1
|
Chemokine/GPCR Signaling-Mediated EMT in Cancer Metastasis. JOURNAL OF ONCOLOGY 2022; 2022:2208176. [PMID: 36268282 PMCID: PMC9578795 DOI: 10.1155/2022/2208176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/08/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022]
Abstract
Metastasis, the chief cause of cancer-related deaths, is associated with epithelial-mesenchymal transition (EMT). In the tumor microenvironment, EMT can be triggered by chemokine/G-protein-coupled receptor (GPCR) signaling, which is closely associated with tumor progression. However, the functional links between chemokine/GPCR signaling-mediated EMT and metastasis remain unclear. Herein, we summarized the mechanisms of chemokine/GPCR signaling-mediated EMT with an insight into facilitating metastasis and clarified the role of chemokine in the local invasion, intravasation, circulation, extravasation, and colonization, respectively. Moreover, several potential pathways that might contribute to EMT based on the latest studies on GPCR signaling were proposed, including signaling mediated by G protein, β-arrestin, intracellular, dimerization activation, and transactivation. However, there is still limited evidence to support the EMT programme functional contribution to metastasis, which keeps a key question still open whether we should target EMT programme of cancer cells. Answers to that question might help develop an anticancer strategy or guide new directions for anticancer metastasis therapy.
Collapse
|
2
|
Jiang H, Ma P, Duan Z, Liu Y, Shen S, Mi Y, Fan D. Ginsenoside Rh4 Suppresses Metastasis of Gastric Cancer via SIX1-Dependent TGF-β/Smad2/3 Signaling Pathway. Nutrients 2022; 14:nu14081564. [PMID: 35458126 PMCID: PMC9032069 DOI: 10.3390/nu14081564] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 12/21/2022] Open
Abstract
Gastric cancer (GC) is the leading causes of cancer-related death worldwide. Surgery remains the cornerstone of gastric cancer treatment, and new strategies with adjuvant chemotherapy are currently gaining more and more acceptance. Ginsenoside Rh4 has excellent antitumor activity. Conversely, the mechanisms involved in treatment of GC are not completely understood. In this study, we certified that Rh4 showed strong anti-GC efficiency in vitro and in vivo. MTT and colony formation assays were performed to exhibit that Rh4 significantly inhibited cellular proliferation and colony formation. Results from the wound healing assay, transwell assays, and Western blotting indicated that Rh4 restrained GC cell migration and invasion by reversing epithelial–mesenchymal transition (EMT). Further validation by proteomic screening, co-treatment with disitertide, and SIX1 signal silencing revealed that SIX1, a target of Rh4, induced EMT by activating the TGF-β/Smad2/3 signaling pathway. In summary, our discoveries demonstrated the essential basis of the anti-GC metastatic effects of Rh4 via suppressing the SIX1–TGF-β/Smad2/3 signaling axis, which delivers a new idea for the clinical treatment of GC.
Collapse
Affiliation(s)
- Hongbo Jiang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials, Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi’an 710069, China; (H.J.); (P.M.); (Z.D.); (Y.L.); (S.S.)
- Biotech and Biomed Research Institute, Northwest University, Taibai North Road 229, Xi’an 710069, China
| | - Pei Ma
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials, Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi’an 710069, China; (H.J.); (P.M.); (Z.D.); (Y.L.); (S.S.)
- Biotech and Biomed Research Institute, Northwest University, Taibai North Road 229, Xi’an 710069, China
| | - Zhiguang Duan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials, Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi’an 710069, China; (H.J.); (P.M.); (Z.D.); (Y.L.); (S.S.)
- Biotech and Biomed Research Institute, Northwest University, Taibai North Road 229, Xi’an 710069, China
| | - Yannan Liu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials, Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi’an 710069, China; (H.J.); (P.M.); (Z.D.); (Y.L.); (S.S.)
- Biotech and Biomed Research Institute, Northwest University, Taibai North Road 229, Xi’an 710069, China
| | - Shihong Shen
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials, Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi’an 710069, China; (H.J.); (P.M.); (Z.D.); (Y.L.); (S.S.)
- Biotech and Biomed Research Institute, Northwest University, Taibai North Road 229, Xi’an 710069, China
| | - Yu Mi
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials, Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi’an 710069, China; (H.J.); (P.M.); (Z.D.); (Y.L.); (S.S.)
- Biotech and Biomed Research Institute, Northwest University, Taibai North Road 229, Xi’an 710069, China
- Correspondence: (Y.M.); (D.F.); Tel.: +86-29-88305118 (Y.M. & D.F.)
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials, Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi’an 710069, China; (H.J.); (P.M.); (Z.D.); (Y.L.); (S.S.)
- Biotech and Biomed Research Institute, Northwest University, Taibai North Road 229, Xi’an 710069, China
- Correspondence: (Y.M.); (D.F.); Tel.: +86-29-88305118 (Y.M. & D.F.)
| |
Collapse
|
3
|
C-C Chemokine Receptor 7 in Cancer. Cells 2022; 11:cells11040656. [PMID: 35203305 PMCID: PMC8870371 DOI: 10.3390/cells11040656] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
C-C chemokine receptor 7 (CCR7) was one of the first two chemokine receptors that were found to be upregulated in breast cancers. Chemokine receptors promote chemotaxis of cells and tissue organization. Since under homeostatic conditions, CCR7 promotes migration of immune cells to lymph nodes, questions immediately arose regarding the ability of CCR7 to direct migration of cancer cells to lymph nodes. The literature since 2000 was examined to determine to what extent the expression of CCR7 in malignant tumors promoted migration to the lymph nodes. The data indicated that in different cancers, CCR7 plays distinct roles in directing cells to lymph nodes, the skin or to the central nervous system. In certain tumors, it may even serve a protective role. Future studies should focus on defining mechanisms that differentially regulate the unfavorable or beneficial role that CCR7 plays in cancer pathophysiology, to be able to improve outcomes in patients who harbor CCR7-positive cancers.
Collapse
|
4
|
Ren BX, Li Y, Li HM, Lu T, Wu ZQ, Fu R. The Antibiotic Drug Trimethoprim Suppresses Tumor Growth and Metastasis via Targeting Snail. Br J Pharmacol 2021; 179:2659-2677. [PMID: 34855201 DOI: 10.1111/bph.15763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE The zinc finger transcription factor Snail is aberrantly activated in many human cancers and strongly associated with poor prognosis. As a transcription factor, Snail has been traditionally considered an "undruggable" target. Here, we identified a potent small molecule inhibitor of Snail, namely trimethoprim, and investigated its potential antitumor effects and the underlying mechanisms. EXPERIMENTAL APPROACH The inhibitory action of trimethoprim on Snail protein and the related molecular mechanisms were revealed by molecular docking, biolayer interferometry, immunoblotting, immunoprecipitation, qRT-PCR, pull-down, and cycloheximide pulse-chase assays. The anti-proliferative and anti-metastatic effects of trimethoprim via targeting Snail were tested in multiple cell-based assays and animal models. KEY RESULTS This study identified trimethoprim, an antimicrobial drug, as a potent anti-tumor agent via targeting Snail. Molecular modeling analysis predicted that trimethoprim directly binds to the arginine-174 pocket of Snail protein. We further discovered that trimethoprim strongly interrupts the interaction of Snail with CREB-binding protein (CBP)/p300, which consequently suppresses Snail acetylation and promotes Snail degradation through ubiquitin-proteasome pathway. Furthermore, trimethoprim sufficiently inhibited the proliferation, epithelial-mesenchymal transition (EMT), and migration of cancer cells in vitro via specifically targeting Snail. More importantly, trimethoprim effectively reduced Snail-driven tumor growth and metastasis to vital organs such as lung, bone, and liver. CONCLUSIONS AND IMPLICATIONS These findings indicate, for the first time, that trimethoprim suppresses tumor growth and metastasis via targeting Snail. This study provides insights for a better understanding of the anticancer effects of trimethoprim and offers a potential anti-cancer therapeutic agent for clinical treatment.
Collapse
Affiliation(s)
- Bo-Xue Ren
- State Key Laboratory of Natural Medicines, School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| | - Yang Li
- State Key Laboratory of Natural Medicines, School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| | - Hong-Mei Li
- State Key Laboratory of Natural Medicines, Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, China
| | - Tao Lu
- State Key Laboratory of Natural Medicines, Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, China
| | - Zhao-Qiu Wu
- State Key Laboratory of Natural Medicines, School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| | - Rong Fu
- State Key Laboratory of Natural Medicines, School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
5
|
Salem A, Alotaibi M, Mroueh R, Basheer HA, Afarinkia K. CCR7 as a therapeutic target in Cancer. Biochim Biophys Acta Rev Cancer 2020; 1875:188499. [PMID: 33385485 DOI: 10.1016/j.bbcan.2020.188499] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/24/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023]
Abstract
The CCR7 chemokine axis is comprised of chemokine ligand 21 (CCL21) and chemokine ligand 19 (CCL19) acting on chemokine receptor 7 (CCR7). This axis plays two important but apparently opposing roles in cancer. On the one hand, this axis is significantly engaged in the trafficking of a number of effecter cells involved in mounting an immune response to a growing tumour. This suggests therapeutic strategies which involve potentiation of this axis can be used to combat the spread of cancer. On the other hand, the CCR7 axis plays a significant role in controlling the migration of tumour cells towards the lymphatic system and metastasis and can thus contribute to the expansion of cancer. This implies that therapeutic strategies which involve decreasing signaling through the CCR7 axis would have a beneficial effect in preventing dissemination of cancer. This dichotomy has partly been the reason why this axis has not yet been exploited, as other chemokine axes have, as a therapeutic target in cancer. Recent report of a crystal structure for CCR7 provides opportunities to exploit this axis in developing new cancer therapies. However, it remains unclear which of these two strategies, potentiation or antagonism of the CCR7 axis, is more appropriate for cancer therapy. This review brings together the evidence supporting both roles of the CCR7 axis in cancer and examines the future potential of each of the two different therapeutic approaches involving the CCR7 axis in cancer.
Collapse
Affiliation(s)
- Anwar Salem
- Institute of Cancer Therapeutics, University of Bradford; Bradford BD7 1DP, United Kingdom
| | - Mashael Alotaibi
- Institute of Cancer Therapeutics, University of Bradford; Bradford BD7 1DP, United Kingdom
| | - Rima Mroueh
- Institute of Cancer Therapeutics, University of Bradford; Bradford BD7 1DP, United Kingdom
| | - Haneen A Basheer
- Faculty of Pharmacy, Zarqa University, PO Box 132222, Zarqa 13132, Jordan
| | - Kamyar Afarinkia
- Institute of Cancer Therapeutics, University of Bradford; Bradford BD7 1DP, United Kingdom.
| |
Collapse
|
6
|
Sun J, Wang J, Lu W, Xie L, Lv J, Li H, Yang S. MiR-325-3p inhibits renal inflammation and fibrosis by targeting CCL19 in diabetic nephropathy. Clin Exp Pharmacol Physiol 2020; 47:1850-1860. [PMID: 32603491 DOI: 10.1111/1440-1681.13371] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/18/2022]
Abstract
Diabetic nephropathy (DN), a common cardiovascular disease, has been a global health threat. MicroRNAs (miRNAs) have been proposed to frequently participate in the occurrence and development of DN, however, the role of miR-325-3p in DN remains uncharacterized. Our research aimed to explore the function and mechanism of miR-325-3p in DN. Bioinformatics analysis (Targetscan, http://www.targetscan.org) and a wide range of experiments including RT-qPCR, CCK-8 assay, western blot, luciferase reporter assay, RNA immunoprecipitation (RIP) assays, urine protein and blood glucose assays, histology analysis and morphometric analysis were used to explore the function and mechanism of miR-325-3p and C-C motif chemokine ligand 19 (CCL19). CCL19 could facilitate the progression of DN by inhibiting cell viability and promoting inflammation and fibrosis in HK-2 and HMC cells. In addition, CCL19 was confirmed to be targeted and negatively regulated by miR-325-3p. Rescue assays validated that the impacts of miR-325-3p mimics on the viability, inflammation and fibrosis of HK-2 and HMC cells were recovered by CCL19 overexpression. To sum up, miR-325-3p inhibits renal inflammation and fibrosis by targeting CCL19 in a DN cell model and mice model, implying miR-325-3p as a possible therapeutic target for DN treatment.
Collapse
Affiliation(s)
- Jiping Sun
- Department of Nephrology, Kidney Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jing Wang
- Department of Nephrology, Baoji People's Hospital, Baoji, China
| | - Wanhong Lu
- Department of Nephrology, Kidney Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liyi Xie
- Department of Nephrology, Kidney Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jing Lv
- Department of Nephrology, Kidney Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huixian Li
- Department of Nephrology, Kidney Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shifeng Yang
- Department of Nephrology, Kidney Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
7
|
Hu Z, Yang D, Tang Y, Zhang X, Wei Z, Fu H, Xu J, Zhu Z, Cai Q. Five-long non-coding RNA risk score system for the effective prediction of gastric cancer patient survival. Oncol Lett 2019; 17:4474-4486. [PMID: 30988816 PMCID: PMC6447923 DOI: 10.3892/ol.2019.10124] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022] Open
Abstract
The prognosis for patients with gastric cancer (GC) is usually poor, as the majority of patients have reached the advanced stages of disease at the point of diagnosis. Therefore, revealing the mechanisms of GC is necessary for the identification of key biomarkers and the development of effective targeted therapies. The present study aimed to identify long non-coding RNAs (lncRNAs) prominently expressed in patients with GC. The GC dataset (including 384 GC samples) was downloaded from The Cancer Genome Atlas database as the training set. A number of other GC datasets were obtained from the Gene Expression Omnibus database as validation sets. Following data processing, lncRNAs were annotated, followed by co-expression module analysis to identify stable modules, using the weighted gene co-expression network analysis (WGCNA) package. Prognosis-associated lncRNAs were screened using the ‘survival’ package. Following the selection of the optimal lncRNA combinations using the ‘penalized’ package, risk score systems were constructed and assessed. Consensus differentially-expressed RNAs (DE-RNAs) were screened using the MetaDE package, and an lncRNA-mRNA network was constructed. Additionally, pathway enrichment analysis was conducted for the network nodes using gene set enrichment analysis (GSEA). A total of seven modules (blue, brown, green, grey, red, turquoise and yellow) were obtained following WGCNA analysis, among which the green and turquoise modules were stable and associated with the histological grade of GC. A total of 12 prognosis-associated lncRNAs were identified in the two modules. Combined with the optimal lncRNA combinations, risk score systems were constructed. The risk score system based on the green module [including ITPK1 antisense RNA 1 (ITPK1-AS1), KCNQ1 downstream neighbor (KCNQ1DN), long intergenic non-protein coding RNA 167 (LINC00167), LINC00173 and LINC00307] was the more efficient at predicting risk compared with those based on the turquoise, or the green + turquoise modules. A total of 1,105 consensus DE-RNAs were identified; GSEA revealed that LINC00167, LINC00173 and LINC00307 had the same association directions with 4 pathways and the 32 genes involved in those pathways. In conclusion, a risk score system based on the green module may be applied to predict the survival of patients with GC. Furthermore, ITPK1-AS1, KCNQ1DN, LINC00167, LINC00173 and LINC00307 may serve as biomarkers for GC pathogenesis.
Collapse
Affiliation(s)
- Zunqi Hu
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Dejun Yang
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Yuan Tang
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Xin Zhang
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Ziran Wei
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Hongbing Fu
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Jiapeng Xu
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Zhenxin Zhu
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Qingping Cai
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
8
|
Zu G, Luo B, Yang Y, Tan Y, Tang T, Zhang Y, Chen X, Sun D. Meta-analysis of the prognostic value of C-C chemokine receptor type 7 in patients with solid tumors. Cancer Manag Res 2019; 11:1881-1892. [PMID: 30881115 PMCID: PMC6396671 DOI: 10.2147/cmar.s190510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Expression of C-C chemokine receptor type 7 (CCR7) is associated with the prognosis of several cancers. The aim of this study was to conduct the meta-analysis to determine the prognostic value of CCR7 expression in solid tumors. Materials and methods We searched for relevant literature in the PubMed, Embase, and Cochrane Library databases (last updated on January 15, 2018). The associations of CCR7 expression with overall survival (OS), disease-free survival (DFS), recurrence-free survival (RFS), progress-free survival (PFS), and disease-specific survival (DSS) were estimated. Results In total, 30 qualified studies including 3,413 patients were enrolled. The results revealed that higher expression of CCR7 predicted poorer OS (pooled HR =1.79; 95% CI =1.49–2.16; P<0.001) and PFS (pooled HR =2.18; 95% CI =1.49–3.18; P<0.001), but was not associated with DFS (pooled HR =1.69; 95% CI =0.79–3.61; P=0.175), RFS (pooled HR =1.29; 95% CI =0.48–3.44; P=0.618), or DSS (pooled HR =3.06; 95% CI =0.38–24.83; P<0.294). Conclusion From this meta-analysis, we concluded that high expression of CCR7 in tumor tissue is associated with poor survival in patients with solid tumors, and may be a prognostic biomarker for tumor progression.
Collapse
Affiliation(s)
- Guangchen Zu
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, People's Republic of China, ;
| | - Baoyang Luo
- Department of Hepatobiliary Surgery, Taizhou People's Hospital, Taizhou 225300, People's Republic of China
| | - Yong Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, People's Republic of China, ;
| | - Yuwei Tan
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, People's Republic of China, ;
| | - Tianyu Tang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, People's Republic of China, ;
| | - Yue Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, People's Republic of China, ;
| | - Xuemin Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, People's Republic of China, ;
| | - Donglin Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, People's Republic of China, ;
| |
Collapse
|
9
|
Pu J, Tang X, Zhuang X, Hu Z, He K, Wu Y, Dai T. Matrine induces apoptosis via targeting CCR7 and enhances the effect of anticancer drugs in non-small cell lung cancer in vitro. Innate Immun 2018; 24:394-399. [PMID: 30236029 PMCID: PMC6830874 DOI: 10.1177/1753425918800555] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This study mainly investigated the effects of matrine on cell apoptosis and the
effects of anticancer drugs in non-small cell lung cancer (NSCLC) cell lines
(A549 and LK2 cells). The results showed that matrine (≥10 μM) caused a
significant inhibition on cell viability and 10 and 100 μM matrine induced cell
apoptosis via influencing p53, bax, casp3, and bcl-2 expressions in A549 cells.
In addition, matrine significantly down-regulated C-C chemokine receptor type 7
(CCR7) expression, and blocking the down-regulation of CCR7 by exogenous
chemokine ligand 21 (CCL21) treatment alleviated matrine-caused effects of
apoptosis genes in A549 cells. The results were further validated in LK2 cells
that matrine regulated apoptosis gene expressions, which were reversed by CCL21
treatment. Furthermore, matrine enhances the effects of cisplatin,
5-fluorouracil, and paclitaxel in A549 cells, and the anticancer effects exhibit
a dosage-dependent manner. In summary, matrine induced cell apoptosis and
enhanced the effects of anticancer drugs in NSCLC cells; the mechanism might be
associated with the CCR7 signal.
Collapse
Affiliation(s)
- Jiangtao Pu
- Department of Thoracic and Cardiovascular Surgery, The
Affiliated Hospital of Southwest Medical University, Luzhou, China
- Jiangtao Pu, Department of Thoracic and
Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University,
Luzhou, Sichuan, China.
| | - Xiaojun Tang
- Department of Thoracic and Cardiovascular Surgery, The
Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiang Zhuang
- Department of Thoracic Surgery, Sichuan Cancer Hospital,
Chengdu, China
| | - Zhi Hu
- Department of Thoracic and Cardiovascular Surgery, The
Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Kaiming He
- Department of Thoracic and Cardiovascular Surgery, The
Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yunfei Wu
- Department of Thoracic and Cardiovascular Surgery, The
Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tianyang Dai
- Department of Thoracic and Cardiovascular Surgery, The
Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
10
|
Ye D, Ma W, Xu J, Zhu G, Liu D, Liu C, Ding Y, Zhang Q. WTX inhibits gastric cancer migration through the reversal of epithelial-mesenchymal transition. Oncol Lett 2018; 16:4970-4976. [PMID: 30250562 PMCID: PMC6144879 DOI: 10.3892/ol.2018.9309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 12/07/2017] [Indexed: 11/18/2022] Open
Abstract
The aim of the present study was to investigate whether the expression of Wilms' tumor gene on X chromosome (WTX) affected the epithelial-mesenchymal transition (EMT) process and migration of gastric cancer cells. Stable WTX-overexpressing AGS cells (AGS.W) were established and analyzed by flow cytometry. The efficiency of the overexpression was verified by fluorescence microscopy, reverse transcription-quantitative polymerase chain reaction and western blotting. To analyze the expression of EMT-associated proteins, western blotting and immunofluorescence assays were performed. The migratory capability of the cells was detected by Transwell wound-healing assays, respectively. Compared with that of the control cells (AGS.veh), WTX expression was notably increased at mRNA (P<0.05) and protein levels (P<0.05) in the AGS.W gastric cancer cells. Morphological observations indicated that AGS.W cells transformed into spindle shapes, compared to AGS.veh cells, which maintained round or oval shapes. Furthermore, western blotting and immunofluorescence validated that the expression level of the epithelial marker epithelial-cadherin was significantly increased, whereas the expression levels of the mesenchymal markers neural-cadherin, β-catenin and vimentin were significantly decreased in the AGS.W cells compared with those in the AGS.veh cells. In addition, the overexpression of WTX decreased the migratory ability of AGS.W cells compared with AGS.veh cells. Exogenous expression of WTX inhibited gastric cancer cell migration by reversing EMT. The results of the present study describe a molecular feature that may be a promising target for future gastric cancer therapy strategies.
Collapse
Affiliation(s)
- Danli Ye
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangzhou 510515, P.R. China.,Department of Pathology, College of Basic Medicine, Southern Medical University, Guangzhou, Guangzhou 510515, P.R. China
| | - Wenxia Ma
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangzhou 510515, P.R. China.,Department of Pathology, College of Basic Medicine, Southern Medical University, Guangzhou, Guangzhou 510515, P.R. China
| | - Jiahui Xu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangzhou 510515, P.R. China
| | - Guifang Zhu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangzhou 510515, P.R. China.,Department of Pathology, College of Basic Medicine, Southern Medical University, Guangzhou, Guangzhou 510515, P.R. China
| | - Deying Liu
- Department of Endocrinology and Metabolism, Nanfang Hospital/First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangzhou 510515, P.R. China
| | - Chun Liu
- Department of Pathology, Nanfang Hospital/First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangzhou 510515, P.R. China
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangzhou 510515, P.R. China.,Department of Pathology, College of Basic Medicine, Southern Medical University, Guangzhou, Guangzhou 510515, P.R. China
| | - Qingling Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangzhou 510515, P.R. China.,Department of Pathology, College of Basic Medicine, Southern Medical University, Guangzhou, Guangzhou 510515, P.R. China
| |
Collapse
|
11
|
Wang L, Zhao XY, Zhu JS, Chen NW, Fan HN, Yang W, Guo JH. CCR7 regulates ANO6 to promote migration of pancreatic ductal adenocarcinoma cells via the ERK signaling pathway. Oncol Lett 2018; 16:2599-2605. [PMID: 30013654 DOI: 10.3892/ol.2018.8962] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 11/11/2017] [Indexed: 12/26/2022] Open
Abstract
The increase in migratory ability of pancreatic ductal adenocarcinoma cells is a key event in the development of metastasis to the lymph nodes and distant organs. Although the C-C motif chemokine receptor 7 (CCR7) and its ligand, C-C motif chemokine ligand 21 (CCL21), have been revealed to serve an important role in tumor migration, their precise roles and potential underlying mechanisms remain largely unknown. The present study revealed that overexpression of CCR7 significantly promoted BxPC-3 cell migration, accompanied by the induction of anoctamin 6 (ANO6) expression, indicating that ANO6 is a downstream target of CCR7 signaling. Furthermore, the level of phosphorylated extracellular signal-regulated kinase (ERK) was significantly increased in CCR7-overexpressing BxPC-3 cells, indicating that ERK may be a potential mediator of CCR7-regulated ANO6 expression in BxPC-3 cells. To characterize the receptor-mediated pathway, a specific ERK inhibitor, U0126, was used, which reduced BxPC-3 cell migration and the expression of ANO6. In summary, the results of the present study demonstrate that CCR7 promoted BxPC-3 cell migration by regulating ANO6 expression perhaps via activation of the ERK signaling pathway.
Collapse
Affiliation(s)
- Long Wang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Xiang-Yun Zhao
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Jin-Shui Zhu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Ni-Wei Chen
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Hui-Ning Fan
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Wei Yang
- Department of Laboratory, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Jing-Hui Guo
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
12
|
Li W, Ng JMK, Wong CC, Ng EKW, Yu J. Molecular alterations of cancer cell and tumour microenvironment in metastatic gastric cancer. Oncogene 2018; 37:4903-4920. [PMID: 29795331 PMCID: PMC6127089 DOI: 10.1038/s41388-018-0341-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023]
Abstract
The term metastasis is widely used to describe the endpoint of the process by which tumour cells spread from the primary location to an anatomically distant site. Achieving successful dissemination is dependent not only on the molecular alterations of the cancer cells themselves, but also on the microenvironment through which they encounter. Here, we reviewed the molecular alterations of metastatic gastric cancer (GC) as it reflects a large proportion of GC patients currently seen in clinic. We hope that further exploration and understanding of the multistep metastatic cascade will yield novel therapeutic targets that will lead to better patient outcomes.
Collapse
Affiliation(s)
- Weilin Li
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Jennifer Mun-Kar Ng
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Chi Chun Wong
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Enders Kwok Wai Ng
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
| | - Jun Yu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
| |
Collapse
|
13
|
Zhu T, Hu X, Wei P, Shan G. Molecular background of the regional lymph node metastasis of gastric cancer. Oncol Lett 2018; 15:3409-3414. [PMID: 29556271 DOI: 10.3892/ol.2018.7813] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/04/2017] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer (GC) is one of the deadliest types of cancer in the world. Lymph node (LN) metastasis is a complex and malignant behavior of GC, involving a sequence of biological processes, including decreased adherence to adjacent cells, extracellular matrix (ECM) degradation and lymphatic channel permeation. LN metastasis is directly associated with the treatment response, local recurrence and long-term survival of patients with GC. Therefore, the molecular mechanisms of LN metastasis in GC development require further investigation. Recently, a large number of clinical studies have focused on the molecular mechanisms and biological markers of tumor invasion and metastasis. However, few articles have broadly summarized LN metastasis in GC, and the molecular mechanisms of LN metastasis are not yet fully understood. In the present review, the molecular mechanisms of LN metastasis in GC will be discussed, including the following aspects: Cell adhesion and movement, ECM degradation, new vessel formation, and molecular pattern differences between metastatic LNs and the primary tumor. This review may lead to a better understanding of LN metastasis in GC, and the identification of new diagnostic markers.
Collapse
Affiliation(s)
- Tong Zhu
- Department of Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Xueqian Hu
- Department of Oncology, Ningbo Municipal Hospital of Traditional Chinese Medicine, Ningbo, Zhejiang 315000, P.R. China
| | - Pinkang Wei
- Department of Traditional Chinese Medicine, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Guangzhi Shan
- Department of Oncology, Ningbo Municipal Hospital of Traditional Chinese Medicine, Ningbo, Zhejiang 315000, P.R. China
| |
Collapse
|
14
|
Ryu H, Baek SW, Moon JY, Jo IS, Kim N, Lee HJ. C-C motif chemokine receptors in gastric cancer. Mol Clin Oncol 2018; 8:3-8. [PMID: 29285394 PMCID: PMC5738695 DOI: 10.3892/mco.2017.1470] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/06/2017] [Indexed: 12/20/2022] Open
Abstract
Gastric cancer is the fifth most common cancer and the third leading cause of cancer-associated mortality worldwide. Despite recent advances in molecular and clinical research, patients with gastric cancer at an advanced stage have a dismal prognosis and poor survival rates, and systemic treatment relies predominantly on traditional cytotoxic chemotherapy. To improve patients' quality of life and survival, an improved understanding of the complex molecular mechanisms involved in gastric cancer progression and treatment resistance, and of its clinical application in the development of novel targeted therapies, is urgently required. Chemokines are a group of small chemotactic cytokines that interact with seven-transmembrane G-protein-coupled receptors, and this interaction serves a crucial role in various physiological processes, including organ development and the host immune response, to recruit cells to specific sites in the body. There is also accumulating evidence that chemokines and chemokine receptors (CCRs) contribute to tumor development and progression, as well as metastasis. However, research regarding the functional roles of chemokines and their receptors in cancer is dynamic and context-dependent, and much remains to be elucidated, although various aspects have been explored extensively. In gastric cancer, C-C motif CCRs are involved in the biological behavior of tumor cells, including the processes of growth, invasion and survival, as well as the epithelial-mesenchymal transition. In the present review, attention is given to the clinical relevance of C-C motif CCRs in the development, progression, and metastasis of gastric cancer, particularly CCR7 and CCR5, which have been investigated extensively, as well as their potential therapeutic implications.
Collapse
Affiliation(s)
- Hyewon Ryu
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Seung Woo Baek
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Ji Young Moon
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - In-Sook Jo
- Department of Medical Science, School of Medicine Chungnam National University and Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Nayoung Kim
- Department of Medical Science, School of Medicine Chungnam National University and Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Hyo Jin Lee
- Department of Internal Medicine, School of Medicine Chungnam National University and Chungnam National University Hospital, Daejeon 35015, Republic of Korea
- Cancer Research Institute, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
15
|
Zhong G, Chen L, Yin R, Qu Y, Bao Y, Xiao Q, Zhang Z, Shen Y, Li C, Xu Y, Zou Z, Tian H. Chemokine (C‑C motif) ligand 21/C‑C chemokine receptor type 7 triggers migration and invasion of human lung cancer cells by epithelial‑mesenchymal transition via the extracellular signal‑regulated kinase signaling pathway. Mol Med Rep 2017; 15:4100-4108. [PMID: 28487957 PMCID: PMC5436267 DOI: 10.3892/mmr.2017.6534] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/14/2017] [Indexed: 12/25/2022] Open
Abstract
C-C chemokine receptor type 7 (CCR7) has been implicated in lymph node metastasis of various cancers. Previous studies have revealed that epithelial-mesenchymal transition (EMT) is involved in the chemotactic process mediated by CCR7 and its ligands in various types of carcinoma. However, the underlying mechanism of this process remains to be fully elucidated. The present study investigated whether chemokine (C-C motif) ligand 21 (CCL21)/CCR7 may activate EMT of lung cancer cells and their associated signaling pathways. A549 and H520 lung cancer cell lines were examined in vitro in the present study. The results indicated that A549 and H520 expressed CCR7, but reduced levels of CCL21. Following stimulation of lung cancer cell lines with CCL21, the expression of the epithelial marker E-cadherin was downregulated, and the mesenchymal markers Vimentin/Slug and extracellular signal-regulated kinase (ERK) were upregulated. In addition, the ERK inhibitor PD98059 may inhibit EMT caused by CCL21, and decreased cell migration and invasion initiated by CCL21. Furthermore, lung adenocarcinoma tissues from 50 patients who underwent lung cancer operations were investigated by immunohistochemistry. The findings revealed that CCR7, Slug and Vimentin were highly expressed in lung carcinoma tissues, and were significantly associated with lymph node metastasis and clinical pathological stages, respectively. CCR7 expression was correlated positively with expression levels of Slug and Vimentin. CCL21 was expressed positively in the endothelium of lymphatic vessels adjacent to cancer cells, and weakly in lung cancer cells. Collectively, these results demonstrated that CCL21/CCR7 may activate EMT in lung cancer cells via the ERK1/2 signaling pathway. The current study provides evidence that a close interaction exists between CCL21/CCR7chemotaxis and EMT procedures in lung cancer metastasis, providing a basis for the development of therapeutic targets.
Collapse
Affiliation(s)
- Guangxin Zhong
- Institute of Anatomy and Histology and Embryology, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Lu Chen
- Institute of Anatomy and Histology and Embryology, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Ruihong Yin
- Department of Internal Medicine, Jinan First People's Hospital, Jinan, Shandong 250000, P.R. China
| | - Yan Qu
- Institute of Anatomy and Histology and Embryology, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yongxing Bao
- Institute of Anatomy and Histology and Embryology, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qiong Xiao
- Blood Center of General Hospital of Jinan Military Region, Jinan, Shandong 250031, P.R. China
| | - Zhaolin Zhang
- Department of Special Examination, Penglai People's Hospital, Penglai, Shandong 265600, P.R. China
| | - Yaqian Shen
- Institute of Anatomy and Histology and Embryology, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Cailing Li
- Institute of Anatomy and Histology and Embryology, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yun Xu
- Department of Anatomy, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Zhigeng Zou
- Cancer Treatment Center, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Hua Tian
- Institute of Anatomy and Histology and Embryology, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
16
|
Zhao Z, Wang S, Lin Y, Miao Y, Zeng Y, Nie Y, Guo P, Jiang G, Wu J. Epithelial-mesenchymal transition in cancer: Role of the IL-8/IL-8R axis. Oncol Lett 2017; 13:4577-4584. [PMID: 28599458 DOI: 10.3892/ol.2017.6034] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 01/19/2017] [Indexed: 12/26/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a biological process that is associated with cancer metastasis and invasion. In cancer, EMT promotes cell motility, invasion and distant metastasis. Interleukin (IL)-8 is highly expressed in tumors and may induce EMT. The IL-8/IL-8R axis has a vital role in EMT in carcinoma, which is regulated by several signaling pathways, including the transforming growth factor β-spleen associated tyrosine kinase/Src-AKT/extracellular signal-regulated kinase, p38/Jun N-terminal kinase-activating transcription factor-2, phosphoinositide 3-kinase/AKT, nuclear factor-κB and Wnt signaling pathways. Blocking the IL-8/IL-8R signaling pathway may be a novel strategy to reduce metastasis and improve patient survival rates. This review will cover IL-8-IL-8R signaling pathway in tumor epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Zhiwei Zhao
- West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shichao Wang
- West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,School of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Yingbo Lin
- Department of Oncology and Pathology, Karolinska Institute, Cancer Centre Karolinska, SE-171 76 Stockholm, Sweden
| | - Yali Miao
- West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ye Zeng
- West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yongmei Nie
- School of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Peng Guo
- West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Guangyao Jiang
- Outpatient Building, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jiang Wu
- West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,School of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| |
Collapse
|
17
|
Du P, Liu Y, Ren H, Zhao J, Zhang X, Patel R, Hu C, Gan J, Huang G. Expression of chemokine receptor CCR7 is a negative prognostic factor for patients with gastric cancer: a meta-analysis. Gastric Cancer 2017; 20:235-245. [PMID: 26984468 DOI: 10.1007/s10120-016-0602-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/17/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND The prognostic significance of CC chemokine receptor type 7 (CCR7) for survival of patients with gastric cancer remains controversial. To investigate the impacts of CCR7 on clinicopathological findings and survival outcome in gastric cancer, we performed a meta-analysis. METHODS A comprehensive search in PubMed, Embase, the Cochrane Library, and the CNKI database (1966 to November 2015) was undertaken for relevant studies. The relative risk and hazard ratios with their 95 % confidence intervals were used as measures to investigate the correlation between CCR7 expression and clinicopathological findings and overall survival rate. Sensitivity analysis was conducted to assess the stability of outcomes. RESULTS Fifteen eligible studies comprising 1697 participants were included in our analysis. The pooled relative risks indicated CCR7 expression was significantly associated with deeper tumor invasion [0.61, 95 % confidence interval (CI) 0.45-0.84, p = 0.003], advanced stage (0.47, 95 % CI 0.32-0.69, p < 0.001), vascular invasion (2.12, 95 % CI 1.20-3.73, p = 0.009), lymph node metastasis (2.00, 95 % CI 1.48-2.70, p < 0.001), and lymphatic invasion (1.98, 95 % CI 1.43-2.72, p < 0.001) but not with age, tumor size, and histological type. The pooling of hazard ratios showed a significant relationship between positive CCR7 expression and worse 5-year overall survival rate (0.46, 95 % CI 0.31-0.70, p < 0.001). CONCLUSIONS Our meta-analysis indicated high CCR7 expression is likely to be a negative clinicopathological prognostic factor for patients with gastric cancer and to predict a worse long-term survival outcome.
Collapse
Affiliation(s)
- Peizhun Du
- Department of General Surgery, Huashan Hospital of Fudan University, Shanghai, 200040, China
| | - Yongchao Liu
- Department of General Surgery, Shanghai Tenth People's Hospital, Shanghai, China
| | - Hong Ren
- Department of Breast Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Jing Zhao
- Department of General Surgery, Huashan Hospital of Fudan University, Shanghai, 200040, China
| | - Xiaodan Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Rajan Patel
- General Internal Medicine, Shady Grove Adventist Hospital, Rockville, MD, USA
| | - Chenen Hu
- Department of General Surgery, Huashan Hospital of Fudan University, Shanghai, 200040, China
| | - Jun Gan
- Department of General Surgery, Huashan Hospital of Fudan University, Shanghai, 200040, China
| | - Guangjian Huang
- Department of General Surgery, Huashan Hospital of Fudan University, Shanghai, 200040, China.
| |
Collapse
|
18
|
JianPi JieDu Recipe Inhibits Epithelial-to-Mesenchymal Transition in Colorectal Cancer through TGF- β/Smad Mediated Snail/E-Cadherin Expression. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2613198. [PMID: 28299321 PMCID: PMC5337333 DOI: 10.1155/2017/2613198] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/28/2016] [Accepted: 01/19/2017] [Indexed: 11/17/2022]
Abstract
JPJD was an ideal alternative traditional Chinese medicine compound in the prevention and treatment of CRC, but its underlying mechanisms has not been fully elucidated. In this study, we demonstrated in vitro that TGF-β-induced EMT promoted the invasion and metastasis of CRC cells, reduced the expression of E-cadherin, and elevated the expression of Vimentin. However, JPJD could inhibit the invasive and migratory ability of TGF-β-stimulated CRC cells in a concentration-dependent manner through increasing the expression of E-cadherin and repressing the expression of Vimentin, as well as the inhibition of TGF-β/Smad signaling pathway. Meanwhile, JPJD reduced the transcriptional activities of EMT-associated factors Snail and E-cadherin during the initiation of TGF-β-induced EMT. In vivo, the results demonstrated that JPJD can significantly inhibit the liver and lung metastasis of orthotopic CRC tumor in nude mice, as well as significantly prolonging the survival time of tumor-bearing in a dose-dependent manner. Additionally, JPJD can upregulate the expression of E-cadherin and Smad2/3 in the cytoplasm and downregulate the expression of Vimentin, p-Smad2/3, and Snail in the orthotopic CRC tumor tissues. In conclusions, our new findings provided evidence that JPJD could inhibit TGF-β-induced EMT in CRC through TGF-β/Smad mediated Snail/E-cadherin expression.
Collapse
|
19
|
Ma HY, Liu XZ, Liang CM. Inflammatory microenvironment contributes to epithelial-mesenchymal transition in gastric cancer. World J Gastroenterol 2016; 22:6619-6628. [PMID: 27547005 PMCID: PMC4970470 DOI: 10.3748/wjg.v22.i29.6619] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/12/2016] [Accepted: 07/06/2016] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is the fifth most common malignancy in the world. The major cause of GC is chronic infection with Helicobacter pylori (H. pylori). Infection with H. pylori leads to an active inflammatory microenvironment that is maintained by immune cells such as T cells, macrophages, natural killer cells, among other cells. Immune cell dysfunction allows the initiation and accumulation of mutations in GC cells, inducing aberrant proliferation and protection from apoptosis. Meanwhile, immune cells can secrete certain signals, including cytokines, and chemokines, to alter intracellular signaling pathways in GC cells. Thus, GC cells obtain the ability to metastasize to lymph nodes by undergoing the epithelial-mesenchymal transition (EMT), whereby epithelial cells lose their epithelial attributes and acquire a mesenchymal cell phenotype. Metastasis is a leading cause of death for GC patients, and the involved mechanisms are still under investigation. In this review, we summarize the current research on how the inflammatory environment affects GC initiation and metastasis via EMT.
Collapse
|