1
|
Yang M, Li Y, Liang Q, Dong H, Ma Y, Andersson G, Bongcam-Rudloff E, Ahmad HI, Fu X, Han J. Identification of lncRNAs involved in the hair follicle cycle transition of cashmere goats in response to photoperiod change. BMC Genomics 2025; 26:487. [PMID: 40375123 PMCID: PMC12080124 DOI: 10.1186/s12864-025-11675-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 05/06/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND Cashmere goats, as one of the important domesticated animal species, are known for their high-quality fiber. The growth of cashmere has seasonal variations caused by photoperiodic changes, but the molecular genetic mechanisms underlying this phenotype including the functional role of long non-coding RNAs (lncRNA) is still poorly understood. RESULTS In this study, we analyzed the RNA-seq dataset of 39 Cashmere goat skin samples including all different growth stages and identified 1591 lncRNAs. These lncRNAs exhibited growth stage-specific expression patterns. Combining shortened light and hair follicle growth cycles, we found that 68% of differentially photo-responsive lncRNAs showed similar expression trends during transition phase I (early anagen to anagen phase). This suggests that the mechanism of light-controlled induction of hair follicles from early anagen to anagen is similar to that of transition phase I. According to weighted gene co-expression network analyses (WGCNA) analysis, it was found that two gene clusters and 10 hub lncRNAs participated in the transformation of hair follicle cycle, inducing hair follicles to enter the full growth phase in advance. These hub lncRNAs may regulate the development cycle of hair follicles through cis- or trans-regulation on clock genes, SLC superfamily genes, fibroblast growth factor genes. CONCLUSIONS This study identified the key lncRNAs and target genes probably participating in the transformation of hair follicle cycle. This study will help further elucidate the role of lncRNAs in the hair follicle cycle and development.
Collapse
Affiliation(s)
- Min Yang
- College of Animal Science and Technology, Shihezi University, Shihezi, 832061, China
| | - Yingying Li
- College of Animal Science and Technology, Shihezi University, Shihezi, 832061, China
| | - Qianqian Liang
- College of Animal Science and Technology, Shihezi University, Shihezi, 832061, China
| | - Huajiao Dong
- College of Animal Science and Technology, Shihezi University, Shihezi, 832061, China
| | - Yuehui Ma
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Göran Andersson
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Erik Bongcam-Rudloff
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Hafiz Ishfaq Ahmad
- Department of Animal Breeding and Genetics, Faculty of Veterinary and Animal Sciences, Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Xuefeng Fu
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China
| | - Jilong Han
- College of Animal Science and Technology, Shihezi University, Shihezi, 832061, China.
| |
Collapse
|
2
|
Xie K, Ning C, Yang A, Zhang Q, Wang D, Fan X. Resequencing Analyses Revealed Genetic Diversity and Selection Signatures during Rabbit Breeding and Improvement. Genes (Basel) 2024; 15:433. [PMID: 38674368 PMCID: PMC11049387 DOI: 10.3390/genes15040433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Domestication has shaped the diverse characteristics of rabbits, including coat color, fur structure, body size, and various physiological traits. Utilizing whole-genome resequencing (DNBSEQ-T7), we analyzed the genetic diversity, population structure, and genomic selection across 180 rabbits from 17 distinct breeds to uncover the genetic basis of these traits. We conducted whole-genome sequencing on 17 rabbit breeds, identifying 17,430,184 high-quality SNPs and analyzing genomic diversity, patterns of genomic variation, population structure, and selection signatures related to coat color, coat structure, long hair, body size, reproductive capacity, and disease resistance. Through PCA and NJ tree analyses, distinct clusters emerged among Chinese indigenous rabbits, suggesting varied origins and domestication histories. Selective sweep testing pinpointed regions and genes linked to domestication and key morphological and economic traits, including those affecting coat color (TYR, ASIP), structure (LIPH), body size (INSIG2, GLI3), fertility (EDNRA, SRD5A2), heat stress adaptation (PLCB1), and immune response (SEC31A, CD86, LAP3). Our study identified key genomic signatures of selection related to traits such as coat color, fur structure, body size, and fertility; these findings highlight the genetic basis underlying phenotypic diversification in rabbits and have implications for breeding programs aiming to improve productive, reproductive, and adaptive traits. The detected genomic signatures of selection also provide insights into rabbit domestication and can aid conservation efforts for indigenous breeds.
Collapse
Affiliation(s)
- Kerui Xie
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China;
| | - Chao Ning
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China; (C.N.); (Q.Z.)
| | - Aiguo Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China; (C.N.); (Q.Z.)
| | - Qin Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China; (C.N.); (Q.Z.)
| | - Dan Wang
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Xinzhong Fan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China;
| |
Collapse
|
3
|
Knockdown of CLAUDIN-6 Inhibited Apoptosis and Induced Proliferation of Bovine Cumulus Cells. Int J Mol Sci 2022; 23:ijms232113222. [PMID: 36362009 PMCID: PMC9656489 DOI: 10.3390/ijms232113222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022] Open
Abstract
This study aims to investigate the effects of CLAUDIN-6 (CLDN6) on cell apoptosis and proliferation of bovine cumulus cells (CCs). Immunofluorescence staining was used to localize CLDN6 protein in CCs. Three pairs of siRNA targeting CLDN6 and one pair of siRNA universal negative sequence as control were transfected into bovine CCs. Then, the effective siRNA was screened by real-time quantitative PCR (RT-qPCR) and Western blotting. The mRNA expression levels of apoptosis related genes (CASPASE-3, BAX and BCL-2) and proliferation related genes (PCNA, CDC42 and CCND2) were evaluated by RT-qPCR in CCs with CLDN6 knockdown. Cell proliferation, apoptosis and cell cycle were detected by flow cytometry with CCK-8 staining, Annexin V-FITC staining and propidium iodide staining, respectively. Results showed that the CLDN6 gene was expressed in bovine CCs and the protein was localized in cell membranes and cytoplasms. After CLDN6 was knocked down in CCs, the cell apoptosis rate significantly decreased and the pro-apoptotic genes BAX and CASPASE-3 were down-regulated significantly, whereas the anti-apoptotic gene BCL-2 was markedly up-regulated (p < 0.05). Additionally, CLDN6 knockdown significantly enhanced cell proliferation of CCs at 72 h after siRNA transfection. The mRNA levels of proliferation-related genes PCNA, CCND2 and CDC42 increased obviously in CCs with CLDN6 knockdown (p < 0.05). After CLDN6 was down-regulated, the percentage of CCs at S phase was significantly increased (p < 0.05). However, there was no remarkable difference in the percentages of cells at the G0/G1 phase and G2/M phase between CCs with or without CLDN6 knockdown (p > 0.05). Therefore, the expression of CLDN6 and its effects on cell proliferation, apoptosis and cell cycle of bovine CCs were first studied. CLDN6 low expression inhibited cell apoptosis, induced cell proliferation and cell cycle arrest of bovine CCs.
Collapse
|
4
|
Qu H, Jin Q, Quan C. CLDN6: From Traditional Barrier Function to Emerging Roles in Cancers. Int J Mol Sci 2021; 22:ijms222413416. [PMID: 34948213 PMCID: PMC8705207 DOI: 10.3390/ijms222413416] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/06/2021] [Accepted: 12/12/2021] [Indexed: 02/07/2023] Open
Abstract
Claudins (CLDNs) are the most important tight junction proteins, which are mainly expressed in endothelial cells or epithelial cells in a tissue-specific manner. As a member of the CLDNs family, CLDN6 is highly expressed in fetal tissues such as the stomach, pancreas, lung, and kidney, but is not expressed in corresponding adult tissues. The expression of CLDN6 is regulated by a variety of factors, including but not limited to stimuli and transcription factors, DNA methylation, and post-translational modifications. CLDN6 has been found to have a key role in the formation of barriers, especially the lung epithelial barrier and the epidermal permeability barrier (EPB). Importantly, the roles of CLDN6 in cancers have gained focus and are being investigated in recent years. Strong evidence indicates that the altered expression of CLDN6 is linked to the development of various cancers. Malignant phenotypes of tumors affected by CLDN6 include proliferation and apoptosis, migration and invasion, and drug resistance, which are regulated by CLDN6-mediated key signaling pathways. Given the important role in tumors and its low or no expression in normal tissues, CLDN6 is an ideal target for tumor therapy. This review aims to provide an overview of the structure and regulation of CLDN6, and its traditional barrier function, with a special emphasis on its emerging roles in cancers, including its impact on the malignant phenotypes, signal-modulating effects, the prognosis of tumor patients, and clinical applications in cancers.
Collapse
|
5
|
Atopic dermatitis is associated with hidradenitis suppurativa diagnosis: A single institution retrospective cohort study. JAAD Int 2021; 4:18-24. [PMID: 34409385 PMCID: PMC8362302 DOI: 10.1016/j.jdin.2021.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2021] [Indexed: 11/23/2022] Open
Abstract
Background Hidradenitis suppurativa (HS) and atopic dermatitis (AD) are both chronic inflammatory skin diseases. An association between these 2 conditions can have important potential implications for elucidating pathogenesis, disease course, and treatment. Objective To investigate the association between AD and HS. Methods We performed a retrospective cohort study of patients seen at Duke University Medical Center from 2007 to 2017 who had AD compared with a control group without an AD diagnosis. The association of AD and HS was evaluated using a logistic regression model after adjusting for other confounders including age, sex, and race. Results Of 28,780 patients with an AD diagnosis, 325 (1.1%) were diagnosed with HS compared with 76 (0.2%) within the 48,383 patients in the non-AD group. An adjusted logistic regression model demonstrated an increased odds ratio of having HS diagnosis in the AD group as compared with the control non-AD group (odds ratio: 5.57, 95% confidence interval: 4.30-7.21, P < .001). Limitations This was a retrospective study performed at a single institution with the possibility of surveillance bias being present. Conclusions Patients with AD are more likely to be diagnosed with HS than patients without AD. Further research is needed to understand the pathophysiologic mechanism and potential treatment implications.
Collapse
|
6
|
Garcia MA, Nelson WJ, Chavez N. Cell-Cell Junctions Organize Structural and Signaling Networks. Cold Spring Harb Perspect Biol 2018; 10:a029181. [PMID: 28600395 PMCID: PMC5773398 DOI: 10.1101/cshperspect.a029181] [Citation(s) in RCA: 316] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell-cell junctions link cells to each other in tissues, and regulate tissue homeostasis in critical cell processes that include tissue barrier function, cell proliferation, and migration. Defects in cell-cell junctions give rise to a wide range of tissue abnormalities that disrupt homeostasis and are common in genetic abnormalities and cancers. Here, we discuss the organization and function of cell-cell junctions primarily involved in adhesion (tight junction, adherens junction, and desmosomes) in two different epithelial tissues: a simple epithelium (intestine) and a stratified epithelium (epidermis). Studies in these tissues reveal similarities and differences in the organization and functions of different cell-cell junctions that meet the requirements for the specialized functions of each tissue. We discuss cell-cell junction responses to genetic and environmental perturbations that provide further insights into their roles in maintaining tissue homeostasis.
Collapse
Affiliation(s)
- Miguel A Garcia
- Department of Biology, Stanford University, Stanford, California 94305
| | - W James Nelson
- Department of Biology, Stanford University, Stanford, California 94305
- Departments of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305
| | - Natalie Chavez
- Department of Biology, Stanford University, Stanford, California 94305
| |
Collapse
|
7
|
Liu F, Koval M, Ranganathan S, Fanayan S, Hancock WS, Lundberg EK, Beavis RC, Lane L, Duek P, McQuade L, Kelleher NL, Baker MS. Systems Proteomics View of the Endogenous Human Claudin Protein Family. J Proteome Res 2016; 15:339-59. [PMID: 26680015 DOI: 10.1021/acs.jproteome.5b00769] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Claudins are the major transmembrane protein components of tight junctions in human endothelia and epithelia. Tissue-specific expression of claudin members suggests that this protein family is not only essential for sustaining the role of tight junctions in cell permeability control but also vital in organizing cell contact signaling by protein-protein interactions. How this protein family is collectively processed and regulated is key to understanding the role of junctional proteins in preserving cell identity and tissue integrity. The focus of this review is to first provide a brief overview of the functional context, on the basis of the extensive body of claudin biology research that has been thoroughly reviewed, for endogenous human claudin members and then ascertain existing and future proteomics techniques that may be applicable to systematically characterizing the chemical forms and interacting protein partners of this protein family in human. The ability to elucidate claudin-based signaling networks may provide new insight into cell development and differentiation programs that are crucial to tissue stability and manipulation.
Collapse
Affiliation(s)
| | - Michael Koval
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, and Department of Cell Biology, Emory University School of Medicine , 205 Whitehead Biomedical Research Building, 615 Michael Street, Atlanta, Georgia 30322, United States
| | | | | | - William S Hancock
- Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University , Boston, Massachusetts 02115, United States
| | - Emma K Lundberg
- SciLifeLab, School of Biotechnology, Royal Institute of Technology (KTH) , SE-171 21 Solna, Stockholm, Sweden
| | - Ronald C Beavis
- Department of Biochemistry and Medical Genetics, University of Manitoba , 744 Bannatyne Avenue, Winnipeg, Manitoba R3E 0W3, Canada
| | - Lydie Lane
- SIB-Swiss Institute of Bioinformatics , CMU - Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Paula Duek
- SIB-Swiss Institute of Bioinformatics , CMU - Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | | | - Neil L Kelleher
- Department of Chemistry, Department of Molecular Biosciences, and Proteomics Center of Excellence, Northwestern University , 2145 North Sheridan Road, Evanston, Illinois 60208, United States
| | | |
Collapse
|
8
|
Kirchmeier P, Sayar E, Hotz A, Hausser I, Islek A, Yilmaz A, Artan R, Fischer J. Novel mutation in the CLDN1 gene in a Turkish family with neonatal ichthyosis sclerosing cholangitis (NISCH) syndrome. Br J Dermatol 2015; 170:976-8. [PMID: 24641442 DOI: 10.1111/bjd.12724] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- P Kirchmeier
- Institute of Human Genetics, University Medical Center Freiburg, Breisacherstraße 33, 79106, Freiburg, Germany; Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Melnik BC. Does therapeutic intervention in atopic dermatitis normalize epidermal Notch deficiency? Exp Dermatol 2014; 23:696-700. [DOI: 10.1111/exd.12460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory; University of Osnabrück; Osnabrück Germany
| |
Collapse
|
10
|
Abstract
Epithelia are found at the interfaces between body compartments where they act as selective permeability barriers that maintain the unique composition of the compartments on either side. Epithelial barrier function is dependent on tight junctions (TJs), which seal the intercellular or paracellular spaces but may permit selective permeability. In simple epithelia (one cell thick), the function of TJs is relatively well understood. By contrast, our understanding of TJ structure and function in stratified epithelia (e.g. the epidermis) is limited. This article briefly discusses what is known about TJs and their components in simple epithelia and speculates about their roles in the epidermis.
Collapse
Affiliation(s)
- Catherine A O'Neill
- Epithelial Sciences Research Group, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK.
| | | |
Collapse
|
11
|
Enikanolaiye A, Larivière N, Troy TC, Arabzadeh A, Atasoy E, Turksen K. Involucrin–claudin-6 tail deletion mutant (CΔ206) transgenic mice: a model of delayed epidermal permeability barrier formation and repair. Dis Model Mech 2010; 3:167-80. [DOI: 10.1242/dmm.002634] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
SUMMARY
Preterm birth is a major global health problem that results in a large number of infant deaths, many of which are attributable to the complications of an immature epidermal permeability barrier (EPB), for which there is currently no effective therapeutic option. The mammalian EPB is formed during development and is essential for survival as it maintains thermoregulation and hydration, and provides a defense against infection. Using transgenic mouse technology, we have demonstrated the importance of claudin (Cldn)-containing tight junctions (TJs) in epidermal differentiation and, in particular, that epidermal suprabasal overexpression of Cldn6 results in an EPB-deficient phenotype that phenocopies the dysfunctional EPB of premature human infants. In this study, we used the same approach to target a Cldn6 tail deletion mutant to the epidermis of mice [involucrin (Inv)-Cldn6-CΔ206 transgenic mice]. The Inv-Cldn6-CΔ206 transgenic mice displayed a developmental delay in EPB formation, as shown by the expression of keratins and Cldns, and by X-Gal penetration assays. Trans-epidermal water loss measurements and immunolocalization studies indicated that the epidermal differentiation program was also perturbed in postnatal Inv-Cldn6-CΔ206 transgenic mice resulting in a delayed maturation. Notably, however, expression/localization of epidermal differentiation and maturation markers, including Cldns, indicated that the transgenic epidermis matured and normalized by postnatal day 10, which is 3 days after the wild-type epidermis. Our results suggest that activation of the extracellular signal-regulated kinase 1/2 (Erk1/2) pathway and Cldn1 phosphorylation are associated with the repair and maturation of the skin barrier processes. These studies provide additional support for the crucial role of Cldns in epidermal differentiation, maturation and the formation of the EPB, and describe a novel animal model for evaluating postnatal epidermal maturation and therapies that may accelerate the process.
Collapse
Affiliation(s)
- Adebola Enikanolaiye
- Sprott Centre for Stem Cell Research at the Ottawa Hospital Research Institute, Ottawa, Ontario K1Y 8L6, Canada
- Department of Cellular and Molecular Medicine and
| | - Nathalie Larivière
- Sprott Centre for Stem Cell Research at the Ottawa Hospital Research Institute, Ottawa, Ontario K1Y 8L6, Canada
- Department of Cellular and Molecular Medicine and
| | - Tammy-Claire Troy
- Sprott Centre for Stem Cell Research at the Ottawa Hospital Research Institute, Ottawa, Ontario K1Y 8L6, Canada
| | - Azadeh Arabzadeh
- Sprott Centre for Stem Cell Research at the Ottawa Hospital Research Institute, Ottawa, Ontario K1Y 8L6, Canada
- Department of Cellular and Molecular Medicine and
| | - Elif Atasoy
- Sprott Centre for Stem Cell Research at the Ottawa Hospital Research Institute, Ottawa, Ontario K1Y 8L6, Canada
- Department of Cellular and Molecular Medicine and
| | - Kursad Turksen
- Sprott Centre for Stem Cell Research at the Ottawa Hospital Research Institute, Ottawa, Ontario K1Y 8L6, Canada
- Department of Cellular and Molecular Medicine and
- Department of Medicine, Divisions of Dermatology and Endocrinology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Present address: Regenerative Medicine Program, Sprott Centre for Stem Cell Research at the Ottawa Hospital Research Institute, 501 Smyth Road-CCW5226, Ottawa, Ontario K1Y 8L6, Canada
| |
Collapse
|
12
|
Turksen K, Troy TC. Claudin is Skin Deep. CURRENT TOPICS IN MEMBRANES 2010. [DOI: 10.1016/s1063-5823(10)65011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Troy TC, Arabzadeh A, Larivière NMK, Enikanolaiye A, Turksen K. Dermatitis and aging-related barrier dysfunction in transgenic mice overexpressing an epidermal-targeted claudin 6 tail deletion mutant. PLoS One 2009; 4:e7814. [PMID: 19915705 PMCID: PMC2773045 DOI: 10.1371/journal.pone.0007814] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 10/20/2009] [Indexed: 12/12/2022] Open
Abstract
The barrier function of the skin protects the mammalian body against infection, dehydration, UV irradiation and temperature fluctuation. Barrier function is reduced with the skin's intrinsic aging process, however the molecular mechanisms involved are unknown. We previously demonstrated that Claudin (Cldn)-containing tight junctions (TJs) are essential in the development of the epidermis and that transgenic mice overexpressing Cldn6 in the suprabasal layers of the epidermis undergo a perturbed terminal differentiation program characterized in part by reduced barrier function. To dissect further the mechanisms by which Cldn6 acts during epithelial differentiation, we overexpressed a Cldn6 cytoplasmic tail deletion mutant in the suprabasal compartment of the transgenic mouse epidermis. Although there were no gross phenotypic abnormalities at birth, subtle epidermal anomalies were present that disappeared by one month of age, indicative of a robust injury response. However, with aging, epidermal changes with eventual chronic dermatitis appeared with a concomitant barrier dysfunction manifested in increased trans-epidermal water loss. Immunohistochemical analysis revealed aberrant suprabasal Cldn localization with marked down-regulation of Cldn1. Both the proliferative and terminal differentiation compartments were perturbed as evidenced by mislocalization of multiple epidermal markers. These results suggest that the normally robust injury response mechanism of the epidermis is lost in the aging Involucrin-Cldn6-CΔ196 transgenic epidermis, and provide a model for evaluation of aging-related skin changes.
Collapse
Affiliation(s)
- Tammy-Claire Troy
- Sprott Centre for Stem Cell Research at the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Azadeh Arabzadeh
- Sprott Centre for Stem Cell Research at the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Nathalie M. K. Larivière
- Sprott Centre for Stem Cell Research at the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Adebola Enikanolaiye
- Sprott Centre for Stem Cell Research at the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Kursad Turksen
- Sprott Centre for Stem Cell Research at the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Divisions of Dermatology and Endocrinology, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Division of Reproductive Endocrinology, Department of Obstetrics, Gynaecology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
14
|
Danielyan L, Zellmer S, Sickinger S, Tolstonog GV, Salvetter J, Lourhmati A, Reissig DD, Gleiter CH, Gebhardt R, Buniatian GH. Keratinocytes as depository of ammonium-inducible glutamine synthetase: age- and anatomy-dependent distribution in human and rat skin. PLoS One 2009; 4:e4416. [PMID: 19204801 PMCID: PMC2637544 DOI: 10.1371/journal.pone.0004416] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 12/23/2008] [Indexed: 02/02/2023] Open
Abstract
In inner organs, glutamine contributes to proliferation, detoxification and establishment of a mechanical barrier, i.e., functions essential for skin, as well. However, the age-dependent and regional peculiarities of distribution of glutamine synthetase (GS), an enzyme responsible for generation of glutamine, and factors regulating its enzymatic activity in mammalian skin remain undisclosed. To explore this, GS localization was investigated using immunohistochemistry and double-labeling of young and adult human and rat skin sections as well as skin cells in culture. In human and rat skin GS was almost completely co-localized with astrocyte-specific proteins (e.g. GFAP). While GS staining was pronounced in all layers of the epidermis of young human skin, staining was reduced and more differentiated among different layers with age. In stratum basale and in stratum spinosum GS was co-localized with the adherens junction component beta-catenin. Inhibition of, glycogen synthase kinase 3beta in cultured keratinocytes and HaCaT cells, however, did not support a direct role of beta-catenin in regulation of GS. Enzymatic and reverse transcriptase polymerase chain reaction studies revealed an unusual mode of regulation of this enzyme in keratinocytes, i.e., GS activity, but not expression, was enhanced about 8-10 fold when the cells were exposed to ammonium ions. Prominent posttranscriptional up-regulation of GS activity in keratinocytes by ammonium ions in conjunction with widespread distribution of GS immunoreactivity throughout the epidermis allows considering the skin as a large reservoir of latent GS. Such a depository of glutamine-generating enzyme seems essential for continuous renewal of epidermal permeability barrier and during pathological processes accompanied by hyperammonemia.
Collapse
Affiliation(s)
- Lusine Danielyan
- Department of Clinical Pharmacology, University Hospital of Tübingen, Tübingen, Germany
| | - Sebastian Zellmer
- Institute of Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Stefan Sickinger
- Institute of Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Genrich V. Tolstonog
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Hamburg, Germany
| | | | - Ali Lourhmati
- Department of Clinical Pharmacology, University Hospital of Tübingen, Tübingen, Germany
| | | | - Cristoph H. Gleiter
- Department of Clinical Pharmacology, University Hospital of Tübingen, Tübingen, Germany
| | - Rolf Gebhardt
- Institute of Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| | | |
Collapse
|