1
|
Ayoufu A, Paierhati P, Qiao L, Zhang N, Abudukeremu M. RUSC1-AS1 promotes the malignant progression of breast cancer depending on the regulation of the miR-326/XRCC5 pathway. Thorac Cancer 2023; 14:2504-2514. [PMID: 37429610 PMCID: PMC10447167 DOI: 10.1111/1759-7714.15035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Many long noncoding RNAs (lncRNAs) are the key regulators for cancer progression, including breast cancer (BC). RUSC1 antisense 1 (RUSC1-AS1) has been found to be highly expressed in BC, but its role and potential molecular mechanism in BC remain to be further elucidated. METHODS Quantitative reverse transcription-polymerase chain reaction (RT-PCR) was utilized to measure RUSC1-AS1, microRNA (miR)-326 and X-ray repair cross-complementing group 5 (XRCC5) expression. Cell proliferation, metastasis, cell cycle, apoptosis and angiogenesis were determined by cell counting kit-8, colony formation, transwell, flow cytometry and tube formation assays. Protein expression was detected by western blot analysis. The targeted relationship between miR-326 and RUSC1-AS1 or XRCC5 was validated using dual-luciferase reporter assay and RIP assay. Xenograft models were constructed to uncover the effect of RUSC1-AS1 on BC tumorigenesis. RESULTS RUSC1-AS1 was upregulated in BC, and its downregulation suppressed BC proliferation, metastasis, cell cycle, angiogenesis, and tumor growth. MiR-326 was confirmed to be sponged by RUSC1-AS1, and its inhibitor reversed the regulation of RUSC1-AS1 silencing on BC progression. XRCC5 could be targeted by miR-326. Overexpression of XRCC5 reversed the inhibitory impacts of miR-326 on BC progression. CONCLUSION RUSC1-AS1 could serve as a sponge of miR-326 to promote BC progression by targeting XRCC5, suggesting that RUSC1-AS1 might be a target for BC treatment.
Collapse
Affiliation(s)
- Aisikeer Ayoufu
- Department of Breast Surgery Ward TwoAffiliated Cancer Hospital of Xinjiang Medical UniversityUrumqiChina
| | - Puerkaiti Paierhati
- Department of Breast and Thyroid SurgeryAffiliated Cancer Hospital of Xinjiang Medical UniversityUrumqiChina
| | - Lei Qiao
- Department of Breast and Thyroid SurgeryAffiliated Cancer Hospital of Xinjiang Medical UniversityUrumqiChina
| | - Nan Zhang
- Department of Breast and Thyroid SurgeryAffiliated Cancer Hospital of Xinjiang Medical UniversityUrumqiChina
| | - Muzhapaer Abudukeremu
- Department of Breast and Thyroid SurgeryAffiliated Cancer Hospital of Xinjiang Medical UniversityUrumqiChina
| |
Collapse
|
2
|
Ding YC, Adamson AW, Bakhtiari M, Patrick C, Park J, Laitman Y, Weitzel JN, Bafna V, Friedman E, Neuhausen SL. Variable number tandem repeats (VNTRs) as modifiers of breast cancer risk in carriers of BRCA1 185delAG. Eur J Hum Genet 2023; 31:216-222. [PMID: 36434258 PMCID: PMC9905572 DOI: 10.1038/s41431-022-01238-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/10/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022] Open
Abstract
Despite substantial efforts in identifying both rare and common variants affecting disease risk, in the majority of diseases, a large proportion of unexplained genetic risk remains. We propose that variable number tandem repeats (VNTRs) may explain a proportion of the missing genetic risk. Herein, in a pilot study with a retrospective cohort design, we tested whether VNTRs are causal modifiers of breast cancer risk in 347 female carriers of the BRCA1 185delAG pathogenic variant, an important group given their high risk of developing breast cancer. We performed targeted-capture to sequence VNTRs, called genotypes with adVNTR, tested the association of VNTRs and breast cancer risk using Cox regression models, and estimated the effect size using a retrospective likelihood approach. Of 303 VNTRs that passed quality control checks, 4 VNTRs were significantly associated with risk to develop breast cancer at false discovery rate [FDR] < 0.05 and an additional 4 VNTRs had FDR < 0.25. After determining the specific risk alleles, there was a significantly earlier age at diagnosis of breast cancer in carriers of the risk alleles compared to those without the risk alleles for seven of eight VNTRs. One example is a VNTR in exon 2 of LINC01973 with a per-allele hazard ratio of 1.58 (1.07-2.33) and 5.28 (2.79-9.99) for the homozygous risk-allele genotype. Results from this first systematic study of VNTRs demonstrate that VNTRs may explain a proportion of the unexplained genetic risk for breast cancer.
Collapse
Affiliation(s)
- Yuan Chun Ding
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Aaron W Adamson
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Mehrdad Bakhtiari
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Carmina Patrick
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Jonghun Park
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Yael Laitman
- Oncogenetics Unit, Institute of Human Genetics, Sheba Medical Center, Ramat Gan, Israel
| | - Jeffrey N Weitzel
- Latin American School of Oncology, Tuxla Gutierrez, Chiapas, MX and Natera, San Carlos, CA, USA
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Eitan Friedman
- Oncogenetics Unit, Institute of Human Genetics, Sheba Medical Center, Ramat Gan, Israel
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Center for Preventive Personalized Medicine, Assuta Medical Center, Tel Aviv, Israel
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| |
Collapse
|
3
|
Pu Z, Liu J, Liu Z, Peng F, Zhu Y, Wang X, He J, Yi P, Hu X, Fan X, Chen J. STING pathway contributes to the prognosis of hepatocellular carcinoma and identification of prognostic gene signatures correlated to tumor microenvironment. Cancer Cell Int 2022; 22:314. [PMID: 36224658 PMCID: PMC9554977 DOI: 10.1186/s12935-022-02734-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most malignant solid tumors worldwide. Recent evidence shows that the stimulator of interferon genes (STING) pathway is essential for anti-tumor immunity via inducing the production of downstream inflammatory cytokines. However, its impact on the prognosis and tumor microenvironment of HCC was still limited known. Methods We obtained gene expression profiles of HCC from GEO, TCGA, and ICGC databases, and immune-related genes (IRGs) from the ImmPort database. Multivariate Cox regression was performed to identify independent prognostic factors. Nomogram was established to predict survival probability for individual patients. Kaplan–Meier curve was used to evaluate the survival difference. Afterward, ESTIMATE, TISCH, and TIMER databases were combined to assess the immune cell infiltration. Furthermore, the qPCR, western blotting, and immunohistochemistry were done to evaluate gene expression, and in vitro cell models were built to determine cell migratory ability. Results We found that gene markers of NLRC3, STING1, TBK1, TRIM21, and XRCC6 within STING pathway were independent prognostic factors in HCC patients. Underlying the finding, a predictive nomogram was constructed in TCGA-training cohort and further validated in TCGA-all and ICGC datasets, showing credible performance. Experimentally, up-regulated TBK1 promotes the ability of HCC cell migration. Next, the survival-related immune-related co-expressed gene signatures (IRCGS) (VAV1, RHOA, and ZC3HAV1) were determined in HCC cohorts and their expression was verified in human HCC cells and clinical samples. Furthermore, survival-related IRCGS was associated with the infiltration of various immune cell subtypes in HCC, the transcriptional expression of prominent immune checkpoints, and immunotherapeutic response. Conclusion Collectively, we constructed a novel prognostic nomogram model for predicting the survival probability of individual HCC patients. Moreover, an immune-related prognostic gene signature was determined. Both might function as potential therapeutic targets for HCC treatment in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02734-4.
Collapse
Affiliation(s)
- Zhangya Pu
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, No. 87, Xiangya Rd, Kaifu District, Changsha, 410008, Hunan Province, China.,Department of Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang Province, China
| | - Jinghua Liu
- Department of Hepatobiliary Surgery, Linyi People's Hospital, Linyi, Shandong, China
| | - Zelong Liu
- Division of Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Fang Peng
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, No. 87, Xiangya Rd, Kaifu District, Changsha, 410008, Hunan Province, China.,NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, 41800, Hunan Province, China
| | - Yuanyuan Zhu
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, No. 87, Xiangya Rd, Kaifu District, Changsha, 410008, Hunan Province, China.,NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, 41800, Hunan Province, China
| | - Xiaofang Wang
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, No. 87, Xiangya Rd, Kaifu District, Changsha, 410008, Hunan Province, China
| | - Jiayan He
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang Province, China
| | - Panpan Yi
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, No. 87, Xiangya Rd, Kaifu District, Changsha, 410008, Hunan Province, China
| | - Xingwang Hu
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, No. 87, Xiangya Rd, Kaifu District, Changsha, 410008, Hunan Province, China.
| | - Xuegong Fan
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, No. 87, Xiangya Rd, Kaifu District, Changsha, 410008, Hunan Province, China.
| | - Jiang Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang Province, China.
| |
Collapse
|
4
|
Shelke S, Das B. Radio-adaptive response and correlation of non-homologous end joining repair gene polymorphisms [XRRC5 (3R/2R/1R/0R), XRCC6(C/G) and XRCC7 (G/T)] in human peripheral blood mononuclear cells exposed to gamma radiation. Genes Environ 2021; 43:9. [PMID: 33685509 PMCID: PMC7938547 DOI: 10.1186/s41021-021-00176-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 02/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Radio-adaptive response (RAR) is transient phenomena, where cells conditioned with a small dose (priming) of ionizing radiation shows significantly reduced DNA damage with a subsequent high challenging dose. The role of DNA double strand break repair gene polymorphism in RAR is not known. In the present study attempt was made to find out the influence of NHEJ repair gene polymorphisms [a VNTR; XRCC5 (3R/2R/1R/0R); two single nucleotide polymorphisms (SNPs); XRCC6 (C/G) and XRCC7 (G/T)] with DNA damage, repair and mRNA expression in human PBMCs in dose and adaptive response studies. Genomic DNA extracted from venous blood samples of 20 random healthy donors (16 adaptive and 4 non-adaptive) and genotyping of NHEJ repair genes was carried out using PCR amplified length polymorphism. RESULTS The dose response study revealed significant positive correlation of genotypes at XRRC5 (3R/2R/1R/0R), XRCC6(C/G) and XRCC7 (G/T) with DNA damage. Donors having genotypes with 2R allele at XRCC5 showed significant positive correlation with mRNA expression level (0R/2R: r = 0.846, P = 0.034; 1R/2R: r = 0.698, P = 0.0001 and 2R/2R: r = 0.831, P = 0.0001) for dose response. Genotypes C/C and C/G of XRCC6 showed a significant positive correlation (P = 0.0001), whereas, genotype T/T of XRCC7 showed significant negative correlation (r = - 0.376, P = 0.041) with mRNA expression. CONCLUSION Interestingly, adaptive donors having C/G genotype of XRCC6 showed significantly higher (P < 0.05) mRNA expression level in primed cells suggesting their role in RAR. In addition, NHEJ repair gene polymorphisms play crucial role with radio-sensitivity and RAR in human PBMCs.
Collapse
Affiliation(s)
- Shridevi Shelke
- Low Level Radiation Research Section, Radiation Biology & Health Sciences Division, Bio-Sciences Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Birajalaxmi Das
- Low Level Radiation Research Section, Radiation Biology & Health Sciences Division, Bio-Sciences Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India.
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
5
|
Tang X, Xiao Q, Yu K. Breast Cancer Candidate Gene Detection Through Integration of Subcellular Localization Data With Protein–Protein Interaction Networks. IEEE Trans Nanobioscience 2020; 19:556-561. [DOI: 10.1109/tnb.2020.2990178] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
6
|
Sagredo EA, Sagredo AI, Blanco A, Rojas De Santiago P, Rivas S, Assar R, Pérez P, Marcelain K, Armisén R. ADAR1 Transcriptome editing promotes breast cancer progression through the regulation of cell cycle and DNA damage response. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118716. [PMID: 32275931 DOI: 10.1016/j.bbamcr.2020.118716] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 03/17/2020] [Accepted: 04/03/2020] [Indexed: 12/21/2022]
Abstract
RNA editing has emerged as a novel mechanism in cancer progression. The double stranded RNA-specific adenosine deaminase (ADAR) modifies the expression of an important proportion of genes involved in cell cycle control, DNA damage response (DDR) and transcriptional processing, suggesting an important role of ADAR in transcriptome regulation. Despite the phenotypic implications of ADAR deregulation in several cancer models, the role of ADAR on DDR and proliferation in breast cancer has not been fully addressed. Here, we show that ADAR expression correlates significantly with clinical outcomes and DDR, cell cycle and proliferation mRNAs of previously reported edited transcripts in breast cancer patients. ADAR's knock-down in a breast cancer cell line produces stability changes of mRNAs involved in DDR and DNA replication. Breast cancer cells with reduced levels of ADAR show a decreased viability and an increase in apoptosis, displaying a significant decrease of their DDR activation, compared to control cells. These results suggest that ADAR plays an important role in breast cancer progression through the regulation of mRNA stability and expression of those genes involved in proliferation and DDR impacting the viability of breast cancer cells.
Collapse
Affiliation(s)
- Eduardo A Sagredo
- Center of Excellence in Precision Medicine, Pfizer Chile, Obispo Arturo Espinoza Campos 2526, CP 7810305 Santiago, Chile; Centro de Investigación y Tratamiento del Cáncer, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Alfredo I Sagredo
- Center of Excellence in Precision Medicine, Pfizer Chile, Obispo Arturo Espinoza Campos 2526, CP 7810305 Santiago, Chile; Centro de Investigación y Tratamiento del Cáncer, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Alejandro Blanco
- Center of Excellence in Precision Medicine, Pfizer Chile, Obispo Arturo Espinoza Campos 2526, CP 7810305 Santiago, Chile
| | - Pamela Rojas De Santiago
- Center of Excellence in Precision Medicine, Pfizer Chile, Obispo Arturo Espinoza Campos 2526, CP 7810305 Santiago, Chile
| | - Solange Rivas
- Centro de Investigación y Tratamiento del Cáncer, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile; Departamento de Oncología Básico Clínica, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Rodrigo Assar
- Center of Excellence in Precision Medicine, Pfizer Chile, Obispo Arturo Espinoza Campos 2526, CP 7810305 Santiago, Chile
| | - Paola Pérez
- Center of Excellence in Precision Medicine, Pfizer Chile, Obispo Arturo Espinoza Campos 2526, CP 7810305 Santiago, Chile
| | - Katherine Marcelain
- Centro de Investigación y Tratamiento del Cáncer, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile; Departamento de Oncología Básico Clínica, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile.
| | - Ricardo Armisén
- Center of Excellence in Precision Medicine, Pfizer Chile, Obispo Arturo Espinoza Campos 2526, CP 7810305 Santiago, Chile; Centro de Investigación y Tratamiento del Cáncer, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile; Departamento de Oncología Básico Clínica, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile; Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Av. Las Condes 12461, Edificio 3, oficina 205, CP 7590943 Santiago, Chile.
| |
Collapse
|
7
|
Al-Eitan LN, Rababa'h DM, Alghamdi MA, Khasawneh RH. Genetic association of XRCC5 gene polymorphisms with breast cancer among Jordanian women. Onco Targets Ther 2019; 12:7923-7928. [PMID: 31920325 PMCID: PMC6936298 DOI: 10.2147/ott.s220226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/03/2019] [Indexed: 12/22/2022] Open
Abstract
Purpose Breast cancer (BC) is a complex disease that is governed by several different environmental and inherited factors. There are many genes have been linked with BC development by screening specific genetic variants within these genes. In this study, we aim to investigate the correlation between Variable Number Tandem Repeat (VNTR) in XRCC5 gene and BC. Materials and methods Polymerase Chain Reaction (PCR) and Gel electrophoresis were used to genotype the XRCC5 gene polymorphism in 200 cases with breast cancer and 200 healthy individuals. All participants were Jordanian women from Arab descents. Clinical and pathological characteristics for BC patients were summarized and categorized according to their medical records. Results In this study, we found a strong correlation between the VNTR polymorphism in the XRCC5 gene and BC risk (P-value<0.0001). Remarkably, three different genotypes (2R\2R, 3R\2R and 3R\3R) showed significant association with BC (P-value<0.0001). This study also reported a significant difference in the distribution of allele frequencies between BC patients and healthy individuals (3R; P-value<0.0001 and 2R; P-value<0.001). However, we propose that VNTR of XRCC5 gene did not interfere with BC prognosis. Conclusion We speculate that the VNTR of XRCC5 gene may influence BC development. More investigations are needed in this regard to clarify the underlying role of the XRCC5 genetic variant in tumorgenesis including BC development.
Collapse
Affiliation(s)
- Laith N Al-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan.,Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Doaa M Rababa'h
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | | | - Rame H Khasawneh
- Department of Hematopathology, King Hussein Medical Center (KHMC), Jordan Royal Medical Services (RMS), Amman 11118, Jordan
| |
Collapse
|
8
|
Safarzad M, Besharat S, Salimi S, Azarhoush R, Behnampour N, Joshaghani HR. Association between selenium, cadmium, and arsenic levels and genetic polymorphisms in DNA repair genes (XRCC5, XRCC6) in gastric cancerous and non-cancerous tissue. J Trace Elem Med Biol 2019; 55:89-95. [PMID: 31345372 DOI: 10.1016/j.jtemb.2019.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 05/05/2019] [Accepted: 06/11/2019] [Indexed: 12/22/2022]
Abstract
Gastric cancer is one of the most prevalent cancers in northern Iran. The DNA repair genes X-ray repair cross-complementing (XRCC) group 5, XRCC6, which are important members of non-homologous end-joining repair system, play an important role in repairing the DNA double-strand breaks. Chronic exposure to heavy metals has long been recognized as being capable of augmenting gastric cancer incidence among exposed human populations. Since trace elements could directly or indirectly damage DNA, and polymorphism in DNA DSBs-repair genes can alter the capacity of system repair, we assumed that XRCC5 VNTR and XRCC6-61C >G polymorphism also impress the DSBs-repair system ability and contribute to gastric cancer. Therefore, the objective of this research was to evaluate the tissue accumulation of Selenium (Se), Cadmium (Cd) and Arsenic (As), and XRCC5 VNTR, XRCC6-61C >G polymorphisms in cancerous and non-cancerous tissues in Golestan province. The study population included 46 gastric cancer patients and 43 cancer-free controls. Two polymorphisms of XRCC5, XRCC6 were genotyped using polymerase chain reaction (PCR) or polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Further employed was atomic absorption spectroscopy so as to determine the levels of Se, Cd and As. Finally, the data were analyzed by SPSS (version 16) statistical software. The Se level was significantly higher in tumors as compared to non-tumor tissues, but there was no significant correlation between As and Cd in cancerous and noncancerous tissues. Allele frequencies of the selected genes were not statistically different between groups regarding XRCC6 (-61C>G). XRCC5 0R/0R, 0R/1R, 1R/1R, and 0R/2R genotypes were more common in cancerous group. High levels of Se in cancerous tissues vs. non-cancerous tissues may be one of the carcinogenic factors; in Golestan province, unlike other regions of Iran and the world, the level of Se is high, hence the higher risks of gastric cancer.
Collapse
Affiliation(s)
- Mahdieh Safarzad
- Metabolic disorders research center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sima Besharat
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Saeedeh Salimi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran and Department of Clinical Biochemistry, School of Medicine, ZahedanUniversity of Medical Sciences, Zahedan, Iran
| | - Ramin Azarhoush
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Naser Behnampour
- Biostatistics Department, Faculty of Health, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hamid Reza Joshaghani
- Laboratory sciences research center, Golestan University of Medical Sciences, Gorgan, Iran; Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
9
|
Association between VNTR polymorphism in promoter region of XRCC5 and susceptibility to acute lymphoblastic leukemia risk. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Transcriptional signature of lymphoblastoid cell lines of BRCA1, BRCA2 and non- BRCA1/2 high risk breast cancer families. Oncotarget 2017; 8:78691-78712. [PMID: 29108258 PMCID: PMC5667991 DOI: 10.18632/oncotarget.20219] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 07/17/2017] [Indexed: 12/20/2022] Open
Abstract
Approximately 25% of hereditary breast cancer cases are associated with a strong familial history which can be explained by mutations in BRCA1 or BRCA2 and other lower penetrance genes. The remaining high-risk families could be classified as BRCAX (non-BRCA1/2) families. Gene expression involving alternative splicing represents a well-known mechanism regulating the expression of multiple transcripts, which could be involved in cancer development. Thus using RNA-seq methodology, the analysis of transcriptome was undertaken to potentially reveal transcripts implicated in breast cancer susceptibility and development. RNA was extracted from immortalized lymphoblastoid cell lines of 117 women (affected and unaffected) coming from BRCA1, BRCA2 and BRCAX families. Anova analysis revealed a total of 95 transcripts corresponding to 85 different genes differentially expressed (Bonferroni corrected p-value <0.01) between those groups. Hierarchical clustering allowed distinctive subgrouping of BRCA1/2 subgroups from BRCAX individuals. We found 67 transcripts, which could discriminate BRCAX from BRCA1/BRCA2 individuals while 28 transcripts discriminate affected from unaffected BRCAX individuals. To our knowledge, this represents the first study identifying transcripts differentially expressed in lymphoblastoid cell lines from major classes of mutation-related breast cancer subgroups, namely BRCA1, BRCA2 and BRCAX. Moreover, some transcripts could discriminate affected from unaffected BRCAX individuals, which could represent potential therapeutic targets for breast cancer treatment.
Collapse
|
11
|
Dimberg J, Skarstedt M, Slind Olsen R, Andersson RE, Matussek A. Gene polymorphism in DNA repair genes XRCC1 and XRCC6 and association with colorectal cancer in Swedish patients. APMIS 2016; 124:736-40. [PMID: 27328741 DOI: 10.1111/apm.12563] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/10/2016] [Indexed: 11/28/2022]
Abstract
The DNA repair genes XRCC1 and XRCC6 have been proposed to participate in the pathological process of cancer by modulating the DNA repair capacity. This study evaluated the susceptibility of the single-nucleotide polymorphisms (SNPs) XRCC1 (rs25487, G > A) and XRCC6 (rs2267437, C > G) to colorectal cancer (CRC) and their association with clinical parameters in Swedish patients with CRC. Using the TaqMan system, these SNPs were screened in 452 patients and 464 controls. No significant difference in genotype distribution was found between the patients and controls, or any significant association with cancer-specific or disease-free survival in patients. However, we showed that the carriers of allele A in XRCC1 (rs25487, G > A) were connected with a higher risk of disseminated CRC (Odds Ratio = 1.64; 95% Confidence Interval = 1.12-2.41, p = 0.012).
Collapse
Affiliation(s)
- Jan Dimberg
- Department of Natural Science and Biomedicine, School of Health and Welfare, Jönköping University, Jönköping, Sweden
| | - Marita Skarstedt
- Division of Medical Diagnostics, Department of Laboratory Medicine, Region Jönköping County, Jönköping, Sweden
| | - Renate Slind Olsen
- Division of Medical Diagnostics, Department of Laboratory Medicine, Region Jönköping County, Jönköping, Sweden.,Division of Drug Research, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | | | - Andreas Matussek
- Division of Medical Diagnostics, Department of Laboratory Medicine, Region Jönköping County, Jönköping, Sweden
| |
Collapse
|
12
|
Guo J, Wang X, Lü X, Jing R, Li J, Li C, Wang D, Bi B, Chen X, Wang F, Sun S, Gong J, Azadzoi KM, Yang JH. Unraveling molecular effects of ADAR1 overexpression in HEK293T cells by label-free quantitative proteomics. Cell Cycle 2016; 15:1591-601. [PMID: 27104882 DOI: 10.1080/15384101.2016.1176657] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
ADAR1 is a double-stranded RNA (dsRNA) editing enzyme that specifically converts adenosine to inosine. ADAR1 is ubiquitously expressed in eukaryotes and participate in various cellular processes such as differentiation, proliferation and immune responses. We report here a new proteomics study of HEK293T cells with and without ADAR1 overexpression. The up- and down-regulated proteins by ADAR1 overexpression are identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) followed by label-free protein quantification. Totally 1,495 proteins (FDR < 0.01) are identified, among which 211 are up- and 159 are down-regulated for at least 1.5-fold (n = 3, p < 0.05). Gene ontology analysis reveals that these ADAR1-regulated proteins are involved in protein translation and cell cycle regulation. Bioinformatics analysis identifies a closely related network consistent for the protein translation machinery and a tightly connected network through proliferating cell nuclear antigen (PCNA)-interactions. Up-regulation of the proteins in the PCNA-mediated cell proliferation network is confirmed by Western blotting. In addition, ADAR1 overexpression is confirmed to increase cell proliferation in HEK293T cells and A549 cells. We conclude that ADAR1 overexpression modulates the protein translation and cell cycle networks through PCNA-mediated protein-protein interaction to promote cell proliferation in HEK293 cells.
Collapse
Affiliation(s)
- Jisheng Guo
- a Cancer Research Center, Shandong University School of Medicine , Jinan , China
| | - Xiaoyue Wang
- a Cancer Research Center, Shandong University School of Medicine , Jinan , China
| | - Xin Lü
- a Cancer Research Center, Shandong University School of Medicine , Jinan , China
| | - Ruirui Jing
- a Cancer Research Center, Shandong University School of Medicine , Jinan , China
| | - Junqiang Li
- a Cancer Research Center, Shandong University School of Medicine , Jinan , China
| | - CuiLing Li
- a Cancer Research Center, Shandong University School of Medicine , Jinan , China
| | - Daoguang Wang
- a Cancer Research Center, Shandong University School of Medicine , Jinan , China
| | - Baibin Bi
- a Cancer Research Center, Shandong University School of Medicine , Jinan , China
| | - Xinjun Chen
- a Cancer Research Center, Shandong University School of Medicine , Jinan , China
| | - Fengqin Wang
- a Cancer Research Center, Shandong University School of Medicine , Jinan , China
| | - Shengnan Sun
- a Cancer Research Center, Shandong University School of Medicine , Jinan , China
| | - Jing Gong
- a Cancer Research Center, Shandong University School of Medicine , Jinan , China
| | - Kazem M Azadzoi
- b Departments of Surgery and Urology , VA Boston Healthcare System, Boston University School of Medicine , Boston , MA , USA
| | - Jing-Hua Yang
- a Cancer Research Center, Shandong University School of Medicine , Jinan , China.,b Departments of Surgery and Urology , VA Boston Healthcare System, Boston University School of Medicine , Boston , MA , USA
| |
Collapse
|
13
|
Cui J, Luo J, Kim YC, Snyder C, Becirovic D, Downs B, Lynch H, Wang SM. Differences of Variable Number Tandem Repeats in XRCC5 Promoter Are Associated with Increased or Decreased Risk of Breast Cancer in BRCA Gene Mutation Carriers. Front Oncol 2016; 6:92. [PMID: 27148484 PMCID: PMC4829605 DOI: 10.3389/fonc.2016.00092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/29/2016] [Indexed: 01/04/2023] Open
Abstract
Ku80 is a subunit of the Ku heterodimer that binds to DNA double-strand break ends as part of the non-homologous end joining (NHEJ) pathway. Ku80 is also involved in homologous recombination (HR) via its interaction with BRCA1. Ku80 is encoded by the XRCC5 gene that contains a variable number tandem repeat (VNTR) insertion in its promoter region. Different VNTR genotypes can alter XRCC5 expression and affect Ku80 production, thereby affecting NHEJ and HR pathways. VNTR polymorphism is associated with multiple types of sporadic cancer. In this study, we investigated its potential association with familial breast cancer at the germline level. Using PCR, PAGE, Sanger sequencing, and statistical analyses, we compared VNTR genotypes in the XRCC5 promoter between healthy individuals and three types of familial breast cancer cases: mutated BRCA1 (BRCA1+), mutated BRCA2 (BRCA2+), and wild-type BRCA1/BRCA2 (BRCAx). We observed significant differences of VNTR genotypes between control and BRCA1+ group (P < 0.0001) and BRCA2+ group (P = 0.0042) but not BRCAx group (P = 0.2185), and the differences were significant between control and cancer-affected BRCA1+ cases (P < 0.0001) and BRCA2+ cases (P = 0.0092) but not cancer-affected BRCAx cases (P = 0.4251). Further analysis indicated that 2R/2R (OR = 1.94, 95%CI = 1.26–2.95, P = 0.0096) and 2R/1R (OR = 1.58, 95%CI = 1.11–2.26, P = 0.0388) were associated with increased risk but 1R/1R (OR = 0.55, 95%CI = 0.35–0.84, P = 0.0196) and 1R/0R (OR = 0, 95%CI = 0–0.29, P = 0.0012) were associated with decreased risk in cancer-affected BRCA1+ group; 2R/1R (OR = 1.94, 95%CI = 1.14–3.32, P = 0.0242) was associated with increased risk in cancer-affected BRCA2+ group. No correlation was observed for the altered risk between cancer-affected or -unaffected carriers and between different age of cancer diagnosis in cancer-affected carriers. The frequently observed VNTR association with in BRCA1+ and BRCA2+ breast cancer group indicates that VNTR polymorphism in the XRCC5 promoter is associated with altered risk of breast cancer in BRCA1+ and BRCA2+ carriers.
Collapse
Affiliation(s)
- Jian Cui
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center , Omaha, NE , USA
| | - Jiangtao Luo
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center , Omaha, NE , USA
| | - Yeong C Kim
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center , Omaha, NE , USA
| | - Carrie Snyder
- Department of Preventive Medicine, Hereditary Cancer Center, Creighton University , Omaha, NE , USA
| | - Dina Becirovic
- Department of Preventive Medicine, Hereditary Cancer Center, Creighton University , Omaha, NE , USA
| | - Bradley Downs
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center , Omaha, NE , USA
| | - Henry Lynch
- Department of Preventive Medicine, Hereditary Cancer Center, Creighton University , Omaha, NE , USA
| | - San Ming Wang
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center , Omaha, NE , USA
| |
Collapse
|
14
|
Saadat M, Saadat S. Susceptibility to Breast Cancer and Intron 3 Ins/Del Genetic Polymorphism of DNA Double-Strand Break Repair Gene XRCC4. J Med Biochem 2015; 34:409-413. [PMID: 28356849 PMCID: PMC4922352 DOI: 10.2478/jomb-2014-0051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/27/2014] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Since genetic variations in X-ray cross-complementing group 4 (XRCC4; OMIM: 194363) repair gene might be associated with a reduction in cellular DNA repair capacity, it is hypothesized that XRCC4 Ins/Del (I/D) polymorphism (in intron 3 of the gene; rs28360071) may be a risk factor for breast cancer. Therefore, the present case-control study was carried out. METHODS The present case-control study included 407 females with breast cancer and a total of 394 healthy females from the general population matched with patients according to age. Genotypic analysis for the XRCC4 I/D polymorphism was performed by PCR. In order to investigate the effect of XRCC4 I/D polymorphism on age at diagnosis of breast cancer, the Kaplan-Meier survival analysis and the Cox proportional hazards regression model were used. RESULTS Based on the present case-control study, the ID (OR=0.95, 95% CI: 0.69-1.31, P=0.781) and DD (OR=1.24, 95% CI: 0.84-1.83, P=0.274) genotypes were not associated with breast cancer risk compared with the II genotype. Based on the Cox regression model, there was significant association between genotypes of I/D polymorphism and age at diagnosis of breast cancer (ID+DD vs II; HR=0.79, 95% CI: 0.64-0.98, P=0.036). CONCLUSION Although there was no significant association between XRCC4 I/D polymorphism and risk of breast cancer, patients having the II genotype have lower age at diagnosis in comparison with patients having ID+DD genotypes.
Collapse
Affiliation(s)
- Mostafa Saadat
- Department of Biology, College of Sciences, Shiraz University, Shiraz 71454, Iran
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Shekoofeh Saadat
- Department of Biology, College of Sciences, Shiraz University, Shiraz 71454, Iran
| |
Collapse
|
15
|
Saadat M, Pashaei S, Amerizade F. Susceptibility to gastric cancer and polymorphisms of insertion/deletion at the intron 3 of the XRCC4 and VNTR at the promoter region of the XRCC5. Pathol Oncol Res 2015; 21:689-693. [PMID: 25527410 DOI: 10.1007/s12253-014-9875-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 12/05/2014] [Indexed: 12/18/2022]
Abstract
The genes encoding X-ray repair cross-complementing group 4 (XRCC4; OMIM: 194363) and 5 (XRCC5; OMIM: 194364) are involved in repair of DNA double-strand breaks. To investigating the associations between polymorphisms of Insertion/Deletion (I/D, rs28360071) in the intron 3 of the XRCC4 and VNTR in the promoter region of the XRCC5 and risk of gastric cancer, the present study was carried out. We included 159 (56 females, 103 males) with gastric cancer and 242 (75 females, 167 males) healthy blood donors frequency matched for age and gender. Using PCR-based methods, the genotypes of the study polymorphisms were determined. The alleles of VNTR XRCC5 polymorphism divided into two groups: L (0 and 1 repeats) and H (2 and 3 repeats) alleles. For the I/D XRCC4 polymorphism, after stratification of the subjects according to their family history (FH) of cancer, either the ID (OR = 3.19, 95%CI: 1.35-7.50, P = 0.008) or the DD genotypes (OR = 4.62, 95%CI: 1.63-13.0, P = 0.004) among positive FH persons, increased the risk of gastric cancer compared with the reference group (persons who have negative FH and II genotype). For the VNTR XRCC5 polymorphism, the LH + HH genotypes among positive FH persons, increased the risk of gastric cancer compared with the reference group (persons who have negative FH and LL genotype) (OR = 2.88, 95%CI: 1.34-6.18, P = 0.006). Sensitivity analysis showed that the above mentioned associations were not occurred due to the maldistribution of the genotypes among missing data. The present study suggests that both polymorphisms of the XRCC4 and XRCC5 might be risk factors for gastric cancer development especially among persons with positive FH.
Collapse
Affiliation(s)
- Mostafa Saadat
- Department of Biology, College of Sciences, Shiraz University, Shiraz, 71454, Iran,
| | | | | |
Collapse
|
16
|
Allelic prevalence of intron 3 insertion/deletion genetic polymorphism of DNA double-strand break repair gene XRCC4 in four healthy Iranian populations. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2015. [DOI: 10.1016/j.ejmhg.2015.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
17
|
Jia J, Ren J, Yan D, Xiao L, Sun R. Association between the XRCC6 polymorphisms and cancer risks: a systematic review and meta-analysis. Medicine (Baltimore) 2015; 94:e283. [PMID: 25569644 PMCID: PMC4602821 DOI: 10.1097/md.0000000000000283] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/23/2014] [Accepted: 10/26/2014] [Indexed: 12/27/2022] Open
Abstract
A number of studies have been carried out to investigate the association of X-ray repair complementing defective repair in Chinese hamster cells 6 (XRCC6) polymorphisms and cancer risks, and the results remained inconsistent and inconclusive.To assess the effect of XRCC6 polymorphisms on cancer susceptibility, we conducted a meta-analysis, up to May 23rd 2014, 6267 cases with different types of tumor and 7536 controls from 20 published case-control studies. Summary odds ratios and corresponding 95% confidence intervals for XRCC6 polymorphism and cancer risk were estimated using fixed- or random-effects models when appropriate. Heterogeneity was assessed by chi-squared-based Q-statistic test, and the sources of heterogeneity were explored by subgroup analyses, logistic meta-regression analyses and Galbraith plot. Publication bias was evaluated by Begg funnel plot and Egger test. Sensitivity analyses were also performed.The rs2267437 polymorphism was associated with a significant increase in risks of overall cancers, breast cancer, renal cell carcinoma and hepatocellular carcinoma, and it could increase the cancer risk in Asian population; the rs5751129 polymorphism could increase the cancer risk in overall cancers; the rs132770 polymorphism was associated with the increased renal cell carcinoma risk; furthermore, the rs132793 polymorphism could decrease breast cancer risk and increase risks in "other cancers".Overall, the results provided evidences that the single nucleotide polymorphisms in XRCC6 promoter region might play different roles in various cancers, indicating different cancers have different tumorigenesis mechanisms. Our studies may perhaps supplement for the disease monitoring of cancers in the future, and additional studies to determine the exact molecular mechanism might provide us with interventions to protect the susceptible subgroups.
Collapse
Affiliation(s)
- Jing Jia
- From the Center for Molecular Medicine, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, P.R. China (JJ, JR, DY); Department of Urology, the First People's Hospital of Yunnan Province, KunMing University of Science and Technology, Kunming 650041, Yunnan, P.R. China (LX); Central Laboratory, Yunnan University of Chinese Traditional Medicine, Kunming 650500, Yunnan, P.R. China (RS); and Department of Immunology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China (RS)
| | | | | | | | | |
Collapse
|