1
|
Singh T, Kaushik M, Mishra LC, Behl C, Singh V, Tuli HS. Exosomal miRNAs as novel avenues for breast cancer treatment. Front Genet 2023; 14:1134779. [PMID: 37035739 PMCID: PMC10073516 DOI: 10.3389/fgene.2023.1134779] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Breast cancer is the most commonly diagnosed cancer and a leading cause of death in women worldwide. It is a heterogeneous disease, as shown by the gene expression profiles of breast cancer samples. It begins in milk-producing ducts, with a high degree of diversity between and within tumors, as well as among cancer-bearing individuals. The enhanced prevalence of breast cancer is influenced by various hormonal, lifestyle, and environmental factors, and very early onset of the disease correlates strongly with the risk of local and distant recurrence. Many subtypes are difficult to treat with conventional therapeutic modalities, and therefore, optimal management and early diagnosis are the first steps to minimizing the mortality linked with breast cancer. The use of newer methods of nanotechnology extends beyond the concept of synthesizing drug delivery mechanisms into the creation of new therapeutics, such as delivering chemotherapeutics with nanomaterial properties. Exosomes, a class of nanovesicles, are emerging as novel tools for deciphering the patient-specific proteins and biomarkers across different disease models, including breast cancer. In this review, we address the role of exosomal miRNA in breast cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Tejveer Singh
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi, India
| | - Mahesh Kaushik
- Radiation and Cancer Therapeutics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Lokesh Chandra Mishra
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi, India
| | - Chesta Behl
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi, India
| | - Vijay Singh
- Immunology and Infectious Disease Biology Lab, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| |
Collapse
|
2
|
Li J, Zhang H, Gao F. Identification of miRNA biomarkers for breast cancer by combining ensemble regularized multinomial logistic regression and Cox regression. BMC Bioinformatics 2022; 23:434. [PMID: 36258162 PMCID: PMC9580207 DOI: 10.1186/s12859-022-04982-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Breast cancer is one of the most common cancers in women. It is necessary to classify breast cancer subtypes because different subtypes need specific treatment. Identifying biomarkers and classifying breast cancer subtypes is essential for developing appropriate treatment methods for patients. MiRNAs can be easily detected in tumor biopsy and play an inhibitory or promoting role in breast cancer, which are considered promising biomarkers for distinguishing subtypes. RESULTS A new method combing ensemble regularized multinomial logistic regression and Cox regression was proposed for identifying miRNA biomarkers in breast cancer. After adopting stratified sampling and bootstrap sampling, the most suitable sample subset for miRNA feature screening was determined via ensemble 100 regularized multinomial logistic regression models. 124 miRNAs that participated in the classification of at least 3 subtypes and appeared at least 50 times in 100 integrations were screened as features. 22 miRNAs from the proposed feature set were further identified as the biomarkers for breast cancer by using Cox regression based on survival analysis. The accuracy of 5 methods on the proposed feature set was significantly higher than on the other two feature sets. The results of 7 biological analyses illustrated the rationality of the identified biomarkers. CONCLUSIONS The screened features can better distinguish breast cancer subtypes. Notably, the genes and proteins related to the proposed 22 miRNAs were considered oncogenes or inhibitors of breast cancer. 9 of the 22 miRNAs have been proved to be markers of breast cancer. Therefore, our results can be considered in future related research.
Collapse
Affiliation(s)
- Juntao Li
- College of Mathematics and Information Science, Henan Normal University, Xinxiang, China
| | - Hongmei Zhang
- College of Mathematics and Information Science, Henan Normal University, Xinxiang, China
| | - Fugen Gao
- College of Mathematics and Information Science, Henan Normal University, Xinxiang, China
| |
Collapse
|
3
|
Tang LB, Ma SX, Chen ZH, Huang QY, Wu LY, Wang Y, Zhao RC, Xiong LX. Exosomal microRNAs: Pleiotropic Impacts on Breast Cancer Metastasis and Their Clinical Perspectives. BIOLOGY 2021; 10:biology10040307. [PMID: 33917233 PMCID: PMC8067993 DOI: 10.3390/biology10040307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/28/2021] [Accepted: 04/03/2021] [Indexed: 01/07/2023]
Abstract
As a major threat factor for female health, breast cancer (BC) has garnered a lot of attention for its malignancy and diverse molecules participating in its carcinogenesis process. Among these complex carcinogenesis processes, cell proliferation, epithelial-to-mesenchymal transition (EMT), mesenchymal-to-epithelial transition (MET), and angiogenesis are the major causes for the occurrence of metastasis and chemoresistance which account for cancer malignancy. MicroRNAs packaged and secreted in exosomes are termed "exosomal microRNAs (miRNAs)". Nowadays, more researches have uncovered the roles of exosomal miRNAs played in BC metastasis. In this review, we recapitulated the dual actions of exosomal miRNAs exerted in the aggressiveness of BC by influencing migration, invasion, and distant metastasis. Next, we presented how exosomal miRNAs modify angiogenesis and stemness maintenance. Clinically, several exosomal miRNAs can govern the transformation between drug sensitivity and chemoresistance. Since the balance of the number and type of exosomal miRNAs is disturbed in pathological conditions, they are able to serve as instructive biomarkers for BC diagnosis and prognosis. More efforts are needed to connect the theoretical studies and clinical traits together. This review provides an outline of the pleiotropic impacts of exosomal miRNAs on BC metastasis and their clinical implications, paving the way for future personalized drugs.
Collapse
Affiliation(s)
- Li-Bo Tang
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (L.-B.T.); (Q.-Y.H.); (L.-Y.W.); (Y.W.); (R.-C.Z.)
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China;
| | - Shu-Xin Ma
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China;
| | - Zhuo-Hui Chen
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China;
| | - Qi-Yuan Huang
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (L.-B.T.); (Q.-Y.H.); (L.-Y.W.); (Y.W.); (R.-C.Z.)
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China;
| | - Long-Yuan Wu
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (L.-B.T.); (Q.-Y.H.); (L.-Y.W.); (Y.W.); (R.-C.Z.)
- First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Yi Wang
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (L.-B.T.); (Q.-Y.H.); (L.-Y.W.); (Y.W.); (R.-C.Z.)
| | - Rui-Chen Zhao
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (L.-B.T.); (Q.-Y.H.); (L.-Y.W.); (Y.W.); (R.-C.Z.)
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China;
| | - Li-Xia Xiong
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (L.-B.T.); (Q.-Y.H.); (L.-Y.W.); (Y.W.); (R.-C.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang 330006, China
- Correspondence: ; Tel.: +86-791-8636-0556
| |
Collapse
|
4
|
Angiogenesis regulation by microRNAs and long non-coding RNAs in human breast cancer. Pathol Res Pract 2021; 219:153326. [PMID: 33601152 DOI: 10.1016/j.prp.2020.153326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are capable of regulating gene expression post-transcriptionally. Since the past decade, a number of in vitro, in vivo, and clinical studies reported the roles of these non-coding RNAs (ncRNAs) in regulating angiogenesis, an important cancer hallmark that is associated with metastases and poor prognosis. The specific roles of various miRNAs and lncRNAs in regulating angiogenesis in breast cancer, with particular focus on the downstream targets and signalling pathways regulated by these ncRNAs will be discussed in this review. In light of the recent trend in exploiting ncRNAs as cancer therapeutics, the potential use of miRNAs and lncRNAs as biomarkers and novel therapeutic agent against angiogenesis was also discussed.
Collapse
|
5
|
Chong ZX, Yeap SK, Ho WY. Roles of circulating microRNA(s) in human breast cancer. Arch Biochem Biophys 2020; 695:108583. [DOI: 10.1016/j.abb.2020.108583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022]
|
6
|
Expression level of VLDL receptor and VLDL-c levels in the malignant and benign breast tumors: The correlation with miRNA-4465 and miRNA-1297. Mol Cell Probes 2020; 53:101624. [DOI: 10.1016/j.mcp.2020.101624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 01/07/2023]
|
7
|
Leone P, Buonavoglia A, Fasano R, Solimando AG, De Re V, Cicco S, Vacca A, Racanelli V. Insights into the Regulation of Tumor Angiogenesis by Micro-RNAs. J Clin Med 2019; 8:jcm8122030. [PMID: 31757094 PMCID: PMC6947031 DOI: 10.3390/jcm8122030] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/07/2019] [Accepted: 11/14/2019] [Indexed: 12/26/2022] Open
Abstract
One of the hallmarks of cancer is angiogenesis, a series of events leading to the formation of the abnormal vascular network required for tumor growth, development, progression, and metastasis. MicroRNAs (miRNAs) are short, single-stranded, non-coding RNAs whose functions include modulation of the expression of pro- and anti-angiogenic factors and regulation of the function of vascular endothelial cells. Vascular-associated microRNAs can be either pro- or anti-angiogenic. In cancer, miRNA expression levels are deregulated and typically vary during tumor progression. Experimental data indicate that the tumor phenotype can be modified by targeting miRNA expression. Based on these observations, miRNAs may be promising targets for the development of novel anti-angiogenic therapies. This review discusses the role of various miRNAs and their targets in tumor angiogenesis, describes the strategies and challenges of miRNA-based anti-angiogenic therapies and explores the potential use of miRNAs as biomarkers for anti-angiogenic therapy response.
Collapse
Affiliation(s)
- Patrizia Leone
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.B.); (R.F.); (A.G.S.); (S.C.); (A.V.); (V.R.)
- Correspondence: ; Tel.: +39-080-5478050; Fax: +39-080-5478-045
| | - Alessio Buonavoglia
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.B.); (R.F.); (A.G.S.); (S.C.); (A.V.); (V.R.)
| | - Rossella Fasano
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.B.); (R.F.); (A.G.S.); (S.C.); (A.V.); (V.R.)
| | - Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.B.); (R.F.); (A.G.S.); (S.C.); (A.V.); (V.R.)
- Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, Viale Orazio Flacco, 65, 70124 Bari, Italy
| | - Valli De Re
- Bio-Proteomics Facility, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano (PN), Italy;
| | - Sebastiano Cicco
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.B.); (R.F.); (A.G.S.); (S.C.); (A.V.); (V.R.)
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.B.); (R.F.); (A.G.S.); (S.C.); (A.V.); (V.R.)
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.B.); (R.F.); (A.G.S.); (S.C.); (A.V.); (V.R.)
| |
Collapse
|
8
|
Zhang H, Liu A, Feng X, Tian L, Bo W, Wang H, Hu Y. MiR-132 promotes the proliferation, invasion and migration of human pancreatic carcinoma by inhibition of the tumor suppressor gene PTEN. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 148:65-72. [PMID: 28941804 DOI: 10.1016/j.pbiomolbio.2017.09.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/01/2017] [Accepted: 09/18/2017] [Indexed: 01/11/2023]
Abstract
MicroRNA (miRNAs) emerges as key oncogene or tumor suppressor in a variety of cancers including pancreatic carcinoma. In this study, we detected the role of miR-132 in development and progression of pancreatic cancer and the underlying mechanism. First, the expression of miR-132 in pancreatic carcinoma and adjacent non-cancerous tissues were detected by qRT-PCR. Then, the role of miR-132 in biological function of pancreatic carcinoma cells was investigated. Our results identified that miR-132 was generally upregulated in pancreatic carcinoma, and phosphatase and tensin homolog (PTEN) was generally downregulated. miR-132 and PTEN were associated with advanced tumor size, lymph node metastasis and Tumor-Nodes-Metastases (TNM) stage of pancreatic carcinoma. Downregulation of miR-132 inhibited proliferation, migration and invasion of pancreatic carcinoma cells. In contrast, overexpression of miR-132 promoted proliferation, migration and invasion of pancreatic carcinoma cells. The luciferase reporter system demonstrated PTEN is a direct target of miR-132. Overexpression of PTEN abrogated the induction of miR-132 on proliferation, migration and invasion of pancreatic carcinoma cells. Taken together, miR-132 promotes the proliferation, invasion and migration of human pancreatic cancer by inhibition of PTEN, and could be a tumor oncogene in development and progression of pancreatic carcinoma, and might be a candidate prognostic biomarker and a promising target for new treatment of human pancreatic cancer.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Hepatopancreatobiliary Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Aixiang Liu
- Department of Hepatopancreatobiliary Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Xielin Feng
- Department of Hepatopancreatobiliary Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Lang Tian
- Department of Hepatopancreatobiliary Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Wentao Bo
- Department of Hepatopancreatobiliary Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Haiqing Wang
- Department of Hepatopancreatobiliary Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Yong Hu
- Department of Hepatopancreatobiliary Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China.
| |
Collapse
|
9
|
Tomar D, Yadav AS, Kumar D, Bhadauriya G, Kundu GC. Non-coding RNAs as potential therapeutic targets in breast cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1863:194378. [PMID: 31048026 DOI: 10.1016/j.bbagrm.2019.04.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 12/15/2022]
Abstract
Paradigm shifting studies especially involving non-coding RNAs (ncRNAs) during last few decades have significantly changed the scientific perspectives regarding the complexity of cellular signalling pathways. Several studies have shown that the non-coding RNAs, initially ignored as transcriptional noise or products of erroneous transcription; actually regulate plethora of biological phenomena ranging from developmental processes to various diseases including cancer. Current strategies that are employed for the management of various cancers including that of breast fall short when their undesired side effects like Cancer Stem Cells (CSC) enrichment, low recurrence-free survival and development of drug resistance are taken into consideration. This review aims at exploring the potential role of ncRNAs as therapeutics in breast cancer, by providing a comprehensive understanding of their mechanism of action and function and their crucial contribution in regulating various aspects of breast cancer progression such as cell proliferation, angiogenesis, EMT, CSCs, drug resistance and metastasis. In addition, we also provide information about various strategies that can be employed or are under development to explore them as potential moieties that may be used for therapeutic intervention in breast cancer.
Collapse
Affiliation(s)
- Deepti Tomar
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India.
| | - Amit S Yadav
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India.
| | - Dhiraj Kumar
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| | - Garima Bhadauriya
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India
| | - Gopal C Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India.
| |
Collapse
|