1
|
Pei S, Zhang D, Li Z, Liu J, Li Z, Chen J, Xie Z. The Role of the Fox Gene in Breast Cancer Progression. Int J Mol Sci 2025; 26:1415. [PMID: 40003882 PMCID: PMC11855465 DOI: 10.3390/ijms26041415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/25/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Forkhead box (FOX) genes are a family of transcription factors that participate in many biological activities, from early embryogenesis to the formation of organs, and from regulation of glucose metabolism to regulation of longevity. Given the extensive influence in the multicellular process, FOX family proteins are responsible for the progression of many types of cancers, especially lung cancer, breast cancer, prostate cancer, and other cancers. Breast cancer is the most common cancer among women, and 2.3 million women were diagnosed in 2020. So, various drugs targeting the FOX signaling pathway have been developed to inhibit breast cancer progression. While the role of the FOX family gene in cancer development has not received enough attention, discovering more potential drugs targeting the FOX signaling pathway is urgently demanded. Here, we review the main members in the FOX gene family and summarize their signaling pathway, including the regulation of the FOX genes and their effects on breast cancer progression. We hope this review will emphasize the understanding of the role of the FOX gene in breast cancer and inspire the discovery of effective anti-breast cancer medicines targeting the FOX gene in the future.
Collapse
Affiliation(s)
- Shaoxuan Pei
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Dechun Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Zhuohan Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Jinkai Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Ziyi Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Jianrui Chen
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Zhenzhen Xie
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
| |
Collapse
|
2
|
Saddiqa A, Zakir M, Sheikh M, Muneer Z, Hassan A, Ali I, Haq IU, Khan AA, Malik A, Siddiqi AR. On discovery of novel hub genes for ER+ and TN breast cancer types through RNA seq data analyses and classification models. Sci Rep 2024; 14:20840. [PMID: 39242688 PMCID: PMC11379961 DOI: 10.1038/s41598-024-69721-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/07/2024] [Indexed: 09/09/2024] Open
Abstract
Breast cancer (BC) is a malignant neoplasm which is classified into various types defined by underlying molecular factors such as estrogen receptor positive (ER+), progesterone receptor positive (PR+), human epidermal growth factor positive (HER2+) and triple negative (TNBC). Early detection of ER+ and TNBC is crucial in the choice of diagnosis and appropriate treatment strategy. Here we report the key genes associated to ER+ and TNBC using RNA-Seq analysis and machine learning models. Three ER+ and TNBC RNA seq datasets comprising 164 patients in-toto were selected for standard NGS hierarchical data processing and data analyses protocols. Enrichment pathway analysis and network analysis was done and finally top hub genes were identified. To come with a reliable classifier which could distinguish the distinct transcriptome patterns associated to ER+ and TNBC, ML models were built employing Naïve Bayes, SVM and kNN. 1730 common DEG's exhibiting significant logFC values with 0.05 p-value threshold were identified. A list of top ten hub genes were screened on the basis of maximal clique centrality (MCC) which included CDC20, CDK1, BUB1, AURKA, CDCA8, RRM2, TTK, CENPF, CEP55 and NDC80.These genes were found to be involved in crucial cell cycle pathways. k-Nearest Neighbor (kNN) model was observed to be best classifier with accuracy 84%, specificity 66% and sensitivity 95% to differentiate between ER+ and TNBC RNA-Seq transcriptomes. Our screened list of 10 hub genes can thus help unearth novel molecular signatures implicated in ER+ and TNBC onset, prognosis and design of novel protocols for breast cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Alishbah Saddiqa
- Computational Biology and Bioinformatics Group (CBBG), Department of Biosciences, COMSATS University Islamabad, Park Road Islamabad, Islamabad, Pakistan
| | - Mahrukh Zakir
- Computational Biology and Bioinformatics Group (CBBG), Department of Biosciences, COMSATS University Islamabad, Park Road Islamabad, Islamabad, Pakistan
| | - Mawara Sheikh
- Pakistan Agriculture Research Council, Islamabad, Pakistan
| | - Zahid Muneer
- Computational Biology and Bioinformatics Group (CBBG), Department of Biosciences, COMSATS University Islamabad, Park Road Islamabad, Islamabad, Pakistan
| | - Arsalan Hassan
- Computational Biology and Bioinformatics Group (CBBG), Department of Biosciences, COMSATS University Islamabad, Park Road Islamabad, Islamabad, Pakistan
| | - Iqra Ali
- Computational Biology and Bioinformatics Group (CBBG), Department of Biosciences, COMSATS University Islamabad, Park Road Islamabad, Islamabad, Pakistan
| | - Ihtisham Ul Haq
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100, Gliwice, Poland
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Abdul Rauf Siddiqi
- Computational Biology and Bioinformatics Group (CBBG), Department of Biosciences, COMSATS University Islamabad, Park Road Islamabad, Islamabad, Pakistan.
| |
Collapse
|
3
|
Gökşen Tosun N. Enhancing therapeutic efficacy in breast cancer: a study on the combined cytotoxic effects of doxorubicin and MPC-3100. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3249-3259. [PMID: 37917369 DOI: 10.1007/s00210-023-02807-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
PURPOSE Combination therapy is a strategy aimed at the combined use of agents targeting different mechanisms in cancer treatment. This study aimed to examine the cytotoxic and apoptotic effects of the traditional chemotherapeutic agent doxorubicin (DOX) and the next-generation HSP90 inhibitor MPC-3100 on breast cancer cell lines. METHODS Firstly, molecular docking analyses were performed, and then the MTT test was conducted to evaluate the individual and combined cytotoxic effects of DOX and MPC-3100 on MCF-7 and MDA-MB-231 breast cancer cell lines. The effect of two drugs combination was assessed by the Chou and Talalay approach. To further investigate the underlying molecular mechanism responsible for this synergistic effect, the gene expression levels of apoptotic and heat shock proteins (HSP), as well as the protein expression levels, were examined using quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) and Western Blotting, respectively. RESULTS Based on the molecular docking results, it was observed that MPC-3100 specifically binds to the ATP binding pocket of Hsp90, exhibiting an estimated free binding energy of -7.9 kcal/mol. MTT results indicated that both DOX and MPC-3100, as well as their combination, exhibited dose-dependent cytotoxicity. The drug combination showed a synergistic effect on both MCF-7 and MDA-MB-231 cell lines. Finally, the investigated molecular mechanism demonstrated that the combination of DOX and MPC-3100 induced apoptosis in breast cancer cells more efficiently than either drug alone. CONCLUSIONS This study showed a possible coordinated mechanism of action between DOX and MPC-3100, pointing to the possibility of a more effective therapeutic strategy for breast cancer therapy.
Collapse
Affiliation(s)
- Nazan Gökşen Tosun
- Tokat Vocational School of Health Services, Department of Medical Services and Techniques, Tokat Gaziosmanpaşa University, Tokat, Turkey.
| |
Collapse
|
4
|
Wen J, Wang X, Yang G, Zheng J. AURKA promotes renal cell carcinoma progression via regulation of CCNB1 transcription. Heliyon 2024; 10:e27959. [PMID: 38655290 PMCID: PMC11035947 DOI: 10.1016/j.heliyon.2024.e27959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 04/26/2024] Open
Abstract
AURKA is a member of the serine/threonine kinase family and its kinase activity is crucial for the progression of mitosis. Recent studies have highlighted the therapeutic significance of AURKA inhibition in multiple cancer types. However, the specific mechanisms by which AURKA contributes to the progression of renal cell carcinoma (RCC) have not been fully elucidated. In this study, AURKA expression level was identified in human RCC tissues by immunohistochemical (IHC) staining. The function of AURKA on cell malignant phenotypes was evaluated in vitro after AURKA inhibition. The subcutaneous xenograft was conducted to confirm the in vivo effect of AURKA knockdown on growth of RCC cells. Finally, Co-IP, luciferase assay and ChIP experiments were performed to reveal the regulatory mechanism of AURKA on CCNB1. Our results showed a significant upregulation of AURKA in RCC tissues and cell lines, and a high AURKA expression was associated with poor prognosis. AURKA knockdown inhibited RCC cell proliferation and migration, induced cell apoptosis, and led to G1/G2 phase arrest. This effect was further confirmed by the use of an AURKA inhibitor. Mechanistically, AURKA interacted with E2F1, and subsequently recruited it to the promoter region of CCNB1. CCNB1 expression was essential for AURKA-induced RCC progression. Collectively, our results suggested that AURKA plays an important role in development of RCC via regulating CCNB1 transcription.
Collapse
Affiliation(s)
- Jiling Wen
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, No.150, Jimo Road, Shanghai, 200120, China
| | - Xuechun Wang
- Department of Biological Sciences, University of Notre Dame, Notre Dame, 46556, IN, USA
| | - Guosheng Yang
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, No.150, Jimo Road, Shanghai, 200120, China
| | - Junhua Zheng
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160, Pujian Road, Shanghai, 200127, China
| |
Collapse
|
5
|
Guo Y, Tang Y, Lu G, Gu J. p53 at the Crossroads between Doxorubicin-Induced Cardiotoxicity and Resistance: A Nutritional Balancing Act. Nutrients 2023; 15:nu15102259. [PMID: 37242146 DOI: 10.3390/nu15102259] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/19/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Doxorubicin (DOX) is a highly effective chemotherapeutic drug, but its long-term use can cause cardiotoxicity and drug resistance. Accumulating evidence demonstrates that p53 is directly involved in DOX toxicity and resistance. One of the primary causes for DOX resistance is the mutation or inactivation of p53. Moreover, because the non-specific activation of p53 caused by DOX can kill non-cancerous cells, p53 is a popular target for reducing toxicity. However, the reduction in DOX-induced cardiotoxicity (DIC) via p53 suppression is often at odds with the antitumor advantages of p53 reactivation. Therefore, in order to increase the effectiveness of DOX, there is an urgent need to explore p53-targeted anticancer strategies owing to the complex regulatory network and polymorphisms of the p53 gene. In this review, we summarize the role and potential mechanisms of p53 in DIC and resistance. Furthermore, we focus on the advances and challenges in applying dietary nutrients, natural products, and other pharmacological strategies to overcome DOX-induced chemoresistance and cardiotoxicity. Lastly, we present potential therapeutic strategies to address key issues in order to provide new ideas for increasing the clinical use of DOX and improving its anticancer benefits.
Collapse
Affiliation(s)
- Yuanfang Guo
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China
| | - Guangping Lu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
6
|
Lu K, Yuan X, Zhao L, Wang B, Zhang Y. Comprehensive pan-cancer analysis and the regulatory mechanism of AURKA, a gene associated with prognosis of ferroptosis of adrenal cortical carcinoma in the tumor micro-environment. Front Genet 2023; 13:996180. [PMID: 36685952 PMCID: PMC9845395 DOI: 10.3389/fgene.2022.996180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 11/29/2022] [Indexed: 01/06/2023] Open
Abstract
Background: The only curative option for patients with locally or locally advanced adrenocortical carcinoma is primary tumor curative sexual resection (ACC). However, overall survival remains low, with most deaths occurring within the first 2 years following surgery. The 5-year survival rate after surgery is less than 30%. As a result, more accurate prognosis-related predictive biomarkers must be investigated urgently to detect patients' disease status after surgery. Methods: Data from FerrDb were obtained to identify ferroptosis-related genes, and ACC gene expression profiles were collected from the GEO database to find differentially expressed ACC ferroptosis-related genes using differential expression analysis. The DEFGs were subjected to Gene Ontology gene enrichment analysis and KEGG signaling pathway enrichment analysis. PPI network building and predictive analysis were used to filter core genes. The expression of critical genes in ACC pathological stage and pan-cancer was then investigated. In recent years, immune-related factors, DNA repair genes, and methyltransferase genes have been employed in diagnosing and prognosis of different malignancies. Cancer cells are mutated due to DNA repair genes, and highly expressed DNA repair genes promote cancer. Dysregulation of methyltransferase genes and Immune-related factors, which are shown to be significantly expressed in numerous malignancies, also plays a crucial role in cancer. As a result, we investigated the relationship of AURKA with immunological checkpoints, DNA repair genes, and methyltransferases in pan-cancer. Result: The DEGs found in the GEO database were crossed with ferroptosis-related genes, yielding 42 differentially expressed ferroptosis-related genes. Six of these 42 genes, particularly AURKA, are linked to the prognosis of ACC. AURKA expression was significantly correlated with poor prognosis in patients with multiple cancers, and there was a significant positive correlation with Th2 cells. Furthermore, AURKA expression was positively associated with tumor immune infiltration in Lung adenocarcinoma (LUAD), Liver hepatocellular carcinoma (LIHC), Sarcoma (SARC), Esophageal carcinoma (ESCA), and Stomach adenocarcinoma (STAD), but negatively correlated with the immune score, matrix score, and calculated score in these tumors. Further investigation into the relationship between AURKA expression and immune examination gene expression revealed that AURKA could control the tumor-resistant pattern in most tumors by regulating the expression level of specific immune examination genes. Conclusion: AURKA may be an independent prognostic marker for predicting ACC patient prognosis. AURKA may play an essential role in the tumor microenvironment and tumor immunity, according to a pan-cancer analysis, and it has the potential to be a predictive biomarker for multiple cancers.
Collapse
|