1
|
Hu D, Miao M, Zhou H, Gu X, Wang X, Teichmann AT, Wang Q, Yang Y. A Case Report of Malignant Perivascular Epithelioid Cell Tumors of the Uterus and Literature Review. Int J Womens Health 2024; 16:619-628. [PMID: 38645980 PMCID: PMC11027917 DOI: 10.2147/ijwh.s453226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/09/2024] [Indexed: 04/23/2024] Open
Abstract
Perivascular epithelioid cell tumors (PEComas) are rare mesenchymal tumors originating from perivascular epithelioid cells. In gynecological system, the uterus is one of the most common sites affected by PEComas. Most PEComas are benign, and patients usually have a good prognosis. However, malignant uterus PEComa is rare, and better comprehensive epidemiological investigations are needed. To date, there are a few reported cases of uterus PEComa. We herein report a rare case of malignant PEComa occurred in the uterine corpus and cervix, possibly accompanied by pulmonary lymphangioleiomyomatosis (PLAM). In addition, 55 cases of malignant uterus PEComa were picked out and collected in the data base of PubMed and Medline. On the one hand, the age of onset, population distribution, clinical manifestations, metastatic sites and routes of metastasis were analysed. On the other hand, a summary of the epidemiology, pathogenesis, diagnosis, and treatments of uterus PEComa was given.
Collapse
Affiliation(s)
- Daifeng Hu
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Mengyue Miao
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Hui Zhou
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Xia Gu
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People’s Republic of China
| | - Xuedan Wang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Alexander Tobias Teichmann
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Qin Wang
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Youzhe Yang
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People’s Republic of China
| |
Collapse
|
2
|
Abstract
Components of the tumor microenvironment (TME) are known to play an essential role during malignant progression, but often in a context-dependent manner. In bone and soft tissue sarcomas, disease-regulatory activities in the TME remain largely uncharacterized. This chapter introduces the cellular, structural, and chemical composition of the sarcoma TME from a pathobiological and therapeutic perspective.Sarcomas are malignant tumors with diverse features when it comes to primary tumor appearance, metastatic potential, and response to treatment. Many of the classic subtypes are mainly composed of malignant cells and are therefore assumed to be committed to autocrine signaling. Some of the tumors are infiltrated by immune cells and contain necrotic areas or excessive amounts of extracellular matrix (ECM) that regulates tissue stiffness and interstitial fluid pressure. Vascular invasion and blood vessel characteristics can in some instances be considered in the prognostic setting.Further insights into the disease-regulatory activities of the sarcoma TME will provide essential knowledge on how to develop successful combination treatments targeting not only malignant cells, but also their routes of nutrition and ability to shield themselves toward existing therapy.
Collapse
|
3
|
Du H, Dreier JR, Zarei M, Wu CL, Bronson RW, Kwiatkowski DJ. A novel mouse model of hemangiopericytoma due to loss of Tsc2. Hum Mol Genet 2019; 27:4169-4175. [PMID: 30124871 DOI: 10.1093/hmg/ddy289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/06/2018] [Indexed: 01/01/2023] Open
Abstract
Hemangiopericytoma (HPC) is a rare vascular tumor, which is thought to originate from pericytes. However, no direct evidence for the cell of origin has been found, and the mechanism of HPC tumorigenesis is poorly understood. Here we report that loss of the tumor suppressor gene Tsc2 in pericytes using a FoxD1 promoter driven cre allele (Foxd1tm1(GFP/cre) Amc, FoxD1GC) leads to the formation of HPC in multiple sites. Tsc2ffFoxD1GC mice had stunted growth with seizures and tail and hind limb tremor with a median survival of 110 days. They also showed recombination in brain, spinal cord, tongue, liver, intestine and skeletal muscle. Distinctive perivascular tumors consisting of cells with oval nuclei and scant cytoplasm were identified in multiple sites in all Tsc2ffFoxD1GC mice. Immunohistochemistry staining showed a high expression of phospho-S6-S240/244, a hallmark of activated mTORC1, as well as pericyte markers NG2 and vimentin in these tumors. In summary, we demonstrate that loss of Tsc2 in pericytes generates HPC, the first mouse model of HPC reported.
Collapse
Affiliation(s)
- Heng Du
- Division of Pulmonary Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - John R Dreier
- Division of Pulmonary Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mahsa Zarei
- Division of Pulmonary Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Veterinary Physiology and Pharmacology, Texas A & M University, College Station, TX
| | - Chin-Lee Wu
- Departments of Pathology and Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - David J Kwiatkowski
- Division of Pulmonary Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Pericytes in Sarcomas and Other Mesenchymal Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1147:109-124. [PMID: 31147874 DOI: 10.1007/978-3-030-16908-4_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tumors of mesenchymal origin are a diverse group, with >130 distinct entities currently recognized by the World Health Organization. A subset of mesenchymal tumors grow or invade in a perivascular fashion, and their potential relationship to pericytes is a matter of ongoing interest. In fact, multiple intersections exist between pericytes and tumors of mesenchymal origin. First, pericytes are the likely cell of origin for a group of mesenchymal tumors with a common perivascular growth pattern. These primarily benign tumors grow in a perivascular fashion and diffusely express canonical pericyte markers such as CD146, smooth muscle actin (SMA), platelet-derived growth factor receptor beta (PDGFR-β), and RGS5. These benign tumors include glomus tumor, myopericytoma, angioleiomyoma, and myofibroma. Second and as suggested by animal models, pericytes may give rise to malignant sarcomas. This is not a suggestion that all sarcomas within a certain subtype arise from pericytes, but that genetic modifications within a pericyte cell type may give rise to sarcomas. Third, mesenchymal tumors that are likely not a pericyte derivative co-opt pericyte markers in certain contexts. These include the PEComa family of tumors and liposarcoma. Fourth and finally, as "guardians" that enwrap the microvasculature, nonneoplastic pericytes may be important in sarcoma disease progression.
Collapse
|
5
|
Shrestha S, Meyers C, Shen J, Giacomelli P, Scott MA, Soo C, Dry SM, Ting K, James AW. Ang-1 and Ang-2 expression in angiomyolipoma and PEComa family tumors. J Orthop 2017; 14:154-160. [PMID: 28053374 PMCID: PMC5196089 DOI: 10.1016/j.jor.2016.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/05/2016] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Perivascular epithelioid cell tumors (PEComa) are an uncommon family of soft tissue tumors. Previously, we described that the presence of pericyte antigens among PEComa family tumors differs extensively by histologic appearance. METHODS Here, we extend our findings using the pericyte antigens Angiopoietin-1 (Ang-1) and Angiopoietin-2 (Ang-2), using immunohistochemical detection in human tumor samples. RESULTS While Ang-1 showed no expression across any PEComa family tumor, Ang-2 showed expression that like other pericyte markers was largely determined by cytologic appearance. CONCLUSION/IMPLICATIONS Pericytic marker expression in PEComa may represent a true pericytic cell of origin, or alternatively aberrant pericyte marker adoption.
Collapse
Affiliation(s)
- Swati Shrestha
- School of Dentistry, University of California, Los Angeles, USA
| | - Carolyn Meyers
- Department of Pathology, The Johns Hopkins University, Baltimore, MD, USA
| | - Jia Shen
- School of Dentistry, University of California, Los Angeles, USA
| | | | | | - Chia Soo
- Orthopedic Hospital Research Center, University of California, Los Angeles, USA
- Department of Surgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sarah M. Dry
- Department of Pathology, The Johns Hopkins University, Baltimore, MD, USA
| | - Kang Ting
- School of Dentistry, University of California, Los Angeles, USA
| | - Aaron W. James
- Department of Pathology, The Johns Hopkins University, Baltimore, MD, USA
- Orthopedic Hospital Research Center, University of California, Los Angeles, USA
| |
Collapse
|
6
|
Shrestha S, Shen J, Giacomelli P, Scott MA, Soo C, Ting K, Péault B, Dry SM, James AW. Ang-2 but not Ang-1 expression in perivascular soft tissue tumors. J Orthop 2016; 14:147-153. [PMID: 27942190 DOI: 10.1016/j.jor.2016.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 07/03/2016] [Indexed: 12/09/2022] Open
Abstract
Perivascular soft tissue tumors are relatively uncommon neoplasms of unclear line of differentiation, although most are presumed to originate from pericytes. Previously, we reported a shared immunophenotype across these related tumor types. Here, we extend these findings to examine the expression of the pericyte markers angiopoietin-1 and -2 (Ang-1 and -2) among perivascular soft tissue tumors. Results showed consistent Ang-2 but not Ang-1 expression across tumor types. In summary, the absence of Ang-1 expression distinguishes perivascular from vascular soft tissue tumors. Ang-2 expression is present across perivascular soft tissue tumors, with some variation between histologic subtypes.
Collapse
Affiliation(s)
- Swati Shrestha
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jia Shen
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Paulina Giacomelli
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | - Chia Soo
- Orthopedic Hospital Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Surgery, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kang Ting
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Bruno Péault
- Orthopedic Hospital Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Center for Regenerative Medicine, University of Edinburgh, Edinburgh EH8 9JT, UK
| | - Sarah M Dry
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Aaron W James
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Orthopedic Hospital Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pathology, Johns Hopkins University, Baltimore, MD 21279, USA
| |
Collapse
|
7
|
James AW, Hindle P, Murray IR, West CC, Tawonsawatruk T, Shen J, Asatrian G, Zhang X, Nguyen V, Simpson AH, Ting K, Péault B, Soo C. Pericytes for the treatment of orthopedic conditions. Pharmacol Ther 2016; 171:93-103. [PMID: 27510330 DOI: 10.1016/j.pharmthera.2016.08.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 08/01/2016] [Indexed: 01/15/2023]
Abstract
Pericytes and other perivascular stem cells are of growing interest in orthopedics and tissue engineering. Long regarded as simple regulators of angiogenesis and blood pressure, pericytes are now recognized to have MSC (mesenchymal stem cell) characteristics, including multipotentiality, self-renewal, immunoregulatory functions, and diverse roles in tissue repair. Pericytes are typified by characteristic cell surface marker expression (including αSMA, CD146, PDGFRβ, NG2, RGS5, among others). Although alone no marker is absolutely specific for pericytes, collectively these markers appear to selectively identify an MSC-like pericyte. The purification of pericytes is most well described as a CD146+CD34-CD45- cell population. Pericytes and other perivascular stem cell populations have been applied in diverse orthopedic applications, including both ectopic and orthotopic models. Application of purified cells has sped calvarial repair, induced spine fusion, and prevented fibrous non-union in rodent models. Pericytes induce these effects via both direct and indirect mechanisms. In terms of their paracrine effects, pericytes are known to produce and secrete high levels of a number of growth and differentiation factors both in vitro and after transplantation. The following review will cover existing studies to date regarding pericyte application for bone and cartilage engineering. In addition, further questions in the field will be pondered, including the phenotypic and functional overlap between pericytes and culture-derived MSC, and the concept of pericytes as efficient producers of differentiation factors to speed tissue repair.
Collapse
Affiliation(s)
- Aaron W James
- School of Dentistry, University of California, Los Angeles, United States; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, United States; Orthopedic Hospital Research Center, University of California, Los Angeles, United States; Department of Pathology, Johns Hopkins University, Baltimore, MD, United States.
| | - Paul Hindle
- Department of Trauma and Orthopaedic Surgery, The University of Edinburgh, Edinburgh, United Kingdom
| | - Iain R Murray
- Department of Trauma and Orthopaedic Surgery, The University of Edinburgh, Edinburgh, United Kingdom; BHF Center for Vascular Regeneration & MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Christopher C West
- BHF Center for Vascular Regeneration & MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom; Department of Plastic and Reconstructive Surgery, St. Johns Hospital, Livingston, United Kingdom
| | - Tulyapruek Tawonsawatruk
- Department of Trauma and Orthopaedic Surgery, The University of Edinburgh, Edinburgh, United Kingdom; BHF Center for Vascular Regeneration & MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom; Department of Orthopaedics, Ramathibodi Hospital, Madihol University, Thailand
| | - Jia Shen
- School of Dentistry, University of California, Los Angeles, United States
| | - Greg Asatrian
- School of Dentistry, University of California, Los Angeles, United States
| | - Xinli Zhang
- School of Dentistry, University of California, Los Angeles, United States
| | - Vi Nguyen
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - A Hamish Simpson
- Department of Trauma and Orthopaedic Surgery, The University of Edinburgh, Edinburgh, United Kingdom
| | - Kang Ting
- School of Dentistry, University of California, Los Angeles, United States
| | - Bruno Péault
- Orthopedic Hospital Research Center, University of California, Los Angeles, United States; BHF Center for Vascular Regeneration & MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Chia Soo
- Orthopedic Hospital Research Center, University of California, Los Angeles, United States; Department of Surgery, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
8
|
Pericytic mimicry in well-differentiated liposarcoma/atypical lipomatous tumor. Hum Pathol 2016; 54:92-9. [PMID: 27063472 DOI: 10.1016/j.humpath.2016.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/01/2016] [Accepted: 03/03/2016] [Indexed: 12/12/2022]
Abstract
Pericytes are modified smooth muscle cells that closely enwrap small blood vessels, regulating and supporting the microvasculature through direct endothelial contact. Pericytes demonstrate a distinct immunohistochemical profile, including expression of smooth muscle actin, CD146, platelet-derived growth factor receptor β, and regulator of G-protein signaling 5. Previously, pericyte-related antigens have been observed to be present among a group of soft tissue tumors with a perivascular growth pattern, including glomus tumor, myopericytoma, and angioleiomyoma. Similarly, malignant tumor cells have been shown to have a pericyte-like immunoprofile when present in a perivascular location, seen in malignant melanoma, glioblastoma, and adenocarcinoma. Here, we examine well-differentiated liposarcoma specimens, which showed some element of perivascular areas with the appearance of smooth muscle (n = 7 tumors). Immunohistochemical staining was performed for pericyte antigens, including smooth muscle actin, CD146, platelet-derived growth factor receptor β, and regulator of G-protein signaling 5. Results showed consistent pericytic marker expression among liposarcoma tumor cells within a perivascular distribution. MDM2 immunohistochemistry and fluorescence in situ hybridization for MDM2 revealed that these perivascular cells were of tumor origin (7/7 tumors), whereas double immunohistochemical detection for CD31/CD146 ruled out an endothelial cell contribution. These findings further support the concept of pericytic mimicry, already established in diverse malignancies, and its presence in well-differentiated liposarcoma. The extent to which pericytic mimicry has prognostic significance in liposarcoma is as yet unknown.
Collapse
|