1
|
Moosavi F, Hassani B, Nazari S, Saso L, Firuzi O. Targeting DNA damage response in pancreatic ductal adenocarcinoma: A review of preclinical and clinical evidence. Biochim Biophys Acta Rev Cancer 2024; 1879:189185. [PMID: 39326802 DOI: 10.1016/j.bbcan.2024.189185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with one of the most unfavorable prognoses across all malignancies. In this review, we investigate the role of inhibitors targeting crucial regulators of DNA damage response (DDR) pathways, either as single treatments or in combination with chemotherapeutic agents and targeted therapies in PDAC. The most prominent clinical benefit of PARP inhibitors' monotherapy is related to the principle of synthetic lethality in individuals harboring BRCA1/2 and other DDR gene mutations as predictive biomarkers. Moreover, induction of BRCAness with inhibitors of RTKs, including VEGFR and c-MET and their downstream signaling pathways, RAS/RAF/MEK/ERK and PI3K/AKT/mTOR in order to expand the application of PARP inhibitors in patients without DDR mutations, has also been addressed. Other DDR-targeting agents beyond PARP inhibitors, including inhibitors of ATM, ATR, CHEK1/2, and WEE1 have also demonstrated their potential in preclinical models of PDAC and may hold promise in future studies.
Collapse
Affiliation(s)
- Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahareh Hassani
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Nazari
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Böhi F, Hottiger MO. Expanding the Perspective on PARP1 and Its Inhibitors in Cancer Therapy: From DNA Damage Repair to Immunomodulation. Biomedicines 2024; 12:1617. [PMID: 39062190 PMCID: PMC11275100 DOI: 10.3390/biomedicines12071617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The emergence of PARP inhibitors as a therapeutic strategy for tumors with high genomic instability, particularly those harboring BRCA mutations, has advanced cancer treatment. However, recent advances have illuminated a multifaceted role of PARP1 beyond its canonical function in DNA damage repair. This review explores the expanding roles of PARP1, highlighting its crucial interplay with the immune system during tumorigenesis. We discuss PARP1's immunomodulatory effects in macrophages and T cells, with a particular focus on cytokine expression. Understanding these immunomodulatory roles of PARP1 not only holds promise for enhancing the efficacy of PARP inhibitors in cancer therapy but also paves the way for novel treatment regimens targeting immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Flurina Böhi
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
- Cancer Biology Ph.D. Program, Life Science Zurich Graduate School, University of Zurich, 8057 Zurich, Switzerland
| | - Michael O. Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
3
|
Tang M, Wang Y, Li P, Han R, Wang R. Assessing the benefits and safety profile of incorporating poly ADP-ribose polymerase (PARP) inhibitors in the treatment of advanced lung cancer: a thorough systematic review and meta-analysis. Front Pharmacol 2024; 15:1338442. [PMID: 38989152 PMCID: PMC11234112 DOI: 10.3389/fphar.2024.1338442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/29/2024] [Indexed: 07/12/2024] Open
Abstract
Background Poly (ADP-Ribose) Polymerase (PARP) inhibitors represent a novel class of drugs that hinder DNA repair mechanisms in tumor cells, leading to cell death. This systematic review aims to evaluate the effectiveness, safety, and potential adverse effects of PARP inhibitors (PARPi) in the management of patients with advanced lung cancer. Materials and Methods We conducted a comprehensive search for relevant studies in PubMed, Embase, Cochrane, and ClinicalTrials.gov. We extracted primary and secondary outcome measures, including progression-free survival (PFS), overall survival (OS), and adverse events (AEs), from the identified literature for subsequent meta-analysis and systematic review. Results This study encompassed twelve randomized controlled trials, involving 3,132 patients with advanced lung cancer. In comparison to non-PARPi treatments, the administration of PARPi significantly extended OS (hazard ratio (HR) = 0.90, 95% CI = 0.83-0.97, p = 0.006). However, the difference in PFS did not reach statistical significance. Conclusion In summary, therapies incorporating PARPi provide a degree of benefit by extending OS in patients with advanced lung cancer. Nonetheless, further trials are necessary to furnish additional evidence regarding the efficacy and safety of PARPi in the treatment of lung cancer. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/, identifier number: CRD42023424673.
Collapse
Affiliation(s)
- Min Tang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yue Wang
- Department of Infectious Disease, Hefei Second People's Hospital, Hefei, China
| | - Pulin Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Rui Han
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ran Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Hwangbo H, Park C, Bang E, Kim HS, Bae SJ, Kim E, Jung Y, Leem SH, Seo YR, Hong SH, Kim GY, Hyun JW, Choi YH. Morroniside Protects C2C12 Myoblasts from Oxidative Damage Caused by ROS-Mediated Mitochondrial Damage and Induction of Endoplasmic Reticulum Stress. Biomol Ther (Seoul) 2024; 32:349-360. [PMID: 38602043 PMCID: PMC11063479 DOI: 10.4062/biomolther.2024.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
Oxidative stress contributes to the onset of chronic diseases in various organs, including muscles. Morroniside, a type of iridoid glycoside contained in Cornus officinalis, is reported to have advantages as a natural compound that prevents various diseases. However, the question of whether this phytochemical exerts any inhibitory effect against oxidative stress in muscle cells has not been well reported. Therefore, the current study aimed to evaluate whether morroniside can protect against oxidative damage induced by hydrogen peroxide (H2O2) in murine C2C12 myoblasts. Our results demonstrate that morroniside pretreatment was able to inhibit cytotoxicity while suppressing H2O2-induced DNA damage and apoptosis. Morroniside also significantly improved the antioxidant capacity in H2O2-challenged C2C12 cells by blocking the production of cellular reactive oxygen species and mitochondrial superoxide and increasing glutathione production. In addition, H2O2-induced mitochondrial damage and endoplasmic reticulum (ER) stress were effectively attenuated by morroniside pretreatment, inhibiting cytoplasmic leakage of cytochrome c and expression of ER stress-related proteins. Furthermore, morroniside neutralized H2O2-mediated calcium (Ca2+) overload in mitochondria and mitigated the expression of calpains, cytosolic Ca2+-dependent proteases. Collectively, these findings demonstrate that morroniside protected against mitochondrial impairment and Ca2+-mediated ER stress by minimizing oxidative stress, thereby inhibiting H2O2-induced cytotoxicity in C2C12 myoblasts.
Collapse
Affiliation(s)
- Hyun Hwangbo
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases, Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47340, Republic of Korea
| | - Cheol Park
- Department Division of Basic Sciences, College of Liberal Studies, Dong-eui University, Busan 47340, Republic of Korea
| | - EunJin Bang
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases, Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47340, Republic of Korea
| | - Hyuk Soon Kim
- Department of Biomedical Sciences, College of Natural Science and Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Sung-Jin Bae
- Department of Molecular Biology and Immunology, Kosin University College of Medicine, Busan 49267, Republic of Korea
| | - Eunjeong Kim
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Youngmi Jung
- Department of Biological Sciences, College of Natural Science, Pusan National University, Busan 46241, Republic of Korea
| | - Sun-Hee Leem
- Department of Biomedical Sciences, College of Natural Science and Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Young Rok Seo
- Institute of Environmental Medicine, Department of Life Science, Dongguk University Biomedi Campus, Goyang 10326, Republic of Korea
| | - Su Hyun Hong
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases, Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47340, Republic of Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Yung Hyun Choi
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases, Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47340, Republic of Korea
| |
Collapse
|
5
|
Teng QX, Lei ZN, Wang JQ, Yang Y, Wu ZX, Acharekar ND, Zhang W, Yoganathan S, Pan Y, Wurpel J, Chen ZS, Fang S. Overexpression of ABCC1 and ABCG2 confers resistance to talazoparib, a poly (ADP-Ribose) polymerase inhibitor. Drug Resist Updat 2024; 73:101028. [PMID: 38340425 DOI: 10.1016/j.drup.2023.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 02/12/2024]
Abstract
AIMS The overexpression of ABC transporters on cancer cell membranes is one of the most common causes of multidrug resistance (MDR). This study investigates the impact of ABCC1 and ABCG2 on the resistance to talazoparib (BMN-673), a potent poly (ADP-ribose) polymerase (PARP) inhibitor, in ovarian cancer treatment. METHODS The cell viability test was used to indicate the effect of talazoparib in different cell lines. Computational molecular docking analysis was conducted to simulate the interaction between talazoparib and ABCC1 or ABCG2. The mechanism of talazoparib resistance was investigated by constructing talazoparib-resistant subline A2780/T4 from A2780 through drug selection with gradually increasing talazoparib concentration. RESULTS Talazoparib cytotoxicity decreased in drug-selected or gene-transfected cell lines overexpressing ABCC1 or ABCG2 but can be restored by ABCC1 or ABCG2 inhibitors. Talazoparib competitively inhibited substrate drug efflux activity of ABCC1 or ABCG2. Upregulated ABCC1 and ABCG2 protein expression on the plasma membrane of A2780/T4 cells enhances resistance to other substrate drugs, which could be overcome by the knockout of either gene. In vivo experiments confirmed the retention of drug-resistant characteristics in tumor xenograft mouse models. CONCLUSIONS The therapeutic efficacy of talazoparib in cancer may be compromised by its susceptibility to MDR, which is attributed to its interactions with the ABCC1 or ABCG2 transporters. The overexpression of these transporters can potentially diminish the therapeutic impact of talazoparib in cancer treatment.
Collapse
Affiliation(s)
- Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; Department of Oncology, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong 518107, PR China
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Nikita Dilip Acharekar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Wei Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong 261041, PR China
| | - Sabesan Yoganathan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yihang Pan
- Department of Oncology, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong 518107, PR China
| | - John Wurpel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Shuo Fang
- Department of Oncology, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong 518107, PR China.
| |
Collapse
|
6
|
Borgini M, Wipf P. Synthesis of Veliparib Prodrugs and Determination of Drug-Release-Dependent PARP-1 Inhibition. ACS Med Chem Lett 2023; 14:652-657. [PMID: 37197461 PMCID: PMC10184315 DOI: 10.1021/acsmedchemlett.3c00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/20/2023] [Indexed: 05/19/2023] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) plays a key role in repairing DNA damage, and several PARP inhibitors have been approved as treatments in BRCA1/2 mutated breast and ovarian cancers. Mounting evidence also supports their application as neuroprotective agents since PARP overactivation compromises the mitochondrial homeostasis by consumption of NAD+ reserves, leading to an increase in reactive oxygen and nitrogen species and a spike in intracellular Ca2+ levels. Herein, we present the synthesis and preliminary evaluation of new mitochondria-targeting PARP inhibitor prodrugs of (±)-veliparib, with the goal to advance potential neuroprotective properties without impairing the repair of damaged DNA in the nucleus.
Collapse
|
7
|
Muluh TA, Shu XS, Ying Y. Targeting cancer metabolic vulnerabilities for advanced therapeutic efficacy. Biomed Pharmacother 2023; 162:114658. [PMID: 37031495 DOI: 10.1016/j.biopha.2023.114658] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023] Open
Abstract
Cancer metabolism is how cancer cells utilize nutrients and energy to support their growth and proliferation. Unlike normal cells, cancer cells have a unique metabolic profile that allows them to generate energy and the building blocks they need for rapid growth and division. This metabolic profile is marked by an increased reliance on glucose and glutamine as energy sources and changes in how cancer cells use and make key metabolic intermediates like ATP, NADH, and NADPH. This script analyzes a comprehensive overview of the latest advances in tumor metabolism, identifying the key unresolved issues, elaborates on how tumor cells differ from normal cells in their metabolism of nutrients, and explains how tumor cells conflate growth signals and nutrients to proliferate. The metabolic interaction of tumorigenesis and lipid metabolism within the tumor microenvironment and the role of ROS as an anti-tumor agent by mediating various signaling pathways for clinical cancer therapeutic targeting are outlined. Cancer metabolism is highly dynamic and heterogeneous; thus, advanced technologies to better investigate metabolism at the unicellular level without altering tumor tissue are necessary for better research and clinical transformation. The study of cancer metabolism is an area of active research, as scientists seek to understand the underlying metabolic changes that drive cancer growth and to identify potential therapeutic targets.
Collapse
Affiliation(s)
- Tobias Achu Muluh
- Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xing-Sheng Shu
- Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Ying Ying
- Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China; Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
8
|
Arna AB, Patel H, Singh RS, Vizeacoumar FS, Kusalik A, Freywald A, Vizeacoumar FJ, Wu Y. Synthetic lethal interactions of DEAD/H-box helicases as targets for cancer therapy. Front Oncol 2023; 12:1087989. [PMID: 36761420 PMCID: PMC9905851 DOI: 10.3389/fonc.2022.1087989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/28/2022] [Indexed: 01/26/2023] Open
Abstract
DEAD/H-box helicases are implicated in virtually every aspect of RNA metabolism, including transcription, pre-mRNA splicing, ribosomes biogenesis, nuclear export, translation initiation, RNA degradation, and mRNA editing. Most of these helicases are upregulated in various cancers and mutations in some of them are associated with several malignancies. Lately, synthetic lethality (SL) and synthetic dosage lethality (SDL) approaches, where genetic interactions of cancer-related genes are exploited as therapeutic targets, are emerging as a leading area of cancer research. Several DEAD/H-box helicases, including DDX3, DDX9 (Dbp9), DDX10 (Dbp4), DDX11 (ChlR1), and DDX41 (Sacy-1), have been subjected to SL analyses in humans and different model organisms. It remains to be explored whether SDL can be utilized to identity druggable targets in DEAD/H-box helicase overexpressing cancers. In this review, we analyze gene expression data of a subset of DEAD/H-box helicases in multiple cancer types and discuss how their SL/SDL interactions can be used for therapeutic purposes. We also summarize the latest developments in clinical applications, apart from discussing some of the challenges in drug discovery in the context of targeting DEAD/H-box helicases.
Collapse
Affiliation(s)
- Ananna Bhadra Arna
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Hardikkumar Patel
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ravi Shankar Singh
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Frederick S. Vizeacoumar
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Anthony Kusalik
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Andrew Freywald
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Franco J. Vizeacoumar
- Division of Oncology, College of Medicine, University of Saskatchewan and Saskatchewan Cancer Agency, Saskatoon, SK, Canada,*Correspondence: Yuliang Wu, ; Franco J. Vizeacoumar,
| | - Yuliang Wu
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada,*Correspondence: Yuliang Wu, ; Franco J. Vizeacoumar,
| |
Collapse
|