1
|
Expression level of VLDL receptor and VLDL-c levels in the malignant and benign breast tumors: The correlation with miRNA-4465 and miRNA-1297. Mol Cell Probes 2020; 53:101624. [DOI: 10.1016/j.mcp.2020.101624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 01/07/2023]
|
2
|
Long non-coding RNA 520 is a negative prognostic biomarker and exhibits pro-oncogenic function in nasopharyngeal carcinoma carcinogenesis through regulation of miR-26b-3p/USP39 axis. Gene 2019; 707:44-52. [DOI: 10.1016/j.gene.2019.02.093] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022]
|
3
|
Liu B, Wang Z, Cheng S, Du L, Yin Y, Yang Z, Zhou J. miR‑379 inhibits cell proliferation and epithelial‑mesenchymal transition by targeting CHUK through the NF‑κB pathway in non‑small cell lung cancer. Mol Med Rep 2019; 20:1418-1428. [PMID: 31173238 DOI: 10.3892/mmr.2019.10362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 03/29/2019] [Indexed: 11/05/2022] Open
Abstract
An increasing body of evidence has demonstrated that microRNA (miR) deregulation serves pivotal roles in tumor progression and metastasis. However, the function of miR‑379 in lung cancer remains understudied, particularly in non‑small cell lung cancer (NSCLC). Bioinformatics and luciferase reporter analyses confirmed that conserved helix‑loop‑helix ubiquitous kinase (CHUK) is a target of miR‑379, which may directly bind to the 3'‑untranslated region of CHUK and significantly downregulate its expression in NSCLC cells. Transwell assays were used to evaluate the role of miR‑379 in cell migration and invasion, and western blotting was used to address the association between miR‑379 and epithelial‑mesenchymal markers, including E‑cadherin, cytokeratin and Vimentin. In the present study, miR‑379 expression in NSCLC tissues and cell lines was downregulated, which may be associated with the poor survival of patients with NSCLC. miR‑379 may act as a tumor suppressor in NSCLC, potentially by suppressing cell growth and proliferation, delaying G1‑S transition, enhancing cell apoptosis and suppressing NSCLC cell migration and invasion. Furthermore, it was also observed that CHUK may function as an oncogene, and downregulation of CHUK induced by miR‑379 may partially rescue the malignant characteristics of tumors, indicating that miR‑379 may be suppressed in tumorigenesis. The overexpression of miR‑379 may prevent the growth of NSCLC tumors via CHUK suppression and the downstream nuclear factor‑κB pathway. The results of the present study demonstrated that miR‑379 may act as a tumor suppressor, and may constitute a potential biomarker and a promising therapeutic agent for the treatment for NSCLC.
Collapse
Affiliation(s)
- Bin Liu
- Department of Respiratory and Critical Care Medicine, Tianjin Chest Hospital, Tianjin 300000, P.R. China
| | - Zheng Wang
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin 300000, P.R. China
| | - Shizhao Cheng
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin 300000, P.R. China
| | - Lin Du
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin 300000, P.R. China
| | - Yan Yin
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin 300000, P.R. China
| | - Zhen Yang
- Department of Pathogen Biology, Basic Medical School, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Jingmin Zhou
- Department of Respiratory and Critical Care Medicine, Tianjin Chest Hospital, Tianjin 300000, P.R. China
| |
Collapse
|
4
|
LncRNA LINC00460 promotes tumor growth of human lung adenocarcinoma by targeting miR-302c-5p/FOXA1 axis. Gene 2019; 685:76-84. [DOI: 10.1016/j.gene.2018.10.058] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 12/18/2022]
|
5
|
Long non-coding RNA 319 facilitates nasopharyngeal carcinoma carcinogenesis through regulation of miR-1207-5p/KLF12 axis. Gene 2019; 680:51-58. [DOI: 10.1016/j.gene.2018.09.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 12/19/2022]
|
6
|
Ke SB, Qiu H, Chen JM, Shi W, Chen YS. MicroRNA-202-5p functions as a tumor suppressor in colorectal carcinoma by directly targeting SMARCC1. Gene 2018; 676:329-335. [PMID: 30144500 DOI: 10.1016/j.gene.2018.08.064] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023]
Abstract
Recently, microRNAs (miRNAs) have been emerged as critical regulators for human diseases and as prognostic markers in several tumors, including colorectal carcinoma (CRC). Herein, we identified a tumor-suppressive miRNA, miR-202-5p, which may suppress CRC tumorigenesis. SWI/SNF related, matrix associated, actin dependent regulator of chromatin subfamily c member 1 (SMARCC1) is a susceptibility gene in CRC. However, the role of SMARCC1 in CRC tumorigenesis has not been elucidated. In our present study, we demonstrated that miR-202-5p was a tumor-suppressive miRNA in CRC progression. We found that expression of miR-202-5p was obviously decreased in CRC tissues. Down-regulation of miR-202-5p was associated with postoperative survival. Overexpression of miR-202-5p inhibited the growth and metastasis of CRC cells. The SMARCC1 was a direct target of miR-202-5p and promoted the growth and metastasis of CRC cells. Further study showed that SMARCC1 could reverse the inhibitory effect of miR-202-5p on growth and metastasis of CRC cells. In conclusion, our data highlight the key role of miR-202-5p in the progression of CRC. Thus, miR-202-5p may be a potential prognostic marker and of treatment relevance for CRC progression intervention.
Collapse
Affiliation(s)
- Shao-Bo Ke
- Renmin Hospital of Wuhan University, Cancer Center, Wuhan 430071, PR China
| | - Hu Qiu
- Renmin Hospital of Wuhan University, Cancer Center, Wuhan 430071, PR China
| | - Jia-Mei Chen
- Renmin Hospital of Wuhan University, Cancer Center, Wuhan 430071, PR China
| | - Wei Shi
- Renmin Hospital of Wuhan University, Cancer Center, Wuhan 430071, PR China
| | - Yong-Shun Chen
- Renmin Hospital of Wuhan University, Cancer Center, Wuhan 430071, PR China.
| |
Collapse
|
7
|
Zhang ZW, Chen JJ, Xia SH, Zhao H, Yang JB, Zhang H, He B, Jiao J, Zhan BT, Sun CC. Long intergenic non-protein coding RNA 319 aggravates lung adenocarcinoma carcinogenesis by modulating miR-450b-5p/EZH2. Gene 2018; 650:60-67. [DOI: 10.1016/j.gene.2018.01.096] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 01/11/2023]
|
8
|
Chen G, Sun W, Hua X, Zeng W, Yang L. Long non-coding RNA FOXD2-AS1 aggravates nasopharyngeal carcinoma carcinogenesis by modulating miR-363-5p/S100A1 pathway. Gene 2018; 645:76-84. [DOI: 10.1016/j.gene.2017.12.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/06/2017] [Accepted: 12/13/2017] [Indexed: 12/29/2022]
|
9
|
Kang M, Shi J, Peng N, He S. MicroRNA-211 promotes non-small-cell lung cancer proliferation and invasion by targeting MxA. Onco Targets Ther 2017; 10:5667-5675. [PMID: 29238200 PMCID: PMC5713696 DOI: 10.2147/ott.s143084] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Recent studies have shown that microRNAs play a pivotal role in the pathogenesis of cancer. In our current study, the expression levels of microRNA-211 (miR-211) were measured in human non-small-cell lung cancer (NSCLC) tissues and cell lines. We found that miR-211 expression levels were increased in NSCLC tissues and cell lines and that the overexpression of miR-211 promotes cell proliferation and invasion. Using bioinformatics, we demonstrated that miR-211 binds to the 3'-untranslated region of MxA and overexpression of miR-211 suppresses the expression of MxA at both the transcriptional and translational levels in NSCLC cell lines. Furthermore, knockdown of MxA increased the proliferation and invasion of NSCLC cell lines in vitro. High levels of miR-211 expression were associated with a shorter survival time in patients with NSCLC. Taken together, these results suggest that miR-211 promotes tumor proliferation and invasion by regulating MxA expression in NSCLC. This study provides insights into molecular mechanisms of miR-211-mediated tumorigenesis and oncogenesis.
Collapse
Affiliation(s)
- Mafei Kang
- Department of Medical Oncology, Affiliated Hospital of Guilin Medical College, Guilin, People's Republic of China
| | - Jieqiong Shi
- Department of Medical Oncology, Affiliated Hospital of Guilin Medical College, Guilin, People's Republic of China
| | - Na Peng
- Department of Medical Oncology, Affiliated Hospital of Guilin Medical College, Guilin, People's Republic of China
| | - Shaozhong He
- Department of Medical Oncology, Affiliated Hospital of Guilin Medical College, Guilin, People's Republic of China
| |
Collapse
|
10
|
Xu G, Cai J, Wang L, Jiang L, Huang J, Hu R, Ding F. MicroRNA-30e-5p suppresses non-small cell lung cancer tumorigenesis by regulating USP22-mediated Sirt1/JAK/STAT3 signaling. Exp Cell Res 2017; 362:268-278. [PMID: 29174979 DOI: 10.1016/j.yexcr.2017.11.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 12/31/2022]
Abstract
MicroRNA-30e-5p (miR-30e-5p) is a tumor suppressor that is known to be downregulated in non-small cell lung cancer (NSCLC). However, how miR-30e-5p inhibits NSCLC tumorigenesis is not known. Ubiquitin-specific peptidase 22 (USP22) is upregulated in NSCLC and promotes tumorigenesis via a Sirt1-JAK-STAT3 pathway. In this study, we investigated whether miR-30e-5p inhibits tumor growth by targeting USP22 in NSCLC. Our results reveal that miR-30e-5p expression was correlated negatively with USP22 in NSCLC tissues. Luciferase reporter assays showed that miR-30e-5p negatively regulated USP22 expression by binding to a specific sequence in the 3'UTR. MiR-30e-5p overexpression and USP22 knockdown significantly inhibited tumor growth in vivo and induced cell cycle arrest and apoptosis in NSCLC cells in vitro. The effects of miR-30e-5p inhibition were prevented by USP22 knockdown. MiR-30e-5p inhibited SIRT1 expression and increased expression of p53 and the phosphorylated form of STAT3 (pSTAT3). Furthermore, miR-30e-5p prevented USP22-mediated regulation of SIRT1, pSTAT3, and p53 expression. Taken together, these findings suggest that miR-30e-5p suppresses NSCLC tumorigenesis by downregulatingUSP22-mediated Sirt1/JAK/STAT3 signaling. Our study has identified miR-30e-5p as a potential therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Gaojun Xu
- Department of Cardiothoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jie Cai
- Department of Cardiothoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Lei Wang
- Department of Cardiothoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Lianyong Jiang
- Department of Cardiothoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jianbing Huang
- Department of Cardiothoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Rui Hu
- Department of Cardiothoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Fangbao Ding
- Department of Cardiothoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
11
|
miR-455-5p promotes cell growth and invasion by targeting SOCO3 in non-small cell lung cancer. Oncotarget 2017; 8:114956-114965. [PMID: 29383133 PMCID: PMC5777745 DOI: 10.18632/oncotarget.22565] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 08/29/2017] [Indexed: 12/27/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. miR-455-5p has increased expression and the ability to promote tumorigenesis in certain cancers. However, the role of miR-455-5p in NSCLC has not been sufficiently investigated. SOCS3 (suppressor of cytokine signaling 3), an important tumor suppressor, is often aberrantly inactivated in various tumors, but it is currently unclear whether SOCO3 is a target of miR-455-5p. In the present study, we investigated the role of miR-455-5p in NSCLC. We found that the expression of miR-455-5p was up-regulated in NSCLC tumor tissues compared to corresponding noncancerous tissues, and its expression was correlated with metastasis and tumor node metastasis in NSCLC tissue. We then showed that miR-455-5p promoted migration, invasion and proliferation in NSCLC cell lines. Additionally, we also found that SOCS3 was the direct target gene of miR-455-5p. Consistently, the expression of SOCS3 was negatively correlated with the expression of miR-455-5p in NSCLC tissues. We further show that aberrant miR-455-5p expression is partially controlled by activated ERK signaling in NSCLC. Therefore, miR-455-5p could enhance the growth and metastasis of NSCLC by inhibiting SOCS3, thus providing a potential molecular therapeutic target for the treatment of NSCLC patients.
Collapse
|
12
|
Sun KY, Peng T, Chen Z, Song P, Zhou XH. Long non-coding RNA LOC100129148 functions as an oncogene in human nasopharyngeal carcinoma by targeting miR-539-5p. Aging (Albany NY) 2017; 9:999-1011. [PMID: 28328537 PMCID: PMC5391244 DOI: 10.18632/aging.101205] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/11/2017] [Indexed: 01/17/2023]
Abstract
Emerging studies have shown that long noncoding RNAs (lncRNAs) play critical roles in carcinogenesis and progression, including human nasopharyngeal carcinoma (NPC). The correlation between lncRNAs expression and NPC development has not been well identified in the recent literature. Recently, high-through put analysis reveals that LOC100129148 is highly expressed in NPC. However, whether the aberrant expression of LOC100129148 in NPC is corrected with tumorigenesis or prognosis has not been investigated. Herein, we identified that LOC100129148 was up-regulated in NPC tissues and cell lines, and higher expression of LOC100129148 resulted in a markedly poorer survival time. Over-expressed LOC100129148 favored, but silenced LOC100129148 hampered cell proliferation in NPC cells. Additionally, LOC100129148 enhanced the KLF12 expression through functioning as a competitive 'sponge' for miR-539-5p. Thus, our study reports a novel mechanism underlying NPC carcinogenesis, and provides a potential novel diagnosis and treatment biomarker for NPC.
Collapse
Affiliation(s)
- Kai-Yu Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, ZhongNan Hospital, Wuhan University, Wuhan 430071, Hubei, P. R. China
| | - Tao Peng
- Department of Otorhinolaryngology-Head and Neck Surgery, ZhongNan Hospital, Wuhan University, Wuhan 430071, Hubei, P. R. China
| | - Zhe Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, ZhongNan Hospital, Wuhan University, Wuhan 430071, Hubei, P. R. China
| | - Peng Song
- Department of Otorhinolaryngology-Head and Neck Surgery, ZhongNan Hospital, Wuhan University, Wuhan 430071, Hubei, P. R. China
| | - Xu-Hong Zhou
- Department of Otorhinolaryngology-Head and Neck Surgery, ZhongNan Hospital, Wuhan University, Wuhan 430071, Hubei, P. R. China
| |
Collapse
|
13
|
Kong YG, Cui M, Chen SM, Xu Y, Xu Y, Tao ZZ. LncRNA-LINC00460 facilitates nasopharyngeal carcinoma tumorigenesis through sponging miR-149-5p to up-regulate IL6. Gene 2017; 639:77-84. [PMID: 28987345 DOI: 10.1016/j.gene.2017.10.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/30/2017] [Accepted: 10/04/2017] [Indexed: 01/17/2023]
Abstract
Long non-coding RNAs (lncRNAs) have played crucial roles in various cancers, including nasopharyngeal carcinoma (NPC). In our study, we focused on the biological function and clinical significance of lncRNA LINC00460 in NPC. It was indicated that LINC00460 was markedly increased in NPC tissues and cells compared to their corresponding controls. Silencing LINC00460 was able to suppress NPC cell growth in vitro while overexpressing LINC00460 reversed this process. Moreover, in vivo tumor xenografts were established using CNE-1/SUNE-1 cells to detect the function of LINC00460 in NSCLC tumorigenesis. Rescue assay was performed to further confirm that LINC00460 contributed to the progression of NPC through regulating miR-149-5p/IL6 signal pathway. In conclusion, we have uncovered that LINC00460 could be regarded as a novel prognostic biomarker and therapeutic target in NPC diagnosis and treatment.
Collapse
Affiliation(s)
- Yong-Gang Kong
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Min Cui
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shi-Ming Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Yong Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Ze-Zhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China.
| |
Collapse
|
14
|
MRTF-A-miR-206-WDR1 form feedback loop to regulate breast cancer cell migration. Exp Cell Res 2017; 359:394-404. [DOI: 10.1016/j.yexcr.2017.08.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/05/2017] [Accepted: 08/16/2017] [Indexed: 01/07/2023]
|
15
|
Wang Q, Jiang S, Song A, Hou S, Wu Q, Qi L, Gao X. HOXD-AS1 functions as an oncogenic ceRNA to promote NSCLC cell progression by sequestering miR-147a. Onco Targets Ther 2017; 10:4753-4763. [PMID: 29033588 PMCID: PMC5628688 DOI: 10.2147/ott.s143787] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most common malignancies worldwide, and it occurs at a higher frequency in males. HOXD-AS1, an important cancer-associated long noncoding RNA (lncRNA), contributes to the development and progression of several cancers. However, the exact roles of HOXD-AS1 in NSCLC progression are still unknown. Here, we investigated the underlying mechanisms of HOXD-AS1 in human NSCLC tissues. We found that lncRNA HOXD-AS1 was specifically upregulated (P<0.001) in NSCLC tissues and promoted cancer cell growth by targeting miR-147a. Moreover, HOXD-AS1 expression positively correlated with NSCLC clinical pathologic characteristics (tumor size, P=0.006; tumor stage, P=0.044; recurrence, P=0.031) and survival rate (P=0.003). HOXD-AS1 knockdown reduced proliferation and promoted apoptosis of NSCLC cells. The dual-luciferase reporter assay showed that HOXD-AS1 could negatively regulate the expression of miR-147a. miR-147a inhibition abrogated the effect of HOXD-AS1 knockdown on the proliferation and apoptosis of NSCLC cells. Furthermore, HOXD-AS1 positively regulated the expression of pRB (a tumor suppressor protein) in NSCLC cells. Taken together, our data indicated that HOXD-AS1 might be an oncogenic lncRNA that promotes proliferation of NSCLC and could be a therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Qinghua Wang
- State Key Laboratory of Pharmaceutical Biotechnology.,MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing.,Laboratory Animal Center, Nantong University
| | - Shujun Jiang
- State Key Laboratory of Pharmaceutical Biotechnology.,MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing
| | - Anying Song
- State Key Laboratory of Pharmaceutical Biotechnology.,MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing
| | - Siyuan Hou
- State Key Laboratory of Pharmaceutical Biotechnology.,MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing
| | - Qinfeng Wu
- Department of Rehabilitation, Affiliated Hospital of Nantong University, Nantong University
| | - Longju Qi
- Interventional Therapy Department of the Third People's Hospital of Nantong City, Nantong University, Nantong, People's Republic of China
| | - Xiang Gao
- State Key Laboratory of Pharmaceutical Biotechnology.,MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing
| |
Collapse
|
16
|
Liu Y, Tao Z, Qu J, Zhou X, Zhang C. Long non-coding RNA PCAT7 regulates ELF2 signaling through inhibition of miR-134-5p in nasopharyngeal carcinoma. Biochem Biophys Res Commun 2017; 491:374-381. [DOI: 10.1016/j.bbrc.2017.07.093] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 07/15/2017] [Indexed: 02/09/2023]
|
17
|
Zhang CZ. Long intergenic non-coding RNA 668 regulates VEGFA signaling through inhibition of miR-297 in oral squamous cell carcinoma. Biochem Biophys Res Commun 2017; 489:404-412. [PMID: 28564590 DOI: 10.1016/j.bbrc.2017.05.155] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 05/26/2017] [Indexed: 01/17/2023]
Abstract
Recently, long noncoding RNAs (lncRNAs) have been reported to have crucial regulatory efficiency in human cancer biology. Long intergenic non-coding RNA 668 (LINC00668) was regarded as an oncogene in multiple cancers. However, the underlying molecular mechanism of LINC00668 in oral squamous cell carcinoma (OSCC) has not been studied. In this study, we first demonstrated that LINC00668 expression was up-regulated, which was correlated with tumor progression, and miR-297 down-regulated in OSCC tissues and cells. Importantly, LINC00668 expression was negatively correlated with miR-297 expression in OSCC tissues. Loss-of-function of LINC00668 revealed that LINC00668 functioned as a ceRNA for miR-297 to facilitate VEGFA expression, promoting OSCC progression. Furthermore, LINC00668 knockdown suppressed tumor growth and reduced the expression of proliferation antigen ki-67 in vivo. Finally, we confirmed that LINC00668 promoted OSCC activity through VEGFA signaling. In conclusion, these results suggest that LINC00668 promotes OSCC tumorigenesis via miR-297/VEGFA axis, which may provide a new target for the diagnosis and therapy of OSCC disease.
Collapse
Affiliation(s)
- Chen-Zheng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Luoyu Rd. 237, Wuhan 430079, People's Republic of China.
| |
Collapse
|
18
|
Long non-coding RNA FTH1P3 facilitates oral squamous cell carcinoma progression by acting as a molecular sponge of miR-224-5p to modulate fizzled 5 expression. Gene 2017; 607:47-55. [DOI: 10.1016/j.gene.2017.01.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/21/2016] [Accepted: 01/12/2017] [Indexed: 01/17/2023]
|