibited growth of osteosarcoma cells and downregulated Bmi-1 and TRIM-14 expression levels. Data also demonstrated that migration and invasion of osteosarcoma cells were also inhibited by BsAbBmi/TRIM. In addition, results illustrated that BsAbBmi/TRIM inhibited tumor growth and tumorigenicity by blockaded sensor expression in nuclear factor-κB signal pathway. Furthermore, in vivo study showed that BsAbBmi/TRIM treatment markedly inhibited the tumorigenicity and growth of osteosarcoma cells compared to either AbBmi-1 or AbTRIM-14 treatment. Notably, survival of xenograft mice was prolonged by BsAbBmi/TRIM treatment compared to either AbBmi-1 or AbTRIM-14 treatment. In conclusion, these results provided new evidence that BsAbBmi/TRIM inhibited the progression of osteosarcoma, which suggest that BsAbBmi/TRIM may be a novel anti-cancer agent for osteosarcoma therapy.
Collapse
Affiliation(s)
- Gui-Hua Yu
- 1 Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ai-Min Li
- 2 Basic Medical College, Wuhan University, Wuhan, Hubei, China
| | - Xiang Li
- 2 Basic Medical College, Wuhan University, Wuhan, Hubei, China
| | - Zhong Yang
- 2 Basic Medical College, Wuhan University, Wuhan, Hubei, China
| | - Hao Peng
- 1 Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
29
|
Su X, Wang J, Chen W, Li Z, Fu X, Yang A. Overexpression of TRIM14 promotes tongue squamous cell carcinoma aggressiveness by activating the NF-κB signaling pathway. Oncotarget 2017; 7:9939-50. [PMID: 26799420 PMCID: PMC4891094 DOI: 10.18632/oncotarget.6941] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 12/26/2015] [Indexed: 12/11/2022] Open
Abstract
Tongue squamous cells carcinoma (TSCC) is one of the most lethal malignancies of oral cancers and its prognosis remains dismal due to the paucity of effective therapeutic targets. Herein, we showed that Tripartite motif containing 14(TRIM14) is markedly up-regulated in TSCC cell lines and clinical tissues. Immunohistochemical (IHC) analysis of 116 clinical TSCC specimens revealed that TRIM14 expression was significantly correlated with the TNM classification (T: P = 0.01; N: P < 0.001; M: P < 0.001) in patients with TSCC. Multivariate analysis indicated that TRIM14 expression might be an independent prognostic indicator for the survival of patients with TSCC. Ectopic expression of TRIM14 in TSCC cells promoted proliferation, angiogenesis, and increased resistance to cisplatin-induced apoptosis of TSCC cells in vitro. Furthermore, TRIM14 overexpressing significantly promoted the tumorigenicity of TSCC cells in vivo whereas silencing endogenous TRIM14 caused an opposite outcome. Moreover, we demonstrated that TRIM14 enhanced TSCC aggressiveness by activating NF-κB signaling. Together, our results provide new evidence that TRIM14 overexpression promotes the progression of TSCC and might represent a novel therapeutic target for its treatment.
Collapse
Affiliation(s)
- Xuan Su
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Jianning Wang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, P.R. China
| | - Weichao Chen
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Zhaoqu Li
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Xiaoyan Fu
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Ankui Yang
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| |
Collapse
|
30
|
Xu J, Li Z, Su Q, Zhao J, Ma J. TRIM29 promotes progression of thyroid carcinoma via activating P13K/AKT signaling pathway. Oncol Rep 2017; 37:1555-1564. [DOI: 10.3892/or.2017.5364] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/28/2016] [Indexed: 11/05/2022] Open
|
31
|
Xu W, Xu B, Yao Y, Yu X, Cao H, Zhang J, Liu J, Sheng H. RNA interference against TRIM29 inhibits migration and invasion of colorectal cancer cells. Oncol Rep 2016; 36:1411-8. [PMID: 27430345 DOI: 10.3892/or.2016.4941] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 04/15/2016] [Indexed: 11/05/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide. Tripartite motif-containing 29 (TRIM29) is a member of TRIM proteins family, which plays diverse physiological and pathological roles in humans. Recent studies found that TRIM29 expressed highly in CRC and promoted cell growth in vitro. However, its function in the metastasis of CRC has not been studied. In the present study, we confirmed the previous report that TRIM29 was upregulated in CRC tissues and high levels of TRIM29 expression were associated with poor overall survival of patients. Moreover, TRIM29 knockdown significantly reduced cancer cell proliferation via notably inducing cell cycle arrest and cell apoptosis. Silencing of TRIM29 significantly inhibited the migration and invasion ability of CRC cells. The protein levels of apoptosis‑, migration‑ and invasion‑related proteins were also changed after TRIM29 knockdown. Furthermore, phosphorylation levels of JAK2 and STAT3 were clearly reduced in TRIM29 knockdown cells, indicating a possible mechanism underlying its effects on colorectal carcinogenesis. Collectively, TRIM29 may exert oncogenic effects in CRC cells via regulating JAK2/STAT3 signaling.
Collapse
Affiliation(s)
- Weihong Xu
- Department of Clinical Laboratory of Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Bin Xu
- Department of Clinical Laboratory of Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Yiting Yao
- Department of Clinical Laboratory of Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Xiaoling Yu
- Department of Clinical Laboratory of Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Hua Cao
- Department of Clinical Laboratory of Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Jun Zhang
- Institute of Digestive Disease of Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Jie Liu
- Institute of Digestive Disease of Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Huiming Sheng
- Department of Clinical Laboratory of Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
32
|
Lim E, Wiggans MG, Shahtahmassebi G, Aroori S, Bowles MJ, Briggs CD, Stell DA. Rebound growth of hepatic colorectal metastases after neo-adjuvant chemotherapy: effect on survival after resection. HPB (Oxford) 2016; 18:586-92. [PMID: 27346139 PMCID: PMC4925803 DOI: 10.1016/j.hpb.2016.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 04/14/2016] [Accepted: 04/21/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND A period of recovery is commonly allowed between completion of chemotherapy for colorectal liver metastases (CRLM) and resection, during which tumour progression may occur. The study-aim is to assess the growth of CRLM in this interval and association with outcome. METHOD Data on 146 patients were analysed. Change in tumour size was assessed by comparing size determined by imaging performed on completion of chemotherapy with that determined by examination of the resected specimen, categorised by RECIST criteria. RESULTS In the interval before surgery sixteen patients (11%) fulfilled criteria for partial response (PR), 48 (33%) had stable disease (SD) and 82 (56%) had progressive disease (PD). Among patients with PD following chemotherapy the median disease-free survival of patients who initially responded (26 months) was longer than in those who initially had stable disease (7 months) (P = 0.002). No association was noted between rate of tumour growth after completion of chemotherapy and disease-free survival. CONCLUSION Change in tumour size after completion of chemotherapy is variable and can be rapid, especially in patients who initially respond to treatment. However, disease-free survival is determined by tumour behaviour during treatment and not by change in size after completion of chemotherapy.
Collapse
Affiliation(s)
- Elizabeth Lim
- Department of Oncology, Plymouth Hospitals NHS Trust, Plymouth, PL6 8DH, UK.
| | - Matthew G Wiggans
- Department of HPB Surgery, Plymouth Hospitals NHS Trust, Plymouth, PL6 8DH, UK; Peninsula Schools of Medicine and Dentistry, Plymouth University, Plymouth, Devon, PL6 8BU, UK.
| | - Golnaz Shahtahmassebi
- School of Science and Technology, Nottingham Trent University, Nottingham, NG1 4BU, UK.
| | - Somaiah Aroori
- Department of HPB Surgery, Plymouth Hospitals NHS Trust, Plymouth, PL6 8DH, UK.
| | - Matthew J Bowles
- Department of HPB Surgery, Plymouth Hospitals NHS Trust, Plymouth, PL6 8DH, UK.
| | | | - David A Stell
- Department of HPB Surgery, Plymouth Hospitals NHS Trust, Plymouth, PL6 8DH, UK; Peninsula Schools of Medicine and Dentistry, Plymouth University, Plymouth, Devon, PL6 8BU, UK.
| |
Collapse
|
33
|
Tan ST, Liu SY, Wu B. TRIM29 Overexpression Promotes Proliferation and Survival of Bladder Cancer Cells through NF-κB Signaling. Cancer Res Treat 2016; 48:1302-1312. [PMID: 26987391 PMCID: PMC5080803 DOI: 10.4143/crt.2015.381] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/29/2016] [Indexed: 12/22/2022] Open
Abstract
Purpose TRIM29 overexpression has been reported in several human malignancies and showed correlation with cancer cell malignancy. The aim of the current study is to examine its clinical significance and biological roles in human bladder cancer tissues and cell lines. Materials and Methods A total of 102 cases of bladder cancer tissues were examined for TRIM29 expression by immunohistochemistry. siRNA and plasmid transfection were performed in 5637 and BIU-87 cell lines. Cell Counting Kit-8, flow cytometry, western blot, and real-time polymerase chain reaction were performed to examine its biological roles and mechanism in bladder cancer cells. Results We found that TRIM29 overexpression showed correlation with invading depth (p=0.0087). Knockdown of TRIM29 expression in bladder cancer cell line 5637 inhibited cell growth rate and cell cycle transition while its overexpression in BIU-87 cells accelerated cell proliferation and cell cycle progression. TRIM29 overexpression also inhibited cell apoptosis induced by cisplatin. In addition, we demonstrated that TRIM29 depletion decreased while its overexpression led to upregulated expression of cyclin D1, cyclin E, and Bcl-2. We also showed that TRIM29 knockdown inhibited protein kinase C (PKC) and nuclear factor κB (NF-κB) signaling while its overexpression stimulated the PKC and NF-κB pathways. BAY 11-7082 (NF-κB inhibitor) partly attenuated the effect of TRIM29 on expression of cyclin and Bcl-2. Treatment with PKC inhibitor staurosporine resulted in ameliorated TRIM29 induced activation of NF-κB. Conclusion The current study demonstrated that TRIM29 upregulates cyclin and Bcl family proteins level to facilitate malignant cell growth and inhibit drug-induced apoptosis in bladder cancer, possibly through PKC–NF-κB signaling pathways.
Collapse
Affiliation(s)
- Shu-Tao Tan
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Sheng-Ye Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bin Wu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
34
|
Yang H, Palmbos PL, Wang L, Kim EH, Ney GM, Liu C, Prasad J, Misek DE, Yu X, Ljungman M, Simeone DM. ATDC (Ataxia Telangiectasia Group D Complementing) Promotes Radioresistance through an Interaction with the RNF8 Ubiquitin Ligase. J Biol Chem 2015; 290:27146-27157. [PMID: 26381412 DOI: 10.1074/jbc.m115.665489] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Indexed: 11/06/2022] Open
Abstract
Induction of DNA damage by ionizing radiation (IR) and/or cytotoxic chemotherapy is an essential component of cancer therapy. The ataxia telangiectasia group D complementing gene (ATDC, also called TRIM29) is highly expressed in many malignancies. It participates in the DNA damage response downstream of ataxia telangiectasia-mutated (ATM) and p38/MK2 and promotes cell survival after IR. To elucidate the downstream mechanisms of ATDC-induced IR protection, we performed a mass spectrometry screen to identify ATDC binding partners. We identified a direct physical interaction between ATDC and the E3 ubiquitin ligase and DNA damage response protein, RNF8, which is required for ATDC-induced radioresistance. This interaction was refined to the C-terminal portion (amino acids 348-588) of ATDC and the RING domain of RNF8 and was disrupted by mutation of ATDC Ser-550 to alanine. Mutations disrupting this interaction abrogated ATDC-induced radioresistance. The interaction between RNF8 and ATDC, which was increased by IR, also promoted downstream DNA damage responses such as IR-induced γ-H2AX ubiquitination, 53BP1 phosphorylation, and subsequent resolution of the DNA damage foci. These studies define a novel function for ATDC in the RNF8-mediated DNA damage response and implicate RNF8 binding as a key determinant of the radioprotective function of ATDC.
Collapse
Affiliation(s)
- Huibin Yang
- Departments of Surgery, University of Michigan, Ann Arbor, Michigan 48109; Departments of Translational Oncology Program, University of Michigan, Ann Arbor, Michigan 48109
| | - Phillip L Palmbos
- Departments of Translational Oncology Program, University of Michigan, Ann Arbor, Michigan 48109; Departments of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - Lidong Wang
- Departments of Surgery, University of Michigan, Ann Arbor, Michigan 48109; Departments of Translational Oncology Program, University of Michigan, Ann Arbor, Michigan 48109
| | - Evelyn H Kim
- Departments of Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Gina M Ney
- Departments of Translational Oncology Program, University of Michigan, Ann Arbor, Michigan 48109; Departments of Pediatrics, University of Michigan, Ann Arbor, Michigan 48109
| | - Chao Liu
- Departments of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - Jayendra Prasad
- Departments of Translational Oncology Program, University of Michigan, Ann Arbor, Michigan 48109; Departments of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109
| | - David E Misek
- Departments of Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Xiaochun Yu
- Departments of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - Mats Ljungman
- Departments of Translational Oncology Program, University of Michigan, Ann Arbor, Michigan 48109; Departments of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109
| | - Diane M Simeone
- Departments of Surgery, University of Michigan, Ann Arbor, Michigan 48109; Departments of Translational Oncology Program, University of Michigan, Ann Arbor, Michigan 48109; Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109.
| |
Collapse
|
35
|
Liu C, Huang X, Hou S, Hu B, Li H. Silencing of tripartite motif (TRIM) 29 inhibits proliferation and invasion and increases chemosensitivity to cisplatin in human lung squamous cancer NCI-H520 cells. Thorac Cancer 2015; 6:31-7. [PMID: 26273332 PMCID: PMC4448470 DOI: 10.1111/1759-7714.12130] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 04/24/2014] [Indexed: 01/01/2023] Open
Abstract
Background TRIM29 belongs to the tripartite motif (TRIM) protein family. It has been reported to be a tumor suppressor or have oncogenic function in many cancer types. The aim of this study was to investigate whether downregulation of TRIM29 by small interfering ribonucleic acid (siRNA) could inhibit cell proliferation and invasion and increase chemosensitivity to cisplatin in human lung squamous cancer NCI-H520 cells in vitro. Methods We transformed TRIM29 siRNA into NCI-H520 cells. Real time reverse transcriptase polymerase chain reaction and Western blotting assay were employed to determine TRIM29 messenger (m)RNA and protein expressions. MTT assay was used to determine the cell proliferation. Transwell invasion assay was used to determine the cell invasion. An Annexin V-propidium iodide (AnnV/PI) staining apoptosis test was used for detecting apoptosis. Results TRIM29 siRNA could specifically and efficiently suppress TRIM29 expression at both mRNA and protein levels. Silencing of the TRIM29 by siRNA in NCI-H520 cells inhibited cell proliferation and invasion in vitro. TRIM29 knockdown resulted in chemosensitivity enhancement in NCI-H520 cells. Conclusion Downregulation of TRIM29 can lead to potent antitumor activity and chemosensitizing effect in human lung squamous cancer NCI-H520 cells.
Collapse
Affiliation(s)
- Chunxiao Liu
- Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Capital Medical University Beijing, China
| | - Xiaoxi Huang
- Department of Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University Beijing, China
| | - Shengcai Hou
- Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Capital Medical University Beijing, China
| | - Bin Hu
- Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Capital Medical University Beijing, China
| | - Hui Li
- Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Capital Medical University Beijing, China
| |
Collapse
|