1
|
Assem M, El Leithy AA, Hassan NM, Al-Karmalawy AA, Abozaid M, Allam RM, Kamal MAM, Amer M, El-Sayyad GS, Ibrahim NH. A significant correlation exists between CREBBP and CEBPA gene expression in de Novo adult acute myeloid leukemia. Sci Rep 2025; 15:12473. [PMID: 40216811 PMCID: PMC11992167 DOI: 10.1038/s41598-025-93024-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/04/2025] [Indexed: 04/14/2025] Open
Abstract
CREBBP, CEBPA, and DNMT3A are tumor suppressor genes whose dysfunction has been reported in hematologic malignancies. Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults. We aim to assess the expression level of CREBBP, CEBPA, and DNMT3A genes in an Egyptian cohort with AML. We investigated the correlation between the selected genes' mRNA levels and their association with clinical characteristics and survival. Herein, 53 adult participants diagnosed with AML were enrolled in the study. Quantitative RT-PCR was used, and computational analysis was added to analyze the relationship between the three genes. CREBBP expression influenced TLC negatively (r = -0.328, p = 0.017). DNMT3A gene expression was found to be significantly associated with CD117 positive (p = 0.028). There was no significant difference between males and females in the relative CREBBP, CEBPA, and DNMT3A expression. Remarkably, AML-M3 cases were devoid of CREBBP expression. The correlation matrix of the three genes detected a significant correlation only between CREBBP and CEBPA expression (r = 0.518, p < 0.0001), though the computational correlation analysis of these two genes was not significant. Our finding may suggest a complementary role of CREBBP and CEBPA in AML pathogenesis; however, further investigation on larger samples is still warranted to study the relationship of these genes with AML survival. We are also reporting here an adult AML case with an additional chromosome 19 as the sole cytogenetic abnormality.
Collapse
Affiliation(s)
- Magda Assem
- Clinical Pathology Department, National Cancer Institute, Cairo University, Giza, Egypt
| | - Asmaa A El Leithy
- College of Biotechnology, Misr University for Science and Technology, Giza, Egypt.
| | - Naglaa M Hassan
- Clinical Pathology Department, National Cancer Institute, Cairo University, Giza, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, The University of Mashreq, Baghdad, 10023, Iraq
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
| | - Mohamed Abozaid
- Hamilton Lab, School of Medicine, Dentistry and Nursing, Anderson College, University of Glasgow, Glasgow, Scotland, UK
| | - Rasha Mahmoud Allam
- Department of Cancer Epidemiology and Biostatistics, National Cancer Institute, Cairo University, Giza, Egypt
| | - Mohamed A M Kamal
- Clinical Pathology Department, El-Hussein University Hospital, Al-Azhar University, Cairo, Egypt
| | - Marwa Amer
- Bioinformatics and Functional Genomics Department, College of Biotechnology, Misr University for Science and Technology (MUST), Giza, Egypt
| | - Gharieb S El-Sayyad
- Medical Laboratory Technology Department, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC), Badr City, Cairo, Egypt.
| | - Noha H Ibrahim
- Clinical Pathology Department, National Cancer Institute, Cairo University, Giza, Egypt
| |
Collapse
|
2
|
Bogdanov K, Kudryavtseva E, Fomicheva Y, Churkina I, Lomaia E, Girshova L, Osipov Y, Zaritskey A. Shift of N-MYC Oncogene Expression in AML Patients Carrying the FLT3-ITD Mutation. PATHOPHYSIOLOGY 2023; 30:296-313. [PMID: 37606386 PMCID: PMC10443239 DOI: 10.3390/pathophysiology30030024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/20/2023] [Accepted: 07/29/2023] [Indexed: 08/23/2023] Open
Abstract
Mutations in the FLT3 gene not only lead to abnormalities in its structure and function, but also affect the expression of other genes involved in leukemogenesis. This study evaluated the expression of genes that are more characteristic of neuroblastoma but less studied in leukemia. N-MYC oncogene expression was found to be more than 3-fold higher in primary AML patients carrying the FLT3-ITD mutation compared to carriers of other mutations as well as patients with normal karyotype (p = 0.03946). In contrast to the expression of several genes (C-MYC, SPT16, AURKA, AURKB) directly correlated to the allelic load of FLT3-ITD, the expression of the N-MYC oncogene is extremely weakly related or independent of it (p = 0.0405). Monitoring of N-MYC expression in some patients with high FLT3-ITD allelic load receiving therapy showed that a decrease in FLT3-ITD allelic load is not always accompanied by a decrease in N-MYC expression. On the contrary, N-MYC expression may remain elevated during the first three months after therapy, which is additional evidence of the emergence of resistance to therapy and progression of AML.
Collapse
Affiliation(s)
- Konstantin Bogdanov
- Almazov National Medical Research Centre, 2 Akkuratova Str., Saint Petersburg 197341, Russia; (E.K.); (Y.F.); (I.C.); (E.L.); (L.G.); (Y.O.); (A.Z.)
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Cruciani S, Garroni G, Pala R, Barcessat ARP, Facchin F, Ventura C, Fozza C, Maioli M. Melatonin finely tunes proliferation and senescence in hematopoietic stem cells. Eur J Cell Biol 2022; 101:151251. [PMID: 35772322 DOI: 10.1016/j.ejcb.2022.151251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022] Open
Abstract
Human hematopoietic stem/progenitor cells (HSPCs) are pluripotent cells that gradually lose their self-renewal and regenerative potential, to give rise to mature cells of the hematopoietic system by differentiation. HSPC infusion is used to restore hematopoietic function in patients with a variety of onco-hematologic and immune-mediated disorders. The functionality of these cells is therefore of great importance to ensure the homeostasis of the hematopoietic system. Melatonin plays an important role as immunomodulatory and oncostatic hormone. In the present manuscript, we aimed at evaluating the activity of melatonin in modulating HSPC senescence, in the attempt to improve their hemopoietic regenerative potential. We exposed HSPCs to melatonin, in different conditions, and then analyzed the expression of genes regulating cell cycle and cell senescence. Moreover, we assessed cell senescence by β-galactosidase and telomerase activity. Our results showed the ability of melatonin to counteract HSPC senescence, thus paving the way for enhanced efficiency in their clinical application.
Collapse
Affiliation(s)
- Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; Consorzio Interuniversitario "Istituto Nazionale Biostrutture e Biosistemi" (INBB), Viale delle Medaglie d'Oro 305, 00136, Roma (RM).
| | - Giuseppe Garroni
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy.
| | - Renzo Pala
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy.
| | - Ana Rita Pinheiro Barcessat
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; Health and Biological Sciences Department, Federal University of Amapá, Macapá, Brazil.
| | - Federica Facchin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| | - Carlo Ventura
- National Laboratory of Molecular Biology and Stem Cell Engineering, Eldor Lab, Istituto Nazionale di Biostrutture e Biosistemi (INBB), Innovation Accelerators, CNR, Bologna 40129, Italy.
| | - Claudio Fozza
- Blood Diseases Department of Clinical and Experimental Medicine University of Sassari, 07100 Sassari, Italy.
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; Consorzio Interuniversitario "Istituto Nazionale Biostrutture e Biosistemi" (INBB), Viale delle Medaglie d'Oro 305, 00136, Roma (RM); Center for Developmental Biology and Reprogramming (CEDEBIOR), Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy.
| |
Collapse
|
4
|
Almajali B, Johan MF, Al-Wajeeh AS, Wan Taib WR, Ismail I, Alhawamdeh M, Al-Tawarah NM, Ibrahim WN, Al-Rawashde FA, Al-Jamal HAN. Gene Expression Profiling and Protein Analysis Reveal Suppression of the C-Myc Oncogene and Inhibition JAK/STAT and PI3K/AKT/mTOR Signaling by Thymoquinone in Acute Myeloid Leukemia Cells. Pharmaceuticals (Basel) 2022; 15:ph15030307. [PMID: 35337104 PMCID: PMC8948818 DOI: 10.3390/ph15030307] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 12/19/2022] Open
Abstract
Overexpression of c-Myc plays an essential role in leukemogenesis and drug resistance, making c-Myc an attractive target for cancer therapy. However, targeting c-Myc directly is impossible, and c-Myc upstream regulator pathways could be targeted instead. This study investigated the effects of thymoquinone (TQ), a bioactive constituent in Nigella sativa, on the activation of upstream regulators of c-Myc: the JAK/STAT and PI3K/AKT/mTOR pathways in HL60 leukemia cells. Next-generation sequencing (NGS) was performed for gene expression profiling after TQ treatment. The expression of c-Myc and genes involved in JAK/STAT and PI3K/AKT/mTOR were validated by quantitative reverse transcription PCR (RT-qPCR). In addition, Jess assay analysis was performed to determine TQ’s effects on JAK/STAT and PI3K/AKT signaling and c-Myc protein expression. The results showed 114 significant differentially expressed genes after TQ treatment (p < 0.002). DAVID analysis revealed that most of these genes’ effect was on apoptosis and proliferation. There was downregulation of c-Myc, PI3K, AKT, mTOR, JAK2, STAT3, STAT5a, and STAT5b. Protein analysis showed that TQ also inhibited JAK/STAT and PI3K/AKT signaling, resulting in inhibition of c-Myc protein expression. In conclusion, the findings suggest that TQ potentially inhibits proliferation and induces apoptosis in HL60 leukemia cells by downregulation of c-Myc expression through inhibition of the JAK/STAT and PI3K/AKT signaling pathways.
Collapse
Affiliation(s)
- Belal Almajali
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Kuala Nerus 21300, Terengganu, Malaysia; (B.A.); (W.R.W.T.); (I.I.); (F.A.A.-R.)
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelatan, Malaysia;
| | | | - Wan Rohani Wan Taib
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Kuala Nerus 21300, Terengganu, Malaysia; (B.A.); (W.R.W.T.); (I.I.); (F.A.A.-R.)
| | - Imilia Ismail
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Kuala Nerus 21300, Terengganu, Malaysia; (B.A.); (W.R.W.T.); (I.I.); (F.A.A.-R.)
| | - Maysa Alhawamdeh
- Department of Medical Laboratory Sciences, Faculty of Sciences, Mutah University, Alkarak 61710, Jordan; (M.A.); (N.M.A.-T.)
| | - Nafe M. Al-Tawarah
- Department of Medical Laboratory Sciences, Faculty of Sciences, Mutah University, Alkarak 61710, Jordan; (M.A.); (N.M.A.-T.)
| | - Wisam Nabeel Ibrahim
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 122104, Qatar;
| | - Futoon Abedrabbu Al-Rawashde
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Kuala Nerus 21300, Terengganu, Malaysia; (B.A.); (W.R.W.T.); (I.I.); (F.A.A.-R.)
| | - Hamid Ali Nagi Al-Jamal
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Kuala Nerus 21300, Terengganu, Malaysia; (B.A.); (W.R.W.T.); (I.I.); (F.A.A.-R.)
- Correspondence: ; Tel.: +60-174729012
| |
Collapse
|
5
|
Niu C, Wu D, Li AJ, Qin KH, Hu DA, Wang EJ, Tucker AB, He F, Huang L, Wang H, Liu Q, Ni N, Shi D, Zhao X, Wan Y, Li T, He T, Liao P. Identification of a prognostic signature based on copy number variations (CNVs) and CNV-modulated gene expression in acute myeloid leukemia. Am J Transl Res 2021; 13:13683-13696. [PMID: 35035707 PMCID: PMC8748127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVES Acute myeloid leukemia (AML) is caused by multiple genetic alterations in hematopoietic progenitors, and molecular genetic analyses have provided useful information for AML diagnosis and prognostication. This study aimed to integratively understand the prognostic value of specific copy number variation (CNV) patterns and CNV-modulated gene expression in AML. METHODS We conducted integrative CNV profiling and gene expression analysis using data from the Therapeutically Applicable Research To Generate Effective Treatments (TARGET) and The Cancer Genome Atlas (TCGA) AML cohorts. CNV-related genes associated with survival were identified using the TARGET AML cohort and validated using the TCGA AML cohort. Genes whose CNV-modulated expression was associated with survival were also identified using the TARGET AML cohort and validated using the TCGA AML cohort, and patient bone marrow samples were then used to further validate the effects of CNV-modulated gene expression on survival. CNV and mRNA survival analyses were conducted using proportional hazards regression models (Cox regression) and the "survminer" and "survival" packages of the R Project for Statistical Computing. Genes belonging to the Kyoto Encyclopedia of Genes and Genomes (KEGG) cancer panel were extracted from KEGG cancer-related pathways. RESULTS One hundred two CNV-related genes (located at 7q31-34, 16q24) associated with patient survival were identified using the TARGET cohort and validated with the TCGA AML cohort. Among these 102 validated genes, three miRNA genes (MIR29A, MIR183, and MIR335) were included in the KEGG cancer panel. Five genes (SEMA4D, CBFB, CHAF1B, SAE1, and DNMT1) whose expression was modulated by CNVs and significantly associated with clinical outcomes were identified, and the deletion of SEMA4D and CBFB was found to potentially exert protective effects against AML. The results of these five genes were also validated using patient marrow samples. Additionally, the distribution of CNVs affecting these five CNV-modulated genes was independent of the risk group (favorable-, intermediate-, and adverse-risk groups). CONCLUSIONS Overall, this study identified 102 CNV-related genes associated with patient survival and identified five genes whose expression was modulated by CNVs and associated with patient survival. Our findings are crucial for the development of new modes of prognosis evaluation and targeted therapy for AML.
Collapse
Affiliation(s)
- Changchun Niu
- Department of Laboratory Diagnostic Medicine, The Affiliated Chongqing Hospital of The University of Chinese Academy of Sciences, Chongqing General HospitalChongqing 400021, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Di Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Alexander J Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Kevin H Qin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Daniel A Hu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Eric J Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Andrew Blake Tucker
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Fang He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Linjuan Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Hao Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Qing Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Na Ni
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Deyao Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Xia Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Yafang Wan
- Department of Laboratory Diagnostic Medicine, The Affiliated Chongqing Hospital of The University of Chinese Academy of Sciences, Chongqing General HospitalChongqing 400021, China
| | - Tian Li
- Department of Laboratory Diagnostic Medicine, The Affiliated Chongqing Hospital of The University of Chinese Academy of Sciences, Chongqing General HospitalChongqing 400021, China
| | - Tongchuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Pu Liao
- Department of Laboratory Diagnostic Medicine, The Affiliated Chongqing Hospital of The University of Chinese Academy of Sciences, Chongqing General HospitalChongqing 400021, China
| |
Collapse
|