1
|
Abd El Hadi SR, Eldinary MA, Ghith A, Haffez H, Salman A, Sayed GA. Unravelling the potency of the 4-oxo-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbonitrile scaffold with S-arylamide hybrids as PIM-1 kinase inhibitors: synthesis, biological activity and in silico studies. RSC Med Chem 2025:d5md00021a. [PMID: 40162200 PMCID: PMC11951167 DOI: 10.1039/d5md00021a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/11/2025] [Indexed: 04/02/2025] Open
Abstract
PIM-1 is a type of serine/threonine kinase that plays a crucial role in controlling several vital processes, including proliferation and apoptosis. New synthetic S-amide tetrahydropyrimidinone derivatives were designed and synthesized as PIM-1 inhibitors with potential anticancer activity. Several biochemical assays were performed for anticancer assessment, including PIM-1 inhibitory assays, MTT, apoptosis and cell cycle, gene expression analysis, c-MYC analysis, and ATPase inhibitory assays. Compounds (8c, 8d, 8g, 8h, 8k, and 8l) exhibited strong in vitro broad antiproliferative activity against MCF-7, DU-145, and PC-3, with a relatively higher SI index suggesting minimal cytotoxicity to normal cells. Furthermore, these compounds induced mixed late apoptosis and necrosis with cell cycle arrest at the G2/M phase. Moreover, compounds 8b, 8f, 8g, 8k, and 8l showed potent inhibitory action against PIM-1 kinase, with corresponding IC50 values of 660, 909, 373, 518, and 501 nM. In silico prediction studies of physiochemical properties, molecular dynamics, and induced fit docking studies were performed for these compounds to explain their potent biological activity. In conclusion, new pyrimidinone compounds (8c, 8d, 8g, 8h, 8k, and 8l) exhibit potential PIM-1 inhibitory activity and can be used as promising scaffolds for further optimization of new leads with selective PIM-inhibitors and anticancer activity.
Collapse
Affiliation(s)
- Soha R Abd El Hadi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Badr City Cairo 11829 Egypt
| | - Manar A Eldinary
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Badr City Cairo 11829 Egypt
| | - Amna Ghith
- Discipline of Surgical Specialties, Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital Woodville South SA 5011 Australia
- Robinson Research Institute, University of Adelaide Adelaide SA 5006 Australia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt Cairo 11835 Egypt
| | - Hesham Haffez
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University P.O. Box 11795 Cairo Egypt
- Center of Scientific Excellence "Helwan Structural Biology Research (HSBR)", Helwan University Cairo 11795 Egypt
| | - Aya Salman
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829 Cairo Egypt
| | - Ghadir A Sayed
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829 Cairo Egypt
| |
Collapse
|
2
|
Choudhury R, Bahadi CK, Ray IP, Dash P, Pattanaik I, Mishra S, Mohapatra SR, Patnaik S, Nikhil K. PIM1 kinase and its diverse substrate in solid tumors. Cell Commun Signal 2024; 22:529. [PMID: 39487435 PMCID: PMC11531143 DOI: 10.1186/s12964-024-01898-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024] Open
Abstract
The PIM kinase family, consisting of PIM1, PIM2, and PIM3, is a group of serine/threonine protein kinases crucial for cellular growth, immunoregulation, and oncogenesis. PIM1 kinase is often overexpressed in solid and hematopoietic malignancies, promoting cell survival, proliferation, migration, and senescence by activating key genes. In vitro and in vivo studies have established the oncogenic potential of PIM1 kinases. These kinases have been implicated in tumor progression, metastasis, and resistance to chemotherapy, underscoring their potential as a therapeutic target for cancer therapy. This review delves into the intricate molecular mechanisms through which PIM1 interacts with specific substrates in different tumor tissues, leading to diverse outcomes in various human cancers. Over the past decade, the inhibition of PIM1 in cancers has garnered significant attention as a potential standalone treatment. Various in vitro, in vivo, and early clinical trial data have provided support for this approach to varying extents. Novel compounds that inhibit PIM1 kinase have shown effectiveness and a favorable toxicity profile in preclinical studies. Several of these substances are now being studied in clinical trials due to their promising outcomes. This article provides a thorough examination of the PIM1 kinase pathways and the recent advancements in producing PIM1 kinase inhibitors for the treatment of cancer.
Collapse
Affiliation(s)
- Rituparna Choudhury
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Chandan Kumar Bahadi
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Ipsa Pratibimbita Ray
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Pragyanshree Dash
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Isha Pattanaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Suman Mishra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Soumya R Mohapatra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Srinivas Patnaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Kumar Nikhil
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India.
| |
Collapse
|
3
|
Manoharan S, Santhakumar A, Perumal E. Targeting STAT3, FOXO3a, and Pim-1 kinase by FDA-approved tyrosine kinase inhibitor-Radotinib: An in silico and in vitro approach. Arch Pharm (Weinheim) 2024:e2400429. [PMID: 39428846 DOI: 10.1002/ardp.202400429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/22/2024] [Accepted: 09/14/2024] [Indexed: 10/22/2024]
Abstract
Cancer, a multifactorial pathological condition, is primarily caused due to mutations in multiple genes. Hepatocellular carcinoma (HCC) is a form of primary liver cancer that is often diagnosed at the advanced stage. Current treatment strategies for advanced HCC involve systemic therapies which are often hindered due to the emergence of resistance and toxicity. Therefore, a multitarget approach might prove more effective in HCC treatment. The present study focuses on targeting signal transducer and activator of transcription 3 (STAT3), forkhead box class O3a (FOXO3a), and proviral integration site for Moloney murine leukemia virus-1 (Pim-1) kinase, using a Food and Drug Administration (FDA)-approved anticancer drug library. Two compounds, namely, radotinib and capmatinib, were identified as top compounds using molecular docking. Among the two compounds, radotinib exhibited significant binding values towards the targeted proteins and their heterodimers. Furthermore, in vitro experiments involving 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), live/dead, 4',6-diamidino-2-phenylindole, and clonogenic assays were performed to evaluate the effect of radotinib in human hepatoblastoma cell line/hepatocellular carcinoma cells. The gene expression data indicated reduced expression of FOXO3a and Pim-1, but no basal-level alteration of STAT3. The Western blot analysis assay showed that the phosphorylation level of STAT3 was significantly decreased upon radotinib treatment. Taken together, our findings suggest that radotinib, which is currently used in the treatment of chronic myeloid leukemia (CML), could be considered as a potential candidate for repurposing in the treatment of HCC.
Collapse
Affiliation(s)
- Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | | | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| |
Collapse
|
4
|
Wang R, Jia S, Chen H, Luo K, Zhang L, Song Y, Qing C, Liu D, Zhou H. Antiplatelet drug ticagrelor suppresses triple negative breast cancer metastasis by targeting PI3K. Biochem Pharmacol 2024; 226:116408. [PMID: 38969297 DOI: 10.1016/j.bcp.2024.116408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/14/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Metastatic recurrence is still a major challenge in breast cancer treatment. Patients with triple negative breast cancer (TNBC) develop early recurrence and relapse more frequently. Due to the lack of specific therapeutic targets, new targeted therapies for TNBC are urgently needed. Phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway is one of the active pathways involved in chemoresistance and survival of TNBC, being considered as a potential target for TNBC treatment. Our present study identified ticagrelor, an anti-platelet drug, as a pan-PI3K inhibitor with potent inhibitory activity against four isoforms of class I PI3K. At doses normally used in clinic, ticagrelor showed weak cytotoxicity against a panel of breast cancer cells, but significantly inhibited the migration, invasion and the actin cytoskeleton organization of human TNBC MDA-MB-231 and SUM-159PT cells. Mechanistically, ticagrelor effectively inhibited PI3K downstream mTOR complex 1 (mTORC1) and mTORC2 signaling by targeting PI3K and decreased the protein expression of epithelial-mesenchymal transition (EMT) markers. In vivo, ticagrelor significantly suppressed tumor cells lung metastasis in 4T1 tumor bearing BALB/c mice model and experimental lung metastasis model which was established by tail vein injection of GFP-labeled MDA-MB-231 cells. The above data demonstrated that ticagrelor can inhibit the migration and invasion of TNBC both in vitro and in vivo by targeting PI3K, suggesting that ticagrelor, a pan-PI3K inhibitor, might represent a promising therapeutic agent for the treatment of metastatic TNBC.
Collapse
Affiliation(s)
- Rong Wang
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Shutao Jia
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Hongyan Chen
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Kaitao Luo
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Limei Zhang
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Yan Song
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Chen Qing
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, Yunnan, China; Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Dandan Liu
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, Yunnan, China; Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming 650500, Yunnan, China.
| | - Hongyu Zhou
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, Yunnan, China; Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming 650500, Yunnan, China.
| |
Collapse
|
5
|
Ghosh C, Kakar R, Hoyle RG, Liu Z, Guo C, Li J, Wang XY, Sun Y. Type I gamma phosphatidylinositol phosphate 5-kinase i5 controls cell sensitivity to interferon. Dev Cell 2024; 59:1028-1042.e5. [PMID: 38452758 PMCID: PMC11043016 DOI: 10.1016/j.devcel.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/21/2023] [Accepted: 02/09/2024] [Indexed: 03/09/2024]
Abstract
The interferon signaling pathway is critical for host defense by serving diverse functions in both innate and adaptive immune responses. Here, we show that type I gamma phosphatidylinositol phosphate 5-kinase i5 (PIPKIγi5), an enzyme that synthesizes phosphatidylinositol-4,5-bisphosphate (PI4,5P2), controls the sensitivity to interferon in both human and mouse cells. PIPKIγi5 directly binds to the interferon-gamma (IFN-γ) downstream effector signal transducer and activator of transcription 1 (STAT1), which suppresses the STAT1 dimerization, IFN-γ-induced STAT1 nuclear translocation, and transcription of IFN-γ-responsive genes. Depletion of PIPKIγi5 significantly enhances IFN-γ signaling and strengthens an antiviral response. In addition, PIPKIγi5-synthesized PI4,5P2 can bind to STAT1 and promote the PIPKIγi5-STAT1 interaction. Similar to its interaction with STAT1, PIPKIγi5 is capable of interacting with other members of the STAT family, including STAT2 and STAT3, thereby suppressing the expression of genes mediated by these transcription factors. These findings identify the function of PIPKIγi5 in immune regulation.
Collapse
Affiliation(s)
- Chinmoy Ghosh
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ruchi Kakar
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Rosalie G Hoyle
- Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Zheng Liu
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Chunqing Guo
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jiong Li
- Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Yue Sun
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
6
|
Mistry T, Nath A, Pal R, Ghosh S, Mahata S, Kumar Sahoo P, Sarkar S, Choudhury T, Nath P, Alam N, Nasare VD. Emerging Futuristic Targeted Therapeutics: A Comprising Study Towards a New Era for the Management of TNBC. Am J Clin Oncol 2024; 47:132-148. [PMID: 38145412 DOI: 10.1097/coc.0000000000001071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Triple-negative breast cancer is characterized by high lethality attributed to factors such as chemoresistance, transcriptomic, and genomic heterogeneity, leading to a poor prognosis and limiting available targeted treatment options. While the identification of molecular targets remains pivotal for therapy involving chemo drugs, the current challenge lies in the poor response rates, low survival rates, and frequent relapses. Despite various clinical investigations exploring molecular targeted therapies in conjunction with conventional chemo treatment, the outcomes have been less than optimal. The critical need for more effective therapies underscores the urgency to discover potent novel treatments, including molecular and immune targets, as well as emerging strategies. This review provides a comprehensive analysis of conventional treatment approaches and explores emerging molecular and immune-targeted therapeutics, elucidating their mechanisms to address the existing obstacles for a more effective management of triple-negative breast cancer.
Collapse
Affiliation(s)
- Tanuma Mistry
- Departments of Pathology and Cancer Screening
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, West Bengal
| | - Arijit Nath
- Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, School of Biotechnology, Bhubaneswar, Odisha, India
| | - Ranita Pal
- Departments of Pathology and Cancer Screening
| | | | | | | | | | | | | | - Neyaz Alam
- Surgical Oncology, Chittaranjan National Cancer Institute
| | | |
Collapse
|
7
|
Kim H, Jang B, Zhang C, Caldwell B, Park DJ, Kong SH, Lee HJ, Yang HK, Goldenring JR, Choi E. Targeting Stem Cells and Dysplastic Features With Dual MEK/ERK and STAT3 Suppression in Gastric Carcinogenesis. Gastroenterology 2024; 166:117-131. [PMID: 37802423 PMCID: PMC10841458 DOI: 10.1053/j.gastro.2023.09.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/21/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUNDS & AIMS Precancerous metaplasia progression to dysplasia can increase the risk of gastric cancers. However, effective strategies to specifically target these precancerous lesions are currently lacking. To address this, we aimed to identify key signaling pathways that are upregulated during metaplasia progression and critical for stem cell survival and function in dysplasia. METHODS To assess the response to chemotherapeutic drugs, we used metaplastic and dysplastic organoids derived from Mist1-Kras mice and 20 human precancerous organoid lines established from patients with gastric cancer. Phospho-antibody array analysis and single-cell RNA-sequencing were performed to identify target cell populations and signaling pathways affected by pyrvinium, a putative anticancer drug. Pyrvinium was administered to Mist1-Kras mice to evaluate drug effectiveness in vivo. RESULTS Although pyrvinium treatment resulted in growth arrest in metaplastic organoids, it induced cell death in dysplastic organoids. Pyrvinium treatment significantly downregulated phosphorylation of ERK and signal transducer and activator of transcription 3 (STAT3) as well as STAT3-target genes. Single-cell RNA-sequencing data analyses revealed that pyrvinium specifically targeted CD133+/CD166+ stem cell populations, as well as proliferating cells in dysplastic organoids. Pyrvinium inhibited metaplasia progression and facilitated the restoration of normal oxyntic glands in Mist1-Kras mice. Furthermore, pyrvinium exhibited suppressive effects on the growth and survival of human organoids with dysplastic features, through simultaneous blocking of the MEK/ERK and STAT3 signaling pathways. CONCLUSIONS Through its dual blockade of MEK/ERK and STAT3 signaling pathways, pyrvinium can effectively induce growth arrest in metaplasia and cell death in dysplasia. Therefore, our findings suggest that pyrvinium is a promising chemotherapeutic agent for reprogramming the precancerous milieu to prevent gastric cancer development.
Collapse
Affiliation(s)
- Hyesung Kim
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Jeju National University College of Medicine, Jeju, Republic of Korea
| | - Bogun Jang
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pathology, Jeju National University College of Medicine, Jeju, Republic of Korea
| | - Changqing Zhang
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Brianna Caldwell
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Do-Joong Park
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seong-Ho Kong
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyuk-Joon Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Han-Kwang Yang
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - James R Goldenring
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Nashville VA Medical Center, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Eunyoung Choi
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
8
|
Agostinelli C, Morandi L, Righi S, Cirillo L, Iommi M, Tonon C, Mazzatenta D, Zoli M, Rossi M, Bagnato G, Broccoli A, Lodi R, Zinzani PL, Sabattini E, Giannini C, Asioli S. Genomic Profiling of Primary Diffuse Large B-Cell Lymphoma of the Central Nervous System Suggests Novel Potential Therapeutic Targets. Mod Pathol 2023; 36:100323. [PMID: 37678673 DOI: 10.1016/j.modpat.2023.100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023]
Abstract
Primary diffuse large B-cell lymphoma of the primary central nervous system (CNS-DLBCL) is an aggressive disease, with dismal prognosis despite the use of high-dose methotrexate-based polychemotherapy. Our study aimed to expand the biologic profiles of CNS-DLBCL and to correlate them with clinical/imaging findings to gain diagnostic insight and possibly identify new therapeutic targets. We selected 61 CNS-DLBCL whose formalin-fixed paraffin-embedded samples were available at first diagnosis. These were investigated by immunohistochemistry, cMYC rearrangements were explored by fluorescence in situ hybridization, and CNS-DLBCL mutated genes were evaluated by next-generation sequencing. CD10, BCL6, and IRF4 were observed in 16%, 83.6%, and 93% of cases, respectively. As typical of CNS lymphoma, 10 (16.4%) of 61 cases were classified as germinal center (GCB) type and 51 (83.6%) of 61 as non-germinal center (non-GCB) type according to the Hans algorithm. Double-expression status for BCL2 and cMYC was detected in 36 (59%) of 61 cases whereas 25 (41%) of 61 were non-DE. Rearrangement of the cMYC gene was detected in 2 cases, associated with BCL6 translocation only in 1 case MYD88, PIM1, CD79B, and TP53 were mutated in 54.5%, 53.5%, 30.2%, and 18.4% cases, respectively. Novel mutations not previously reported in CNS-DLBCL were found: AIP in 23.1%, PI3KCA in 15%, NOTCH1 in 11.4%, GNAS in 8.1%, CASP8 in 7.9%, EGFR in 6.4%, PTEN in 5.1, and KRAS in 2.6% of cases. Survival was significantly longer for patients with mutated MYD88 (8.7 months vs 1.7 months; log-rank test = 5.43; P = .020) and for patients with mutated CD79B (10.8 months vs 2.5 months; log-rank test = 4.64; P = .031). MYD88 and CD79B predicted a longer survival in patients affected by CNS-DLBCL. Notably, we identified novel mutations that enrich the mutational landscape of CNS-DLBCL, suggest a role of PTEN-PI3K-AKT and receptor tyrosine kinase-RAS-mitogen-activated protein kinase signaling in a subset of CNS-DLBCL, and provide new potential therapeutic targets.
Collapse
Affiliation(s)
- Claudio Agostinelli
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria of Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Luca Morandi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy
| | - Simona Righi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Luigi Cirillo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy
| | - Marica Iommi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Caterina Tonon
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy
| | - Diego Mazzatenta
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Center for the Diagnosis and Treatment of Hypothalamic-Pituitary Diseases, Pituitary Unit
| | - Matteo Zoli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy
| | - Maura Rossi
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria of Bologna, Bologna, Italy
| | - Gianmarco Bagnato
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna Istituto di Ematologia "Seràgnoli" Bologna Italy
| | - Alessandro Broccoli
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna Istituto di Ematologia "Seràgnoli" Bologna Italy
| | - Raffaele Lodi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy
| | - Pier Luigi Zinzani
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna Istituto di Ematologia "Seràgnoli" Bologna Italy
| | - Elena Sabattini
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria of Bologna, Bologna, Italy
| | - Caterina Giannini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Center for the Diagnosis and Treatment of Hypothalamic-Pituitary Diseases, Pituitary Unit.
| |
Collapse
|
9
|
Pan XP, Jiya BR, Wang F, Lan Z. Physcion increases the sensitivity of hepatocellular carcinoma to sorafenib through miRNA-370/PIM1 axis-regulated glycolysis. World J Gastrointest Oncol 2023; 15:1400-1411. [PMID: 37663938 PMCID: PMC10473927 DOI: 10.4251/wjgo.v15.i8.1400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/16/2023] [Accepted: 07/17/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Resistance to sorafenib has become a challenge in clinical treatment of hepatocellular carcinoma (HCC). Physcion is a common bioactive anthraquinone that has potential as an anticancer agent. AIM To study the effect of physcion on sensitizing HCC cells to sorafenib. METHODS Sorafenib-resistant HCC cells were established and treated with sorafenib and/or physcion. The cell viability, proliferation and apoptosis were measured by cell counting kit-8, colony formation, flow cytometry, and in vivo xenograft model. Glucose uptake, lactate acid production, extracellular acidification rate (ECAR), and oxygen consumption rate (OCR) were measured to analyze glycolysis. Expression of glycolysis-related regulators was assessed by western blotting. RESULTS The addition of physcion significantly enhanced the antitumor effects of sorafenib on sorafenib-resistant HCC cells, manifested by enhanced apoptosis and suppressed cell growth. The glucose uptake, lactate acid production, and ECAR were elevated, and OCR was suppressed by physcion treatment. The level of PIM1 was elevated and miR-370 was suppressed in sorafenib-resistant HCC cells compared with the parental cells, which was suppressed by physcion treatment. Inhibition of miR-370 notably reversed the effects of physcion on sorafenib-resistant HCC cells. CONCLUSION Our data indicated that physcion enhanced the sensitivity of HCC cells to sorafenib by enhancing miR-370 to suppress PIM1-promoted glycolysis.
Collapse
Affiliation(s)
- Xiao-Ping Pan
- Department of Interventional Radiology, Inner Mongolia International Mongolian Hospital, Hohhot 016000, Inner Mongolia Autonomous Region, China
| | - Bu-Ren Jiya
- Department of Interventional Radiology, Inner Mongolia International Mongolian Hospital, Hohhot 016000, Inner Mongolia Autonomous Region, China
| | - Feng Wang
- Department of Interventional Radiology, Inner Mongolia International Mongolian Hospital, Hohhot 016000, Inner Mongolia Autonomous Region, China
| | - Zhu Lan
- Graduate School, Inner Mongolia Medical University, Hohhot 016000, Inner Mongolia Autonomous Region, China
| |
Collapse
|
10
|
Zhao G, Ren Y, Yan J, Zhang T, Lu P, Lei J, Rao H, Kang X, Cao Z, Peng F, Peng C, Rao C, Li Y. Neoprzewaquinone A Inhibits Breast Cancer Cell Migration and Promotes Smooth Muscle Relaxation by Targeting PIM1 to Block ROCK2/STAT3 Pathway. Int J Mol Sci 2023; 24:ijms24065464. [PMID: 36982538 PMCID: PMC10051292 DOI: 10.3390/ijms24065464] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Salvia miltiorrhiza Bunge (Danshen) has been widely used to treat cancer and cardiovascular diseases in Chinese traditional medicine. Here, we found that Neoprzewaquinone A (NEO), an active component of S. miltiorrhiza, selectively inhibits PIM1. We showed that NEO potently inhibits PIM1 kinase at nanomolar concentrations and significantly suppresses the growth, migration, and Epithelial-Mesenchymal Transition (EMT) in the triple-negative breast cancer cell line, MDA-MB-231 in vitro. Molecular docking simulations revealed that NEO enters the PIM1 pocket, thereby triggering multiple interaction effects. Western blot analysis revealed that both NEO and SGI-1776 (a specific PIM1 inhibitor), inhibited ROCK2/STAT3 signaling in MDA-MB-231 cells, indicating that PIM1 kinase modulates cell migration and EMT via ROCK2 signaling. Recent studies indicated that ROCK2 plays a key role in smooth muscle contraction, and that ROCK2 inhibitors effectively control the symptoms of high intraocular pressure (IOP) in glaucoma patients. Here, we showed that NEO and SGI-1776 significantly reduce IOP in normal rabbits and relax pre-restrained thoracic aortic rings in rats. Taken together, our findings indicated that NEO inhibits TNBC cell migration and relaxes smooth muscles mainly by targeting PIM1 and inhibiting ROCK2/STAT3 signaling, and that PIM1 may be an effective target for IOP and other circulatory diseases.
Collapse
Affiliation(s)
- Guiying Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yali Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jie Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tingrui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Peng Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jieting Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Huanan Rao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin Kang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhixing Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fu Peng
- West China School of Pharmacy, Sichuan University, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chaolong Rao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Correspondence: (C.R.); (Y.L.)
| | - Yuzhi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Correspondence: (C.R.); (Y.L.)
| |
Collapse
|