1
|
Qiu F, Li Y, Zhou L, Wu Y, Wu Y, Fan Z, Wang Y, Qin D, Li C. Mapping and visualization of global research progress on deubiquitinases in ovarian cancer: a bibliometric analysis. Front Pharmacol 2024; 15:1445037. [PMID: 39329115 PMCID: PMC11424541 DOI: 10.3389/fphar.2024.1445037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Background Ovarian cancer is a highly aggressive malignancy with limited therapeutic options and a poor prognosis. Deubiquitinating enzymes (DUBs) have emerged as critical regulators of protein ubiquitination and proteasomal degradation, influencing various cellular processes relevant to cancer pathogenesis. In this study, the research progress between ovarian cancer and DUBs was mapped and visualized using bibliometrics, and the expression patterns and biological roles of DUBs in ovarian cancer were summarized. Methods Studies related to DUBs in ovarian cancer were extracted from the Web of Science Core Collection (WoSCC) database. VOSviewer 1.6.20, CiteSpace 6.3.R1, and R4.3.3 were used for bibliometric analysis and visualization. Results For analysis 243 articles were included in this study. The number of publications on DUBs in ovarian cancer has gradually increased each year. China, the United States, and the United Kingdom are at the center of this field of research. The Johns Hopkins University, Genentech, and Roche Holding are the main research institutions. David Komander, Zhihua Liu, and Richard Roden are the top authors in this field. The top five journals with the largest publication volumes in this field are Biochemical and Biophysical Research Communications, Journal of Biological Chemistry, PLOS One, Nature Communications, and Oncotarget. Keyword burst analysis identified five research areas: "deubiquitinating enzyme," "expression," "activation," "degradation," and "ubiquitin." In addition, we summarized the expression profiles and biological roles of DUBs in ovarian cancer, highlighting their roles in tumor initiation, growth, chemoresistance, and metastasis. Conclusion An overview of the research progress is provided in this study on DUBs in ovarian cancer over the last three decades. It offers insight into the most cited papers and authors, core journals, and identified new trends.
Collapse
Affiliation(s)
- Fang Qiu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Yuntong Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Lile Zhou
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Yingli Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunzhao Wu
- Yusuf Hamied Department of Chemistry, University of Cambridge, London, United Kingdom
| | - Zhilei Fan
- School of Public Health, Fudan University, Shanghai, China
| | - Yingying Wang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongjun Qin
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaoqun Li
- Department of Histology and Embryology, Shanghai Key Laboratory of Cell Engineering, Naval Medical University, Shanghai, China
| |
Collapse
|
2
|
Xia G, Guo Y, Zhang J, Han M, Meng X, Lv J. An Overview of the Deubiquitinase USP53: A Promising Diagnostic Marker and Therapeutic Target. Curr Protein Pept Sci 2024; 25:708-718. [PMID: 39300775 DOI: 10.2174/0113892037292440240518194922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 09/22/2024]
Abstract
Ubiquitination and deubiquitination are important mechanisms to maintain normal physiological activities, and their disorders or imbalances can lead to various diseases. As a subgroup of deubiquitinases (DUBs), the ubiquitin-specific peptidase (USP) family is closely related to many biological processes. USP53, one of the family members, is widely expressed in human tissues and participates in a variety of life activities, such as cell apoptosis, nerve transmission, and bone remodeling. Mutations in the USP53 gene can cause cholestasis and deafness and may also be a potential cause of schizophrenia. Knockout of USP53 can alleviate neuropathic pain induced by chronic constriction injury. Loss of USP53 up-regulates RANKL expression, promotes the cytogenesis and functional activity of osteoclasts, and triggers osteodestructive diseases. USP53 plays a tumor-suppressive role in lung cancer, renal clear cell carcinoma, colorectal cancer, liver cancer, and esophageal cancer but reduces the radiosensitivity of cervical cancer and esophageal cancer to induce radioresistance. Through the in-depth combination of literature and bioinformatics, this review suggested that USP53 may be a good potential biomarker or therapeutic target for diseases.
Collapse
Affiliation(s)
- Guangce Xia
- First College of Clinical Medicine, Hebei North University, Zhangjiakou 075000, China
- First Hospital of Qinhuangdao Affiliated to Hebei North University, Qinhuangdao 066000, P.R. China
| | - Yulin Guo
- First College of Clinical Medicine, Hebei North University, Zhangjiakou 075000, China
- First Hospital of Qinhuangdao Affiliated to Hebei North University, Qinhuangdao 066000, P.R. China
| | - Jiajia Zhang
- First College of Clinical Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Meng Han
- Breast Disease Diagnosis and Treatment Center, First Hospital of Qinhuangdao, Qinhuangdao, Hebei Province 066000, P.R. China
| | - Xiangchao Meng
- Breast Disease Diagnosis and Treatment Center, First Hospital of Qinhuangdao, Qinhuangdao, Hebei Province 066000, P.R. China
| | - Ji Lv
- Breast Disease Diagnosis and Treatment Center, First Hospital of Qinhuangdao, Qinhuangdao, Hebei Province 066000, P.R. China
| |
Collapse
|
3
|
Cheng H, Zhang L, Yang S, Ren Q, Chang S, Jin Y, Mou W, Qin H, Yang W, Zhang X, Zhang W, Wang H. Integration of clinical characteristics and molecular signatures of the tumor microenvironment to predict the prognosis of neuroblastoma. J Mol Med (Berl) 2023; 101:1421-1436. [PMID: 37712965 DOI: 10.1007/s00109-023-02372-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/26/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
This study aimed to analyze the clinical characteristics, cell types, and molecular characteristics of the tumor microenvironment to better predict the prognosis of neuroblastoma (NB). The gene expression data and corresponding clinical information of 498 NB patients were obtained from the Gene Expression Omnibus (GEO: GSE62564) and ArrayExpress (accession: E-MTAB-8248). The relative cell abundances were estimated using single-sample gene set enrichment analysis (ssGSEA) with the R gene set variation analysis (GSVA) package. We performed Cox regression analyses to identify marker genes indicating cell subsets and combined these with prognostically relevant clinical factors to develop a new prognostic model. Data from the E-MTAB-8248 cohort verified the predictive accuracy of the prognostic model. Single-cell RNA-seq data were analyzed by using the R Seurat package. Multivariate survival analysis for each gene, using clinical characteristics as cofactors, identified 34 prognostic genes that showed a significant correlation with both event-free survival (EFS) and overall survival (OS) (log-rank test, P value < 0.05). The pathway enrichment analysis revealed that these prognostic genes were highly enriched in the marker genes of NB cells with mesenchymal features and protein translation. Ultimately, USP39, RPL8, IL1RAPL1, MAST4, CSRP2, ATP5E, International Neuroblastoma Staging System (INSS) stage, age, and MYCN status were selected to build an optimized Cox model for NB risk stratification. These samples were divided into two groups using the median of the risk score as a cutoff. The prognosis of samples in the poor prognosis group (PP) was significantly worse than that of samples in the good prognosis group (GP) (log-rank test, P value < 0.0001, median EFS: 640.5 vs. 2247 days, median OS: 1279.5 vs. 2519 days). The risk model was also regarded as a prognostic indicator independent of MYCN status, age, and stage. Finally, through scRNA-seq data, we found that as an important prognostic marker, USP39 might participate in the regulation of RNA splicing in NB. Our study established a multivariate Cox model based on gene signatures and clinical characteristics to better predict the prognosis of NB and revealed that mesenchymal signature genes of NB cells, especially USP39, were more abundant in patients with a poor prognosis than in those with a good prognosis. KEY MESSAGES: Our study established a multivariate Cox model based on gene signatures and clinical characteristics to better predict the prognosis of NB and revealed that mesenchymal signature genes of NB cells, especially USP39, were more abundant in patients with a poor prognosis than in those with a good prognosis. USP39, RPL8, IL1RAPL1, MAST4, CSRP2, ATP5E, International Neuroblastoma Staging System (INSS) stage, age, and MYCN status were selected to build an optimized Cox model for NB risk stratification. These samples were divided into two groups using the median of the risk score as a cutoff. The prognosis of samples in the poor prognosis group (PP) was significantly worse than that of samples in the good prognosis group (GP). Finally, through scRNA-seq data, we found that as an important prognostic marker, USP39 might participate in the regulation of RNA splicing in NB.
Collapse
Affiliation(s)
- Haiyan Cheng
- Department of Surgical Oncology, MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, 100045, China
| | - Li Zhang
- Shanghai Institute of Precision Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Shen Yang
- Department of Surgical Oncology, MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, 100045, China
| | - Qinghua Ren
- Department of Surgical Oncology, MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, 100045, China
| | - Saishuo Chang
- Department of Surgical Oncology, MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, 100045, China
| | - Yaqiong Jin
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Wenjun Mou
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Hong Qin
- Department of Surgical Oncology, MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, 100045, China
| | - Wei Yang
- Department of Surgical Oncology, MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, 100045, China
| | - Xianwei Zhang
- Zhengzhou Key Laboratory of Precise Diagnosis and Treatment of Children's Malignant Tumors, Department of Pediatric Oncology Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Wancun Zhang
- Zhengzhou Key Laboratory of Precise Diagnosis and Treatment of Children's Malignant Tumors, Department of Pediatric Oncology Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Huanmin Wang
- Department of Surgical Oncology, MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, 100045, China.
| |
Collapse
|
4
|
Yuan J, Li X, Zhang Y, Zhang G, Cheng W, Wang W, Lei Y, Song G. USP39 attenuates the antitumor activity of cisplatin on colon cancer cells dependent on p53. Cell Biol Toxicol 2023; 39:1995-2010. [PMID: 34822033 DOI: 10.1007/s10565-021-09683-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/18/2021] [Indexed: 01/05/2023]
Abstract
Cisplatin is the effective chemotherapeutic drug in colon cancer treatment, but its therapeutic efficacy is limited by intrinsic or acquired drug resistance and detrimental side effects. Therefore, improving the effect of cisplatin chemotherapy remains a great challenge. The previous study identified that USP39 was relevant to cisplatin resistance of lung cancer. However, the function and mechanisms of USP39 regulating the chemosensitivity of cisplatin in colorectal cancer remain unclear. In this study, we reveal that USP39 is associated with colon cancer cells sensitivity to cisplatin. Depletion of USP39 enhances the cisplatin-induced apoptosis in HCT116 cells. Conversely, overexpression of USP39 attenuates apoptosis in RKO cells. Furthermore, we demonstrate that USP39 depletion promotes apoptosis induced by cisplatin, which is related with the induction of oxidative stress and DNA damage response. Further studies show that USP39 regulates cisplatin-induced apoptosis dependent on p53. The underlying mechanism is demonstrated by knocking down USP39, that results in p53 upregulation, associated with its prolonged half-life. Collectively, our findings reveal that USP39 might be a negative factor of the p53 mediated cisplatin sensitivity of colon cancer, and suggest USP39 as a potential molecular target for cisplatin chemotherapy of colon cancer.
Collapse
Affiliation(s)
- Jiahui Yuan
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
- Shenzhen University General Hospital, Shenzhen, 518055, China
| | - Xiaomei Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Yuqi Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Gongye Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Weipeng Cheng
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Weiwei Wang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Yongbin Lei
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Gang Song
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
5
|
Zhao T, Xiao X, Li L, Wu X, Yuan T. Rosline promotes p21 expression to inhibit ovarian cancer cell proliferation via p53-independent pathway. J Obstet Gynaecol Res 2023. [PMID: 37317483 DOI: 10.1111/jog.15708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/28/2023] [Indexed: 06/16/2023]
Abstract
AIM To investigate the effect of benzothiazole derivatives (Rosline) on ovarian cancer and the potential mechanism. METHODS Ovarian cancer tissues were collected clinically and immunohistochemistry was used to detect the expression of p53 and p21. Ovarian cancer cells were exposed to 0, 2.5, 5, 10 μmol/L Rosline for 24 h. 100 nmol/L Pifithrin-α pre-incubation was used to inhibit the transcriptional activity of p53. CCK-8 and BrdU assays were used to detect the effects of different concentrations of rosline on the proliferation and cell cycle of OVCAR420 and SKOV3 cells. Flow cytometry assay was used to detect cell cycle. The transcriptional and translational expression of p21 and p53 were detected by RT-qPCR and Western blot. RESULTS p21 was expressed in ovarian cancer tissues without p53 expression. Rosline inhibits the proliferation of ovarian cancer cells and blocks the cell cycle progression. Meanwhile, Rosline promotes p21 expression in ovarian cancer cells at both mRNA and protein levels, but with no significant effect on p53 expression. Besides, Rosline promotes p21 expression, inhibits cell proliferation, and blocks the cell cycle via the p53-independent pathway. CONCLUSION Rosline promoted p21 expression thereby inhibiting cell proliferation and blocks the cell cycle via p53-independent pathway.
Collapse
Affiliation(s)
- Ting Zhao
- Department of Gynecology, Yunnan First People's Hospital, Kunming, Yunnan, China
| | - Xiao Xiao
- Department of Gynecology, Yunnan First People's Hospital, Kunming, Yunnan, China
| | - Lingchuan Li
- Department of Gynecology, Yunnan First People's Hospital, Kunming, Yunnan, China
| | - Xiaomei Wu
- Department of Gynecology, Yunnan First People's Hospital, Kunming, Yunnan, China
| | - Tao Yuan
- Department of Gynecology, Yunnan First People's Hospital, Kunming, Yunnan, China
| |
Collapse
|
6
|
Ma X, Han S, Liu Y, Chen Y, Li P, Liu X, Chang L, Chen YA, Chen F, Hou Q, Hou L. DAPL1 prevents epithelial-mesenchymal transition in the retinal pigment epithelium and experimental proliferative vitreoretinopathy. Cell Death Dis 2023; 14:158. [PMID: 36841807 PMCID: PMC9968328 DOI: 10.1038/s41419-023-05693-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/27/2023]
Abstract
Epithelial-mesenchymal transition (EMT) of the retinal pigment epithelium (RPE) is a hallmark of the pathogenesis of proliferative vitreoretinopathy (PVR) that can lead to severe vision loss. Nevertheless, the precise regulatory mechanisms underlying the pathogenesis of PVR remain largely unknown. Here, we show that the expression of death-associated protein-like 1 (DAPL1) is downregulated in PVR membranes and that DAPL1 deficiency promotes EMT in RPE cells in mice. In fact, adeno-associated virus (AAV)-mediated DAPL1 overexpression in RPE cells of Dapl1-deficient mice inhibited EMT in physiological and retinal-detachment states. In a rabbit model of PVR, ARPE-19 cells overexpressing DAPL1 showed reduced ability to induce experimental PVR, and AAV-mediated DAPL1 delivery attenuated the severity of experimental PVR. Furthermore, a mechanistic study revealed that DAPL1 promotes P21 phosphorylation and its stabilization partially through NFκB (RelA) in RPE cells, whereas the knockdown of P21 led to neutralizing effects on DAPL1-dependent EMT inhibition and enhanced the severity of experimental PVR. These results suggest that DAPL1 acts as a novel suppressor of RPE-EMT and has an important role in antagonizing the pathogenesis of experimental PVR. Hence, this finding has implications for understanding the mechanism of and potential therapeutic applications for PVR.
Collapse
Affiliation(s)
- Xiaoyin Ma
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325003, China. .,State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, 325003, China.
| | - Shuxian Han
- grid.268099.c0000 0001 0348 3990Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325003 China ,grid.412679.f0000 0004 1771 3402Department of Ophthalmology, First Affiliated Hospital of Anhui Medical University, Hefei, 230022 China
| | - Youjia Liu
- grid.268099.c0000 0001 0348 3990Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325003 China
| | - Yu Chen
- grid.268099.c0000 0001 0348 3990Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325003 China ,grid.268099.c0000 0001 0348 3990State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, 325003 China
| | - Pingping Li
- grid.268099.c0000 0001 0348 3990Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325003 China
| | - Xiaoyan Liu
- grid.268099.c0000 0001 0348 3990Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325003 China
| | - Lifu Chang
- grid.268099.c0000 0001 0348 3990Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325003 China
| | - Ying-ao Chen
- grid.268099.c0000 0001 0348 3990Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325003 China
| | - Feng Chen
- grid.268099.c0000 0001 0348 3990School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325003 China
| | - Qiang Hou
- grid.268099.c0000 0001 0348 3990State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, 325003 China
| | - Ling Hou
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325003, China. .,State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, 325003, China.
| |
Collapse
|
7
|
Qiao Y, Wang B, Yan Y, Niu L. Long noncoding RNA ST8SIA6-AS1 promotes cell proliferation and metastasis in triple-negative breast cancer by targeting miR-145-5p/CDCA3 to inactivate the p53/p21 signaling pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:2398-2411. [PMID: 35730485 DOI: 10.1002/tox.23605] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/08/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC), the most aggressive subtype of breast cancer, always exhibits a poor prognosis due to high risk of early recurrence and distant metastasis. Long noncoding RNAs (lncRNAs) have been reported as crucial regulators in breast cancer. However, the functions and action mechanisms of lncRNA ST8SIA6-AS1 in TNBC are largely unknown. METHODS Quantitative real-time PCR and western blot assays were used to measure the expression levels of different genes and proteins. Cell proliferation ability was monitored by CCK-8, colony forming and flow cytometry assays. Wound healing and transwell assays were performed to evaluate cell migration and invasion. The regulatory mechanisms of ST8SIA6-AS1 in TNBC were confirmed by dual luciferase reporter and RIP assays. A mouse xenograft model was established to investigate the role of ST8SIA6-AS1 in TNBC tumor growth. RESULTS ST8SIA6-AS1 displayed a higher expression in TNBC cells. Silencing ST8SIA6-AS1 impaired cell proliferation, cell cycle progression, migration, and invasion in vitro, and slowed tumor growth in vivo. Mechanistically, ST8SIA6-AS1 could facilitate the expression of its target CDCA3 (cell division cycle associated protein 3) and inactivate the p53/p21 signaling by inhibiting miR-145-5p. Moreover, miR-145-5p exerted a tumor-suppressive activity by targeting CDCA3. The tumor-suppressive effects induced by ST8SIA6-AS1 knockdown were abated by the down-regulation of miR-145-5p or the up-regulation of CDCA3. CONCLUSION ST8SIA6-AS1 exerts an oncogenic role in TNBC by interacting with miR-145-5p to up-regulate CDCA3 expression and inactivate the p53/p21 signaling, highlighting ST8SIA6-AS1 as a promising molecular target to combat TNBC.
Collapse
Affiliation(s)
- Yan Qiao
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bin Wang
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yu Yan
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ligang Niu
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
8
|
High Expression of Ubiquitin-Specific Protease 39 and Its Roles in Prognosis in Patients with Hepatocellular Carcinoma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2021:6233175. [PMID: 34987596 PMCID: PMC8723855 DOI: 10.1155/2021/6233175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Ubiquitin-specific protease 39 is mainly involved in mRNA splicing and multiple kinds of tumors. Accumulating evidence has shown that USP39 participated in the proliferation and metastasis of hepatocellular carcinoma (HCC). The present study aimed to demonstrate the association between USP39 expression and clinical features and the diagnostic value in HCC based on the Cancer Genome Atlas (TCGA). METHODS A comprehensive analysis for expression of USP39 in HCC was conducted by using multiple databases. The mRNA level of USP39, clinical features, survival rate, and diagnostic value in HCC were analyzed using data from TCGA. The Gene Set Enrichment Analysis (GSEA) was conducted to analyze signaling pathways correlated with USP39 expression in HCC. RESULTS The mRNA level of USP39 was significantly elevated in HCC. The expression of USP39 showed significant correlation with T stage, pathologic stage, tumor status, age, and histologic grade. Logistic analysis demonstrated that high expression of USP39 was significantly associated with older age, tumor status, advanced pathologic stage, T stage, and higher histologic grade. Univariate Cox regression analysis showed that high expression of USP39 was significantly associated with advanced T stage, pathological stage, and tumor status. Multivariate Cox analysis confirmed the result that USP39 expression was an independent prognostic factor for overall survival (OS) in HCC. Results of Kaplan-Meier curves showed that high expression of USP39 had a significant association with poor OS, disease-free survival (DSS), and progress-free interval (PFI) in HCC. ROC analysis indicated that USP39 could be regarded as a promising marker for distinguishing HCC from nontumor. CONCLUSION The increased USP39 might play roles in the progression, diagnosis, and prognosis of HCC.
Collapse
|
9
|
Bioinformatic analysis of key pathways and genes shared between endometriosis and ovarian cancer. Arch Gynecol Obstet 2021; 305:1329-1342. [DOI: 10.1007/s00404-021-06285-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 10/13/2021] [Indexed: 12/11/2022]
|
10
|
Mullard M, Lavaud M, Regnier L, Tesfaye R, Ory B, Rédini F, Verrecchia F. Ubiquitin-specific proteases as therapeutic targets in paediatric primary bone tumours? Biochem Pharmacol 2021; 194:114797. [PMID: 34678225 DOI: 10.1016/j.bcp.2021.114797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 01/04/2023]
Abstract
In children and young adults, primary malignant bone tumours are mainly composed of osteosarcoma and Ewing's sarcoma. Despite advances in treatments, nearly 40% of patients succumb to these diseases. In particular, the clinical outcome of metastatic osteosarcoma or Ewing's sarcoma remains poor, with less than 30% of patients who develop metastases surviving five years after initial diagnosis. Over the last decade, the cancer research community has shown considerable interest in the processes of protein ubiquitination and deubiquitination. In particular, a growing number of studies show the relevance to target the ubiquitin-specific protease (USP) family in various cancers. This review provides an update on the current knowledge regarding the implication of these USPs in the progression of bone sarcoma: osteosarcoma and Ewing's sarcoma.
Collapse
Affiliation(s)
- Mathilde Mullard
- INSERM, Université de Nantes, UMR1238, "Bone Sarcoma and Remodelling of Calcified Tissues", 44000 Nantes, France
| | - Mélanie Lavaud
- INSERM, Université de Nantes, UMR1238, "Bone Sarcoma and Remodelling of Calcified Tissues", 44000 Nantes, France
| | - Laura Regnier
- INSERM, Université de Nantes, UMR1238, "Bone Sarcoma and Remodelling of Calcified Tissues", 44000 Nantes, France
| | - Robel Tesfaye
- INSERM, Université de Nantes, UMR1238, "Bone Sarcoma and Remodelling of Calcified Tissues", 44000 Nantes, France
| | - Benjamin Ory
- INSERM, Université de Nantes, UMR1238, "Bone Sarcoma and Remodelling of Calcified Tissues", 44000 Nantes, France
| | - Françoise Rédini
- INSERM, Université de Nantes, UMR1238, "Bone Sarcoma and Remodelling of Calcified Tissues", 44000 Nantes, France
| | - Franck Verrecchia
- INSERM, Université de Nantes, UMR1238, "Bone Sarcoma and Remodelling of Calcified Tissues", 44000 Nantes, France.
| |
Collapse
|
11
|
Dong X, Liu Z, Zhang E, Zhang P, Wang Y, Hang J, Li Q. USP39 promotes tumorigenesis by stabilizing and deubiquitinating SP1 protein in hepatocellular carcinoma. Cell Signal 2021; 85:110068. [PMID: 34197957 DOI: 10.1016/j.cellsig.2021.110068] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 01/17/2023]
Abstract
Deubiquitinating enzyme (DUB) can hydrolyze ubiquitin molecules from the protein bound with ubiquitin, and reversely regulate protein degradation. The ubiquitin-specific proteases (USP) family are cysteine proteases, which owns the largest members and diverse structure among the currently known DUB. The important roles of ubiquitin-specific peptidase39 (USP39) in cancer have been widely investigated. However, little is known about the putative de-ubiquitination function of USP39 in hepatocellular carcinoma (HCC) and the mechanisms of USP39 regulating tumor growth. Here, we used bioinformatics methods to reveal that USP39 expression is significantly upregulated in several cancer database. High expression of USP39 is correlated with poor prognosis of HCC patients. Then, we identify the specificity protein 1 (SP1), as a novel subtract of the USP39. We observe that USP39 stabilizes SP1 protein and prolongs its half-life by promoting its deubiquitylation pathway. In addition, our results show USP39 promotes cell proliferation by SP1-depenet manner in vivo and vitro. Knocking-down of USP39 promotes the cell apoptosis and arrest of the cell cycle, whereas SP1 forcefully reversed these effects. Taken together, our results suggest that USP39 participates the deubiquitylation of SP1 protein, providing new pathway for understand the upstream signaling for oncogene SP1.
Collapse
Affiliation(s)
- Xiao Dong
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Zixin Liu
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Navy Military Medical University (Second Military Medical University), Shanghai, China
| | - Encheng Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Pingzhao Zhang
- Department of Oncology, Changzhou No.2 People's Hospital, the Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Yuqi Wang
- Department of Oncology, Changzhou No.2 People's Hospital, the Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Junjie Hang
- Department of Oncology, Changzhou No.2 People's Hospital, the Affiliated Hospital of Nanjing Medical University, Changzhou, China.
| | - Qi Li
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China.
| |
Collapse
|
12
|
Cruz L, Soares P, Correia M. Ubiquitin-Specific Proteases: Players in Cancer Cellular Processes. Pharmaceuticals (Basel) 2021; 14:ph14090848. [PMID: 34577547 PMCID: PMC8469789 DOI: 10.3390/ph14090848] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 12/14/2022] Open
Abstract
Ubiquitination represents a post-translational modification (PTM) essential for the maintenance of cellular homeostasis. Ubiquitination is involved in the regulation of protein function, localization and turnover through the attachment of a ubiquitin molecule(s) to a target protein. Ubiquitination can be reversed through the action of deubiquitinating enzymes (DUBs). The DUB enzymes have the ability to remove the mono- or poly-ubiquitination signals and are involved in the maturation, recycling, editing and rearrangement of ubiquitin(s). Ubiquitin-specific proteases (USPs) are the biggest family of DUBs, responsible for numerous cellular functions through interactions with different cellular targets. Over the past few years, several studies have focused on the role of USPs in carcinogenesis, which has led to an increasing development of therapies based on USP inhibitors. In this review, we intend to describe different cellular functions, such as the cell cycle, DNA damage repair, chromatin remodeling and several signaling pathways, in which USPs are involved in the development or progression of cancer. In addition, we describe existing therapies that target the inhibition of USPs.
Collapse
Affiliation(s)
- Lucas Cruz
- i3S—Instituto de Investigação e Inovação Em Saúde, Universidade Do Porto, 4200-135 Porto, Portugal; (L.C.); (P.S.)
- Ipatimup—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4250-475 Porto, Portugal
- FCUP—Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Paula Soares
- i3S—Instituto de Investigação e Inovação Em Saúde, Universidade Do Porto, 4200-135 Porto, Portugal; (L.C.); (P.S.)
- Ipatimup—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4250-475 Porto, Portugal
- FCUP—Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
- Departamento de Patologia, Faculdade de Medicina da Universidade Do Porto, 4200-139 Porto, Portugal
| | - Marcelo Correia
- i3S—Instituto de Investigação e Inovação Em Saúde, Universidade Do Porto, 4200-135 Porto, Portugal; (L.C.); (P.S.)
- Ipatimup—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4250-475 Porto, Portugal
- Correspondence:
| |
Collapse
|
13
|
Li X, Yuan J, Song C, Lei Y, Xu J, Zhang G, Wang W, Song G. Deubiquitinase USP39 and E3 ligase TRIM26 balance the level of ZEB1 ubiquitination and thereby determine the progression of hepatocellular carcinoma. Cell Death Differ 2021; 28:2315-2332. [PMID: 33649471 PMCID: PMC8329202 DOI: 10.1038/s41418-021-00754-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 01/31/2023] Open
Abstract
Emerging evidence suggests that USP39 plays an important role in the development of hepatocellular carcinoma (HCC). However, the molecular mechanism by which USP39 promotes HCC progression has not been well defined, especially regarding its putative ubiquitination function. Zinc-finger E-box-binding homeobox 1 (ZEB1) is a crucial inducer of epithelial-to-mesenchymal transition (EMT) to promote tumor proliferation and metastasis, but the regulatory mechanism of ZEB1 stability in HCC remains enigmatic. Here, we reveal that USP39 is highly expressed in human HCC tissues and correlated with poor prognosis. Moreover, USP39 depletion inhibits HCC cell proliferation and metastasis by promoting ZEB1 degradation. Intriguingly, deubiquitinase USP39 has a direct interaction with the E3 ligase TRIM26 identified by co-immunoprecipitation assays and immunofluorescence staining assays. We further demonstrate that TRIM26 is lowly expressed in human HCC tissues and inhibits HCC cell proliferation and migration. TRIM26 promotes the degradation of ZEB1 protein by ubiquitination in HCC. Deubiquitinase USP39 and E3 ligase TRIM26 function in an antagonistic pattern, but not a competitive pattern, and play key roles in controlling ZEB1 stability to determine the HCC progression. In summary, our data reveal a previously unknown mechanism that USP39 and TRIM26 balance the level of ZEB1 ubiquitination and thereby determine HCC cell proliferation and migration. This novel mechanism may provide new approaches to target treatment for inhibiting HCC development by restoring TRIM26 or suppressing USP39 expression in HCC cases with high ZEB1 protein levels.
Collapse
Affiliation(s)
- Xiaomei Li
- grid.12955.3a0000 0001 2264 7233Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Jiahui Yuan
- grid.12955.3a0000 0001 2264 7233Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Conghua Song
- grid.12955.3a0000 0001 2264 7233Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Yongbin Lei
- grid.12955.3a0000 0001 2264 7233Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Jiajia Xu
- grid.12955.3a0000 0001 2264 7233Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Gongye Zhang
- grid.12955.3a0000 0001 2264 7233Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Weiwei Wang
- grid.12955.3a0000 0001 2264 7233Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Gang Song
- grid.12955.3a0000 0001 2264 7233Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
14
|
Cerrito MG, Grassilli E. Identifying Novel Actionable Targets in Colon Cancer. Biomedicines 2021; 9:biomedicines9050579. [PMID: 34065438 PMCID: PMC8160963 DOI: 10.3390/biomedicines9050579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer is the fourth cause of death from cancer worldwide, mainly due to the high incidence of drug-resistance toward classic chemotherapeutic and newly targeted drugs. In the last decade or so, the development of novel high-throughput approaches, both genome-wide and chemical, allowed the identification of novel actionable targets and the development of the relative specific inhibitors to be used either to re-sensitize drug-resistant tumors (in combination with chemotherapy) or to be synthetic lethal for tumors with specific oncogenic mutations. Finally, high-throughput screening using FDA-approved libraries of “known” drugs uncovered new therapeutic applications of drugs (used alone or in combination) that have been in the clinic for decades for treating non-cancerous diseases (re-positioning or re-purposing approach). Thus, several novel actionable targets have been identified and some of them are already being tested in clinical trials, indicating that high-throughput approaches, especially those involving drug re-positioning, may lead in a near future to significant improvement of the therapy for colon cancer patients, especially in the context of a personalized approach, i.e., in defined subgroups of patients whose tumors carry certain mutations.
Collapse
|
15
|
Wang S, Wang Z, Li J, Qin J, Song J, Li Y, Zhao L, Zhang X, Guo H, Shao C, Kong B, Liu Z. Splicing factor USP39 promotes ovarian cancer malignancy through maintaining efficient splicing of oncogenic HMGA2. Cell Death Dis 2021; 12:294. [PMID: 33731694 PMCID: PMC7969951 DOI: 10.1038/s41419-021-03581-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/16/2022]
Abstract
Aberrant expression of splicing factors was found to promote tumorigenesis and the development of human malignant tumors. Nevertheless, the underlying mechanisms and functional relevance remain elusive. We here show that USP39, a component of the spliceosome, is frequently overexpressed in high-grade serous ovarian carcinoma (HGSOC) and that an elevated level of USP39 is associated with a poor prognosis. USP39 promotes proliferation/invasion in vitro and tumor growth in vivo. Importantly, USP39 was transcriptionally activated by the oncogene protein c-MYC in ovarian cancer cells. We further demonstrated that USP39 colocalizes with spliceosome components in nuclear speckles. Transcriptomic analysis revealed that USP39 deletion led to globally impaired splicing that is characterized by skipped exons and overrepresentation of introns and intergenic regions. Furthermore, RNA immunoprecipitation sequencing showed that USP39 preferentially binds to exon-intron regions near 5' and 3' splicing sites. In particular, USP39 facilitates efficient splicing of HMGA2 and thereby increases the malignancy of ovarian cancer cells. Taken together, our results indicate that USP39 functions as an oncogenic splicing factor in ovarian cancer and represents a potential target for ovarian cancer therapy.
Collapse
Affiliation(s)
- Shourong Wang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zixiang Wang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jieyin Li
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Junchao Qin
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jianping Song
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yingwei Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Ling Zhao
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiyu Zhang
- Molecular Medicine and Genetics, Cheeloo College of Medicine, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Haiyang Guo
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, 250012, China
| | - Changshun Shao
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.
| | - Zhaojian Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
16
|
Yuan J, Li X, Zhang G, Cheng W, Wang W, Lei Y, Ma Q, Song G. USP39 mediates p21-dependent proliferation and neoplasia of colon cancer cells by regulating the p53/p21/CDC2/cyclin B1 axis. Mol Carcinog 2021; 60:265-278. [PMID: 33634905 DOI: 10.1002/mc.23290] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 12/21/2022]
Abstract
Ubiquitin-specific protease 39 (USP39) is frequently overexpressed in a variety of cancers, and involved in the regulation of various biological processes, such as cell proliferation, cell cycle progression, apoptosis and pre-messenger RNA splicing. Nevertheless, the biological roles and mechanisms of USP39 in colon cancer remain largely unknown. In this study, we analyzed whether USP39 can be a molecular target for the treatment of colon cancer. Whilst overexpression of USP39 was detected in human colon cancer tissues and cell lines, USP39 knockdown was observed to inhibit the growth and subcutaneous tumor formation of colon cancer cells. Further analysis showed that USP39 knockdown can stabilize p21 by prolonging the half-life of p21 and by upregulating the promoter activity of p21. The RS domain and USP domain of USP39 were found to play an essential role. Additionally, our findings revealed that USP39 plays a regulatory role in the proliferation of colon cancer cells by the p53/p21/CDC2/cyclin B1 axis in a p21-dependent manner. Taken together, this study provided the theoretical basis that may facilitate the development of USP39 as a novel potential target of colon cancer therapy.
Collapse
Affiliation(s)
- Jiahui Yuan
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Xiaomei Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Gongye Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Weipeng Cheng
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Weiwei Wang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Yongbin Lei
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Qiujuan Ma
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Gang Song
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
17
|
Wang X, Cheng G, Miao Y, Qiu F, Bai L, Gao Z, Huang Y, Dong L, Niu X, Wang X, Li Y, Tang H, Xu Y, Song X. Piezo type mechanosensitive ion channel component 1 facilitates gastric cancer omentum metastasis. J Cell Mol Med 2021; 25:2238-2253. [PMID: 33439514 PMCID: PMC7882944 DOI: 10.1111/jcmm.16217] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/28/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022] Open
Abstract
The peritoneum, especially the omentum, is a common site for gastric cancer (GC) metastasis. Our aim was to expound the role and mechanisms of Piezo1 on GC omentum metastasis. A series of functional assays were performed to examine cell proliferation, clone formation, apoptosis, Ca2+ influx, mitochondrial membrane potential (MMP) and migration after overexpression or knockdown of Piezo1. A GC peritoneal implantation and metastasis model was conducted. After infection by si‐Piezo1, the number and growth of tumours were observed in abdominal cavity. Fibre and angiogenesis were tested in metastatic tumour tissues. Piezo1 had higher expression in GC tissues with omentum metastasis and metastatic lymph node tissues than in GC tissues among 110 patients. High Piezo1 expression was associated with lymph metastasis, TNM and distant metastasis. Overexpressed Piezo1 facilitated cell proliferation and suppressed cell apoptosis in GC cells. Moreover, Ca2+ influx was elevated after up‐regulation of Piezo1. Piezo1 promoted cell migration and Calpain1/2 expression via up‐regulation of HIF‐1α in GC cells. In vivo, Piezo1 knockdown significantly inhibited peritoneal metastasis of GC cells and blocked EMT process and angiogenesis. Our findings suggested that Piezo1 is a key component during GC omentum metastasis, which could be related to up‐regulation of HIF‐1α.
Collapse
Affiliation(s)
- Xiaofei Wang
- Department of Pathology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Guang Cheng
- Central Laboratory of Clinical Medical College, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Yu Miao
- Department of GI Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Fangyuan Qiu
- Department of Medical, Jining Second People's Hospital, Jining, China
| | - Lugen Bai
- Department of laboratory, Jingbian County People's Hospital, Yulin, China
| | - Zhongfei Gao
- Department of Medical, Jining First People's Hospital, Jining, China
| | - Yunning Huang
- Department of Gastrointestinal Surgery, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Liru Dong
- Department of Pathology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Xing Niu
- Department of Second Clinical College, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, China
| | - Xin Wang
- Department of Pathology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Yuyang Li
- Department of Pathology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Hui Tang
- Department of Pathology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Yuanyi Xu
- Department of Pathology, Ningxia Medical University, Yinchuan, China
| | - Xudong Song
- Department of Pathology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| |
Collapse
|
18
|
Song Z, Guo Q, Wang H, Gao L, Wang S, Liu D, Liu J, Qi Y, Lin B. miR-5193, regulated by FUT1, suppresses proliferation and migration of ovarian cancer cells by targeting TRIM11. Pathol Res Pract 2020; 216:153148. [PMID: 32823233 DOI: 10.1016/j.prp.2020.153148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/14/2020] [Accepted: 07/24/2020] [Indexed: 12/24/2022]
Abstract
Ovarian cancer is the most lethal gynecological malignancy worldwide. A better understanding of the pathogenesis of ovarian cancer may help to improve the overall survival. Our previous studies have demonstrated that alpha-(1,2)-fucosyltransferase 1 (FUT1) is an oncogenic glycogene in ovarian cancer. However, the underlying mechanism is not fully clarified. In this study, we identified a microRNA as an important downstream regulator for the carcinogenic effect of FUT1 in ovarian cancer. miR-5193 was found down-regulated in ovarian cancer cells, FUT1-overexpression ovarian cancer cells and ovarian tumor samples. MTT, flow cytometry and Transwell assays demonstrated that miR-5193 inhibited the proliferation and migration, and induced the cell cycle arrest and apoptosis of ovarian cancer cells. Real-time PCR and western blot assays showed that miR-5193 downregulated the expression of TRIM11 and upregulated the expression of p53 and p21. Dual luciferase reporter assay indicated that TRIM11 was a direct target of miR‑5193. Rescue experiments confirmed that miR-5193 functioned in ovarian cancer cells by directly targeting TRIM11. Moreover, transfection with miR-5193 mimic in FUT1-overexpression ovarian cancer cells reversed the carcinogenic effect of FUT1. Taken together, our results suggest that miR-5193 is an essential suppressor of human ovarian cancer development, and is an important downstream regulator regarding the carcinogenesis of FUT1 in ovarian cancer.
Collapse
Affiliation(s)
- Zuofei Song
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China; Department of Obstetrics and Gynecology, General Hospital of Northern Theater Command, Shenyang, 110016, People's Republic of China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi 117004, People's Republic of China
| | - Qian Guo
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi 117004, People's Republic of China
| | - Huimin Wang
- Department of Obstetrics and Gynecology, Liaoning Cancer Hospital and Institute, Shenyang, 110042, People's Republic of China
| | - Lingling Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi 117004, People's Republic of China
| | - Shuang Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi 117004, People's Republic of China
| | - Dawo Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi 117004, People's Republic of China
| | - Juanjuan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi 117004, People's Republic of China
| | - Yue Qi
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi 117004, People's Republic of China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi 117004, People's Republic of China.
| |
Collapse
|