1
|
Amadou A, Praud D, Marques C, Noh H, Frenoy P, Vigneron A, Coudon T, Deygas F, Severi G, Fervers B, Mancini FR. Dietary intake of polycyclic aromatic hydrocarbons (PAHs) and breast cancer risk: Evidence from the French E3N-Generations prospective cohort. ENVIRONMENT INTERNATIONAL 2025; 200:109505. [PMID: 40373460 DOI: 10.1016/j.envint.2025.109505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 04/25/2025] [Accepted: 04/29/2025] [Indexed: 05/17/2025]
Abstract
BACKGROUND While there is compelling evidence of the association between occupational exposure to polycyclic aromatic hydrocarbons (PAHs) and risk of breast cancer (BC), findings on PAH dietary exposure are less consistent. The present study aims to evaluate the association between PAH dietary intake and BC risk. METHODS The study included 67,879 women who completed a validated semi-quantitative dietary questionnaire (208 food items) from the E3N-Generations cohort study. PAH dietary intake was estimated by combining E3N food consumption data with food contamination levels obtained from the second French total diet study (TDS2). Cox regression was used to estimate adjusted hazard ratios (HRs) and 95 % confidence intervals (CIs) for the association between PAH dietary intake (sum of four PAHs (PAH4) namely benzo[a]pyrene (BaP), chrysene (CHR), benzo[a]anthracene (BaA) and benzo[b]fluoranthene (BbF)) and BC risk. Additionally, BaP, a surrogate for total PAHs, was investigated as the second exposure variable. RESULTS After an average follow-up of 17.6 years, 5,686 incident BC were diagnosed. Overall, the estimated HRs for the associations between each quintile of PAH4 and BC risk, taking the first quintile as reference, were all greater than 1, but were statistically significant only for the third quintile (HRQ3 vs Q1 = 1.10; CI: 1.01-1.20). By estrogen (ER) and progesterone (PR) hormone receptor status, we observed a positive association between PAH4 dietary intake and ER-PR- BC (HRQ4 vs Q1 = 1.34; CI: 1.01-1.76). Moreover, there was a borderline positive association with BaP, for the second (HRQ2 vs Q1 = 1.08; CI: 0.99-1.17) and third (HRQ3 vs Q1 = 1.07; CI: 0.98-1.16) quintiles. CONCLUSIONS This study supports a relationship between PAH4 dietary intake and BC risk, notably with a non-linear trend. A positive but marginal association was observed between BaP dietary intake and BC risk.
Collapse
Affiliation(s)
- Amina Amadou
- Department of Prevention, Cancer and Environment, Centre Léon Bérard, Lyon, France; Inserm U1296, "Radiation: Defense, Health and Environment", Lyon, France.
| | - Delphine Praud
- Department of Prevention, Cancer and Environment, Centre Léon Bérard, Lyon, France
| | - Chloé Marques
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Villejuif, France
| | - Hwayoung Noh
- Department of Prevention, Cancer and Environment, Centre Léon Bérard, Lyon, France
| | - Pauline Frenoy
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Villejuif, France
| | - Arnaud Vigneron
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon1, 69008 Lyon, France
| | - Thomas Coudon
- Department of Prevention, Cancer and Environment, Centre Léon Bérard, Lyon, France; Inserm U1296, "Radiation: Defense, Health and Environment", Lyon, France
| | - Floriane Deygas
- Department of Prevention, Cancer and Environment, Centre Léon Bérard, Lyon, France; Inserm U1296, "Radiation: Defense, Health and Environment", Lyon, France
| | - Gianluca Severi
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Villejuif, France; Department of Statistics, Computer Science and Applications (DISIA), University of Florence, Florence, Italy
| | - Béatrice Fervers
- Department of Prevention, Cancer and Environment, Centre Léon Bérard, Lyon, France; Inserm U1296, "Radiation: Defense, Health and Environment", Lyon, France
| | | |
Collapse
|
2
|
Liu J, Li H, Guo Z, Xiao X, Viscardi A, Xiang R, Liu H, Lin X, Han J. The changes and correlation of IL-6 and oxidative stress levels in RAW264.7 macrophage cells induced by PAHs in PM 2.5. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:61. [PMID: 38281271 DOI: 10.1007/s10653-023-01851-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024]
Abstract
The objective of this study was to investigate the effects of anthracene (Ant) with 3 rings, benzo[a]anthracene (BaA) with 4 rings and benzo[b]fluoranthene (BbF) with 5 rings in fine particulate matter (PM2.5) at different exposure times (4 h and 24 h) and low exposure levels (0 pg/mL, 0.1 pg/mL, 1 pg/mL, 100 pg/mL and 10,000 pg/mL) on RAW264.7 cells. The changes of interleukin-6 (IL-6) and oxidative stress levels in RAW264.7 cells were investigated by methyl-thiazolyl-tetrazolium (MTT) and enzyme-linked immunosorbent assay (ELISA). Pearson correlation analysis was used to analyze the correlation between variables. Ant, BaA and BbF induced the secretion of IL-6 and the occurrence of oxidative stress in RAW264.7 cells. The inflammatory effect and oxidative damage were exacerbated with prolonged exposure time, increasing exposure concentration and increasing number of PAH rings. At the same time, IL-6 was found to have a certain correlation with the levels of ROS, MDA and SOD. Exposure to atmospheric PAHs at low concentrations can also produce toxic effects on cells, IL-6 and oxidative stress work together in cell damage. The study is expected to provide a theoretical and experimental basis for air pollution control and human health promotion.
Collapse
Affiliation(s)
- Jiaxin Liu
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China
- Xi'an Gem Flower Chang Qing Hospital, Xi'an, 710200, China
| | - Hongqiu Li
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China
| | - Ziwei Guo
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China
- Xi'an Gem Flower Chang Qing Hospital, Xi'an, 710200, China
| | - Xiang Xiao
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China
- Xi'an Gem Flower Chang Qing Hospital, Xi'an, 710200, China
| | - Angelo Viscardi
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China
| | - Rongqi Xiang
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China
| | - Haobiao Liu
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China
| | - Xue Lin
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China
| | - Jing Han
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China.
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, China.
- Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
3
|
Jiménez T, Domínguez-Castillo A, Fernández de Larrea-Baz N, Lucas P, Sierra MÁ, Maeso S, Llobet R, Pino MN, Martínez-Cortés M, Pérez-Gómez B, Pollán M, Lope V, García-Pérez J. Mammographic density and exposure to air pollutants in premenopausal women: a cross-sectional study. Environ Health Prev Med 2024; 29:65. [PMID: 39581598 PMCID: PMC11604911 DOI: 10.1265/ehpm.24-00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/02/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Mammographic density (MD) is a well-established risk factor for breast cancer. Air pollution is a major public health concern and a recognized carcinogen. We aim to investigate the association between MD and exposure to specific air pollutants (SO2, CO, NO, NO2, NOx, PM2.5, PM10, and O3) in premenopausal females. METHODS This cross-sectional study, carried out in Spain, included 769 participants who attended their gynecological examinations. Hourly concentrations of the pollutants were extracted from the Air Quality Monitoring System of Madrid City over a 3-year period. Individual long-term exposure to pollutants was assessed by geocoding residential addresses and monitoring stations, and applying ordinary kriging to the 3-year annual mean concentrations of each pollutant to interpolate the surface of Madrid. This exposure variable was categorized into quartiles. In a first analysis, we used multiple linear regression models with the log-transformed percent MD as a continuous variable. In a second analysis, we used MD as a dichotomous variable ("high" density (MD > 50%) vs. "low" density (MD ≤ 50%)) and applied multiple logistic regression models to estimate odds ratios (ORs). We also analyzed the correlation among the pollutants, and performed a principal component analysis (PCA) to reduce the dimensionality of this set of eight correlated pollutants into a smaller set of uncorrelated variables (principal components (PCs)). Finally, the initial analyses were applied to the PCs to detect underlying patterns of emission sources. RESULTS The first analysis detected no association between MD and exposure to any of the pollutants. The second analysis showed non-statistically significant increased risks (ORQ4; IC95%) of high MD were detected in women with higher exposure to SO2 (1.50; 0.90-2.48), and PM2.5 (1.27; 0.77-2.10). In contrast, non-significant ORs < 1 were found in all exposure quartiles for NO (ORQ2 = 0.72, ORQ3 = 0.68, ORQ4 = 0.78), and PM10 (ORQ2 = 0.69, ORQ3 = 0.82, ORQ4 = 0.72). PCA identified two PCs (PC1: "traffic pollution" and PC2: "natural pollution"), and no association was detected between MD and proximity to these two PCs. CONCLUSIONS In general, our results show a lack of association between residential exposure to specific air pollutants and MD in premenopausal females. Future research is needed to confirm or refute these findings.
Collapse
Affiliation(s)
- Tamara Jiménez
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma de Madrid (UAM), C/Arzobispo Morcillo, 4, 28029, Madrid, Spain
- HM CINAC (Centro Integral de Neurociencias AC), Hospital Universitario Puerta del Sur, Fundación HM Hospitales, Av. Carlos V, 70, 28938 Móstoles, Spain
| | - Alejandro Domínguez-Castillo
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Avda. Monforte de Lemos, 5, 28029 Madrid, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública – CIBERESP), Avda. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Nerea Fernández de Larrea-Baz
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Avda. Monforte de Lemos, 5, 28029 Madrid, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública – CIBERESP), Avda. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Pilar Lucas
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Avda. Monforte de Lemos, 5, 28029 Madrid, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública – CIBERESP), Avda. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - María Ángeles Sierra
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Avda. Monforte de Lemos, 5, 28029 Madrid, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública – CIBERESP), Avda. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Sergio Maeso
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Avda. Monforte de Lemos, 5, 28029 Madrid, Spain
| | - Rafael Llobet
- Institute of Computer Technology, Universitat Politècnica de València, Valencia, Spain
| | - Marina Nieves Pino
- Servicio de Prevención y Promoción de la Salud, Madrid Salud, Madrid City Council, 62 Mediterraneo Avenue, Floor 6, Madrid, Spain
| | | | - Beatriz Pérez-Gómez
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Avda. Monforte de Lemos, 5, 28029 Madrid, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública – CIBERESP), Avda. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Marina Pollán
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Avda. Monforte de Lemos, 5, 28029 Madrid, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública – CIBERESP), Avda. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Virginia Lope
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Avda. Monforte de Lemos, 5, 28029 Madrid, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública – CIBERESP), Avda. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Javier García-Pérez
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Avda. Monforte de Lemos, 5, 28029 Madrid, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública – CIBERESP), Avda. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| |
Collapse
|
4
|
Roheel A, Khan A, Anwar F, Akbar Z, Akhtar MF, Imran Khan M, Sohail MF, Ahmad R. Global epidemiology of breast cancer based on risk factors: a systematic review. Front Oncol 2023; 13:1240098. [PMID: 37886170 PMCID: PMC10598331 DOI: 10.3389/fonc.2023.1240098] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/11/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Numerous reviews of the epidemiology and risk factors for breast cancer have been published previously which heighted different directions of breast cancer. AIM The present review examined the likelihood that incidence, prevalence, and particular risk factors might vary by geographic region and possibly by food and cultural practices as well. METHODS A systematic review (2017-2022) was conducted following Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines, reporting on epidemiological and risk factor reports from different world regions. Medical Subject Heading (MeSH) terms: "Breast neoplasm" "AND" country terms such as "Pakistan/epidemiology", "India/epidemiology", "North America/epidemiology", "South Africa/epidemiology" were used to retrieve 2068 articles from PubMed. After applying inclusion and exclusion terms, 49 papers were selected for systematic review. RESULTS Results of selected articles were summarized based on risk factors, world regions and study type. Risk factors were classified into five categories: demographic, genetic and lifestyle risk factors varied among countries. This review article covers a variety of topics, including regions, main findings, and associated risk factors such as genetic factors, and lifestyle. Several studies revealed that lifestyle choices including diet and exercise could affect a person's chance of developing breast cancer. Breast cancer risk has also been linked to genetic variables, including DNA repair gene polymorphisms and mutations in the breast cancer gene (BRCA). It has been found that most of the genetic variability links to the population of Asia while the cause of breast cancer due to lifestyle modifications has been found in American and British people, indicating that demographic, genetic, and, lifestyle risk factors varied among countries. CONCLUSION There are many risk factors for breast cancer, which vary in their importance depending on the world region. However, further investigation is required to better comprehend the particular causes of breast cancer in these areas as well as to create efficient prevention and treatment plans that cater to the local population.
Collapse
Affiliation(s)
- Amna Roheel
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Islamabad, Pakistan
| | - Aslam Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Islamabad, Pakistan
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Islamabad, Pakistan
| | - Zunaira Akbar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Islamabad, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Islamabad, Pakistan
| | - Mohammad Imran Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Islamabad, Pakistan
| | - Mohammad Farhan Sohail
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Islamabad, Pakistan
| | - Rizwan Ahmad
- Department of Natural Products, College of Clinical Pharmacy, Imam Andulrahman Bin Faisal University, Rakah, Dammam, Saudi Arabia
| |
Collapse
|
5
|
Gamboa-Loira B, López-Carrillo L, Mar-Sánchez Y, Stern D, Cebrián ME. Epidemiologic evidence of exposure to polycyclic aromatic hydrocarbons and breast cancer: A systematic review and meta-analysis. CHEMOSPHERE 2022; 290:133237. [PMID: 34929281 DOI: 10.1016/j.chemosphere.2021.133237] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer in women. However, only 58% of cases have been associated with known risk factors (reproductive, hormonal, lifestyles, and genetic), and the rest to unknown causes. Nevertheless, growing evidence suggests that exposure to environmental contaminants is an important risk factor for BC. Polycyclic aromatic hydrocarbons (PAHs) are formed during organic matter combustion, including smoking, grilled meat, and fuels, and are important carcinogenic constituents of environmental pollution. We examined the information generated by epidemiological studies evaluating the association between BC and PAHs exposure from multiple sources. Our work was conducted according to Conducting Systematic Reviews and Meta-Analyses of Observational Studies of Etiology (COSMOS-E) guidelines. We searched PubMed, Web of Science, and Scopus from January 2000 to December 2019. A total of 124 records were identified, and only 23 articles met all inclusion criteria. Occupational and/or environmental exposure to PAHs was significantly associated with BC, irrespective of exposure being assessed by direct or indirect methods. CYP1A1 and CYP1B1 adverse polymorphisms, familial BC history and smoking status, significantly strengthened the association between PAHs exposure and BC, whereas high fruit and vegetable intake had antagonistic associations. The positive relationships obtained in the studies here reviewed indicated that PAHs exposure is a risk factor for BC. Research needs include the improvement of exposure assessment, particularly identification of specific PAHs, reconstruction of time-varying and distant past exposures and further studies on the interaction between known BC factors and modifiable diet and life-style factors allowing BC prevention and control.
Collapse
Affiliation(s)
- Brenda Gamboa-Loira
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Av. Universidad 655, Col. Santa María Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico.
| | - Lizbeth López-Carrillo
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Av. Universidad 655, Col. Santa María Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico.
| | - Yuliana Mar-Sánchez
- CINVESTAV Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico.
| | - Dalia Stern
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Av. Universidad 655, Col. Santa María Ahuacatitlán, C.P. 62100, Cuernavaca, Morelos, Mexico.
| | - Mariano E Cebrián
- CINVESTAV Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico.
| |
Collapse
|
6
|
Wang J, Wang C, Yang L, Li K. Identification of the critical genes and miRNAs in hepatocellular carcinoma by integrated bioinformatics analysis. Med Oncol 2022; 39:21. [PMID: 34982264 DOI: 10.1007/s12032-021-01622-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is a global health problem with complex etiology and pathogenesis. Microarray data are increasingly being used as a novel and effective method for cancer pathogenesis analysis. An integrative analysis of genes and miRNA for HCC was conducted to unravel the potential prognosis of HCC. Two gene microarray datasets (GSE89377 and GSE101685) and two miRNA expression profiles (GSE112264 and GSE113740) were obtained from Gene Expression Omnibus database. A total of 177 differently expressed genes (DEGs) and 80 differently expressed miRNAs (DEMs) were screened out. Functional enrichment of DEGs was proceeded by Clue GO and these genes were significantly enriched in the chemical carcinogenesis pathway. A protein-protein interaction network was then established on the STRING platform, and ten hub genes (CDC20, TOP2A, ASPM, NCAPG, AURKA, CYP2E1, HMMR, PRC1, TYMS, and CYP4A11) were visualized via Cytoscape software. Then, a miRNA-target network was established to identify the hub dysregulated miRNA. A key miRNA (hsa-miR-124-3p) was filtered. Finally, the miRNA-target-transcription factor network was constructed for hsa-miR-124-3p. The network for hsa-miR-124-3p included two transcription factors (TFs) and five targets. These identified DEGs and DEMs, TFs, targets, and regulatory networks may help advance our understanding of the underlying pathogenesis of HCC.
Collapse
Affiliation(s)
- Jun Wang
- School of Biological Food and Environment, Hefei University, Hefei, 230601, China.
| | - Chuyan Wang
- School of Biological Food and Environment, Hefei University, Hefei, 230601, China
| | - Liuqing Yang
- School of Biological Food and Environment, Hefei University, Hefei, 230601, China
| | - Kexin Li
- School of Biological Food and Environment, Hefei University, Hefei, 230601, China
| |
Collapse
|
7
|
Relationship between particulate matter exposure and female breast cancer incidence and mortality: a systematic review and meta-analysis. Int Arch Occup Environ Health 2020; 94:191-201. [PMID: 32914230 DOI: 10.1007/s00420-020-01573-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 08/28/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The associations of PM with the risk and prognosis of breast cancer have not been determined. This systematic review aimed to provide an updated understanding of the relationship between PM exposure level and breast cancer incidence and mortality. METHODS Articles from Web of Science and PubMed databases were methodically inspected until March 8, 2020. In final, 15 studies were kept for analysis, which provided necessary information to estimate the impact of PM on breast cancer risk and prognosis. These studies were combined for quantitative analyses to evaluate the effect of per 10 μg /m3 increment exposure of PM2.5 (< 2.5 μm in aerodynamic diameter) and PM10 (< 10 μm in aerodynamic diameter) using random-effects model. RESULTS PM2.5 exposure was associated with increased breast cancer mortality (relative risk [RR] = 1.09; 95% confidence interval [CI]: 1.02, 1.16; PQ-test = 0.158). No association of PM2.5 (1.02; 0.97, 1.18; 0.308) and PM10 (1.03; 0.98, 1.09; 0.009) with the increase incidence of breast cancer was observed. Stratified analysis suggested that PM2.5 was associated with the increase mortality of breast cancer (1.10; 1.03, 1.17; 0.529) in subgroup of developed country. PM10 was associated with breast cancer incidence based on studies published after 2017 (1.08; 1.00, 1.15; 0.157) and European studies (1.15; 1.06, 1.25; 0.502). CONCLUSIONS Our study indicated that PM2.5 exposure was related to breast cancer mortality. Further researches in this field are needed to validate the conclusion.
Collapse
|
8
|
Liu Y, Li Z, Zhang Z, Zhao T, Wang M, Wang X. Determination of Urinary Hydroxyl PAHs Using Graphene Oxide@Diatomite Based Solid-Phase Extraction and High-Performance Liquid Chromatography. Molecules 2019; 24:molecules24224186. [PMID: 31752256 PMCID: PMC6891718 DOI: 10.3390/molecules24224186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/10/2019] [Accepted: 11/18/2019] [Indexed: 11/16/2022] Open
Abstract
A diatomite supported graphene oxide composite (GO@Dt–NH2) was fabricated and explored as a solid-phase extraction adsorbent coupled with high performance liquid chromatography to determine the trace hydroxyl polycyclic aromatic hydrocarbons (2-hydroxy-naphthalene, 2-hydroxy-fluorene, 1-hydroxy-phenanthrene, and 1-hydroxy-pyrene) in urine samples. The fabricated composites were characterized by X-ray powder diffractometry and scanning electron microscopy. GO@Dt–NH2 offered enhanced adsorption affinity towards the analytes compared with the bare diatomite. The amount of graphene oxide and the factors affecting solid-phase extraction were investigated in detail. Under the optimized conditions, the method gave good linearity (0.30–200 ng/mL) and a low detection limit (0.10–0.15 ng/mL) for the hydroxyl polycyclic aromatic hydrocarbons. The average recovery for spiked urine samples with three levels ranged from 90.6% to 100%. The intra-day and inter-day relative standard deviations were in the range of 1.8–6.4% and 2.7–11.8%, respectively. Besides, the GO@Dt–NH2 provided enrichment factors of 18–20 and superior purification ability. The developed method was successfully applied to the determination of hydroxyl polycyclic aromatic hydrocarbons in urine samples from smoking volunteers.
Collapse
Affiliation(s)
| | | | | | | | - Manman Wang
- Correspondence: (M.W.); (X.W.); Tel.: +86-031-5880-5576 (M.W.); +86-031-5880-5576 (X.W.)
| | - Xuesheng Wang
- Correspondence: (M.W.); (X.W.); Tel.: +86-031-5880-5576 (M.W.); +86-031-5880-5576 (X.W.)
| |
Collapse
|
9
|
Saini G, Ogden A, McCullough LE, Torres M, Rida P, Aneja R. Disadvantaged neighborhoods and racial disparity in breast cancer outcomes: the biological link. Cancer Causes Control 2019; 30:677-686. [PMID: 31111277 PMCID: PMC7043809 DOI: 10.1007/s10552-019-01180-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/09/2019] [Indexed: 02/07/2023]
Abstract
Neighborhoods encompass complex environments comprised of unique economic, physical, and social characteristics that have a profound impact on the residing individual's health and, collectively, on the community's wellbeing. Neighborhood disadvantage (ND) is one of several factors that prominently contributes to racial breast cancer (BC) health disparities in American women. African American (AA) women develop more aggressive breast cancer features, such as triple-negative receptor status and more advanced histologic grade and tumor stage, and suffer worse clinical outcomes than European American (EA) women. While the adverse effects of neighborhood disadvantage on health, including increased risk of cancer and decreased longevity, have recently come into focus, the specific molecular mechanisms by which neighborhood disadvantage increases BC risk and worsens BC outcomes (survivorship, recurrence, mortality) are not fully elucidated. This review illuminates the probable biological links between neighborhood disadvantage and predominantly BC risk, with an emphasis on stress reactivity and inflammation, epigenetics and telomere length in response to adverse neighborhood conditions.
Collapse
Affiliation(s)
- Geetanjali Saini
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Angela Ogden
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Lauren E McCullough
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Mylin Torres
- Department of Radiation Oncology, Glenn Family Breast Center, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Padmashree Rida
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|