1
|
Hernández-Castellano S, Galaz-Ávalos RM, Loyola-Vargas VM, De-la-Peña C. Protocol for Generating Arabidopsis thaliana Cell Suspension Cultures Under Different Light Conditions. Methods Mol Biol 2024; 2827:145-153. [PMID: 38985267 DOI: 10.1007/978-1-0716-3954-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Plant cell suspension cultures (PCSCs) are in vitro-cultured cells that can divide indefinitely in a sterile growth medium. These PCSCs can be derived from various plant tissues, such as the root, stem, leaves, or seeds, and are maintained in a suitable culture medium containing nutrients, vitamins, hormones, and other essential components necessary for their growth. PCSCs have extensive applications in biotechnology, particularly in producing pharmaceutical and chemical compounds. This chapter presents a protocol for generating cell lines from Arabidopsis thaliana root callus under different light conditions, which can be used to investigate the effects of light on plant cell growth and development. The protocol described in this chapter is a valuable tool for researchers interested in utilizing PCSCs in their studies.
Collapse
Affiliation(s)
| | - Rosa Ma Galaz-Ávalos
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México
| | - Víctor M Loyola-Vargas
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México
| | - Clelia De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México.
| |
Collapse
|
2
|
Shariatipour N, Heidari B, Tahmasebi A, Richards C. Comparative Genomic Analysis of Quantitative Trait Loci Associated With Micronutrient Contents, Grain Quality, and Agronomic Traits in Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:709817. [PMID: 34712248 PMCID: PMC8546302 DOI: 10.3389/fpls.2021.709817] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/06/2021] [Indexed: 05/02/2023]
Abstract
Comparative genomics and meta-quantitative trait loci (MQTLs) analysis are important tools for the identification of reliable and stable QTLs and functional genes controlling quantitative traits. We conducted a meta-analysis to identify the most stable QTLs for grain yield (GY), grain quality traits, and micronutrient contents in wheat. A total of 735 QTLs retrieved from 27 independent mapping populations reported in the last 13 years were used for the meta-analysis. The results showed that 449 QTLs were successfully projected onto the genetic consensus map which condensed to 100 MQTLs distributed on wheat chromosomes. This consolidation of MQTLs resulted in a three-fold reduction in the confidence interval (CI) compared with the CI for the initial QTLs. Projection of QTLs revealed that the majority of QTLs and MQTLs were in the non-telomeric regions of chromosomes. The majority of micronutrient MQTLs were located on the A and D genomes. The QTLs of thousand kernel weight (TKW) were frequently associated with QTLs for GY and grain protein content (GPC) with co-localization occurring at 55 and 63%, respectively. The co- localization of QTLs for GY and grain Fe was found to be 52% and for QTLs of grain Fe and Zn, it was found to be 66%. The genomic collinearity within Poaceae allowed us to identify 16 orthologous MQTLs (OrMQTLs) in wheat, rice, and maize. Annotation of promising candidate genes (CGs) located in the genomic intervals of the stable MQTLs indicated that several CGs (e.g., TraesCS2A02G141400, TraesCS3B02G040900, TraesCS4D02G323700, TraesCS3B02G077100, and TraesCS4D02G290900) had effects on micronutrients contents, yield, and yield-related traits. The mapping refinements leading to the identification of these CGs provide an opportunity to understand the genetic mechanisms driving quantitative variation for these traits and apply this information for crop improvement programs.
Collapse
Affiliation(s)
- Nikwan Shariatipour
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Bahram Heidari
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Ahmad Tahmasebi
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Christopher Richards
- USDA ARS National Laboratory for Genetic Resources Preservation, Fort Collins, CO, United States
| |
Collapse
|
3
|
Amaral-Silva PM, Clarindo WR, Guilhen JHS, de Jesus Passos ABR, Sanglard NA, Ferreira A. Global 5-methylcytosine and physiological changes are triggers of indirect somatic embryogenesis in Coffea canephora. PROTOPLASMA 2021; 258:45-57. [PMID: 32895735 DOI: 10.1007/s00709-020-01551-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/28/2020] [Indexed: 05/27/2023]
Abstract
Indirect somatic embryogenesis (ISE) establishment for Coffea species started in the 1970s. Since then, intraspecific variations in the morphogenic pathway have been reported, even in the common environmental condition in vitro. Several authors have suggested that these variations are the result of genetic, epigenetic, and/or physiological events, highlighting the need for investigations to know the causes. Along these lines, this study aimed to investigate and describe, for the first time, the global 5-methylcytosine and physiological changes that occur in the cells of the aggregate suspensions of Coffea canephora during proliferation and somatic embryo regeneration steps. The cell proliferation step was characterized by increase in cell mass in all subcultures; relatively low mean values of global 5-methylcytosine (5-mC%), abscisic acid (ABA), and indole-3-acetic acid (IAA); high mean value of 1-aminocyclopropane-1-carboxylic acid (ACC, an ethylene precursor); and increase followed by decrease in spermidine (Spd, a polyamine) level. Therefore, these epigenetic and physiologic aspects promoted the cell proliferation, which is fundamental for ISE. In turn, the somatic embryo regeneration was correlated with global 5-mC% and physiological changes. The competence acquisition, determination, and cell differentiation steps were marked by increases in mean values of 5-mC%, IAA and ABA, and decreases in ACC and Spd, evincing that these changes are the triggers for regeneration and maturation of somatic embryos. Therefore, dynamic and coordinated epigenetic and physiologic changes occur in the cells of the aggregate suspensions during the C. canephora ISE in liquid system.
Collapse
Affiliation(s)
- Paulo Marcos Amaral-Silva
- Laboratório de Citogenética e Cultura de Tecidos Vegetais, Centro de Ciências Agrárias e Engenharias, Universidade Federal do Espírito Santo, Alegre, ES, 29500-000, Brazil
| | - Wellington Ronildo Clarindo
- Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| | - José Henrique Soler Guilhen
- Laboratório de Biometria, Centro de Ciências Agrárias e Engenharias, Universidade Federal do Espírito Santo, Alegre, ES, 29500-000, Brazil
| | - Ana Beatriz Rocha de Jesus Passos
- Laboratório de Biometria, Centro de Ciências Agrárias e Engenharias, Universidade Federal do Espírito Santo, Alegre, ES, 29500-000, Brazil
- Laboratório de Genética e Melhoramento, Centro de Ciências Agrárias e Engenharias, Universidade Federal do Espírito Santo, Alegre, ES, 29500-000, Brazil
| | - Natália Arruda Sanglard
- Laboratório de Citogenética e Cultura de Tecidos Vegetais, Centro de Ciências Agrárias e Engenharias, Universidade Federal do Espírito Santo, Alegre, ES, 29500-000, Brazil
| | - Adésio Ferreira
- Laboratório de Biometria, Centro de Ciências Agrárias e Engenharias, Universidade Federal do Espírito Santo, Alegre, ES, 29500-000, Brazil
| |
Collapse
|
4
|
Somatic Embryogenesis from Mature Embryos of Olea europaea L. cv. 'Galega Vulgar' and Long-Term Management of Calli Morphogenic Capacity. PLANTS 2020; 9:plants9060758. [PMID: 32560502 PMCID: PMC7355655 DOI: 10.3390/plants9060758] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023]
Abstract
Several olive cultivars, characterized by high-quality olive oil show agronomical issues such as excessive vigor, high susceptibility to biotic and abiotic stresses, and low propagation ability. They are strong candidates for breeding based on new technologies to improve their performance in a short period of time. For this reason, the first step is developing efficient somatic embryogenesis (SE) protocols. Somatic embryogenesis in olive is highly genotype-dependent for both adult tissues and mature embryos as initial explants, requiring the development of specific protocols for each genotype. Trials using cotyledons and radicles as initial explants, isolated from ripe seeds from the Portuguese olive cv. ‘Galega vulgar’, gave more than 95% calli development. Radicles proved to be the most responsive tissue for SE induction, with an average of 2 embryos per callus after callus transfer to expression medium, and 14 embryos per callus after subculture on the olive cyclic embryogenesis medium (ECO). Embryogenic competence could be recovered after several subcultures on ECO medium that maintained cyclic embryogenesis for an indeterminate period of time. Embryo conversion and plant acclimatization were also attained with high success rates. Media management for cyclic embryogenesis maintenance is of general importance for SE protocols in any olive genotype. Somatic embryogenesis was thus attained for the first time in embryo-derived explants of cv. ‘Galega vulgar’.
Collapse
|
5
|
Siddiqui ZH, Abbas ZK, Ansari MW, Khan MN. The role of miRNA in somatic embryogenesis. Genomics 2018; 111:1026-1033. [PMID: 30476555 DOI: 10.1016/j.ygeno.2018.11.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/14/2018] [Accepted: 11/17/2018] [Indexed: 02/04/2023]
Abstract
Somatic embryogenesis (SEG) is one of the best techniques for mass production of economically important plants. It is also used for the study of morphology, anatomy, physiology, genetics and molecular mechanism of embryo development. Somatic Embryos (SE) are bipolar structures that develop from a cell other than a gamete or zygote. SEG reflects the unique developmental potential of plant somatic cells, resulting in the transition of the differentiated somatic cells to embryogenic cells to follow the zygotic embryo stages. There are several biochemical and physiological processes that transformed a single somatic cell to a whole plant. SE studies provide insight into cell mechanisms governing the totipotency process in plants. Previously, in vitro studies have suggested the role of various regulatory genes in embryogenic transition that are triggered by plant hormones in response to stress. The omic studies identify the specific genes, transcripts, and proteins required for somatic embryogenesis development. MicroRNAs (miRNAs) are small, 19-24 nucleotides (nt), non-coding small RNA regulatory molecules controlling a large number of biological processes. In addition to their role in SEG, miRNAs play vital role in plant development, secondary metabolite synthesis and metabolism of macromolecules, hormone signal transduction, and tolerance of plants to biotic and abiotic stresses. During last decade several types of miRNAs involved in SEG have been reported. Among these miRNAs, miR156, miR162, miR166a, miR167, miR168, miR171a/b, miR171c, miR393, miR397 and miR398 played very active role during various stages of SEG. In this review, we highlighted the role of these as well as other miRNAs in some economically important plants.
Collapse
Affiliation(s)
- Zahid Hameed Siddiqui
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia.
| | - Zahid Khorshid Abbas
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohammad Wahid Ansari
- Department of Botany, Zakir Husain Delhi College, University of Delhi, JLN Marg, New Delhi 110002, India
| | - Mohammad Nasir Khan
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
6
|
Seed-Specific Gene MOTHER of FT and TFL1(MFT) Involved in Embryogenesis, Hormones and Stress Responses in Dimocarpus longan Lour. Int J Mol Sci 2018; 19:ijms19082403. [PMID: 30110985 PMCID: PMC6122071 DOI: 10.3390/ijms19082403] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 11/30/2022] Open
Abstract
Mother of FT and TFL1 (MFT) belongs to phosphatidylethanolamine-binding protein (PEBP) family, which plays an important role in flowering time regulation, seed development, and germination. To gain insight into the molecular function of DlMFT in Dimocarpus longan Lour., we isolated DlMFT and its promoter sequence from longan embryogenic callus (EC). Bioinformatic analysis indicated that the promoter contained multiphytohormones and light responsive regulatory elements. Subcellular localization showed that the given the DlMFT signal localized in the nucleus, expression profiling implied that DlMFT showed significant upregulation during somatic embryogenesis (SE) and zygotic embryogenesis (ZE), and particular highly expressed in late or maturation stages. The accumulation of DlMFT was mainly detected in mature fruit and seed, while it was undetected in abortive seeds, and notably decreased during seed germination. DlMFT responded differentially to exogenous hormones in longan EC. Auxins, salicylic acid (SA) and methyl jasmonate (MeJa) suppressed its expression, however, abscisic acid (ABA), brassinosteroids (BR) showed the opposite function. Meanwhile, DlMFT differentially responded to various abiotic stresses. Our study revealed that DlMFT might be a key regulator of longan somatic and zygotic embryo development, and in seed germination, it is involved in complex plant hormones and abiotic stress signaling pathways.
Collapse
|
7
|
Reis RS, Vale EDM, Heringer AS, Santa-Catarina C, Silveira V. Putrescine induces somatic embryo development and proteomic changes in embryogenic callus of sugarcane. J Proteomics 2016; 130:170-9. [DOI: 10.1016/j.jprot.2015.09.029] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/27/2015] [Accepted: 09/21/2015] [Indexed: 01/29/2023]
|
8
|
AYDIN M, HOSSEIN POUR A, HALILOĞLU K, TOSUN M. Effect of polyamines on somatic embryogenesis via mature embryo in wheat. Turk J Biol 2016. [DOI: 10.3906/biy-1601-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
9
|
Chen BX, Li WY, Gao YT, Chen ZJ, Zhang WN, Liu QJ, Chen Z. Involvement of Polyamine Oxidase-Produced Hydrogen Peroxide during Coleorhiza-Limited Germination of Rice Seeds. FRONTIERS IN PLANT SCIENCE 2016; 7:1219. [PMID: 27570530 PMCID: PMC4981591 DOI: 10.3389/fpls.2016.01219] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/02/2016] [Indexed: 05/18/2023]
Abstract
Seed germination is a complicated biological process that requires regulated enzymatic and non-enzymatic reactions. The action of polyamine oxidase (PAO) produces hydrogen peroxide (H2O2), which promotes dicot seed germination. However, whether and, if so, how PAOs regulate monocot seed germination via H2O2 production is unclear. Herein, we report that the coleorhiza is the main physical barrier to radicle protrusion during germination of rice seed (a monocot seed) and that it does so in a manner similar to that of dicot seed micropylar endosperm. We found that H2O2 specifically and steadily accumulated in the coleorhizae and radicles of germinating rice seeds and was accompanied by increased PAO activity as the germination percentage increased. These physiological indexes were strongly decreased in number by guazatine, a PAO inhibitor. We also identified 11 PAO homologs (OsPAO1-11) in the rice genome, which could be classified into four subfamilies (I, IIa, IIb, and III). The OsPAO genes in subfamilies I, IIa, and IIb (OsPAO1-7) encode PAOs, whereas those in subfamily III (OsPAO8-11) encode histone lysine-specific demethylases. In silico-characterized expression profiles of OsPAO1-7 and those determined by qPCR revealed that OsPAO5 is markedly upregulated in imbibed seeds compared with dry seeds and that its transcript accumulated to a higher level in embryos than in the endosperm. Moreover, its transcriptional abundance increased gradually during seed germination in water and was inhibited by 5 mM guazatine. Taken together, these results suggest that PAO-generated H2O2 is involved in coleorhiza-limited rice seed germination and that OsPAO5 expression accounts for most PAO expression and activity during rice seed germination. These findings should facilitate further study of PAOs and provide valuable information for functional validation of these proteins during seed germination of monocot cereals.
Collapse
|
10
|
BOTERO GIRALDO C, RREA TRUJILLO AI, NARANJO GÓMEZ EJ. POTENCIAL DE REGENERACIÓN DE Psychotria ipecacuanha (Rubiaceae) A PARTIR DE CAPAS DELGADAS DE CÉLULAS. ACTA BIOLÓGICA COLOMBIANA 2015. [DOI: 10.15446/abc.v20n3.47354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
<p>Conociendo las propiedades medicinales de la especie vegetal <em>Psychotria</em> <em>ipecacuanha</em> (Brot.) Stokes, su crítico estado de conservación, así como las dificultades que presenta para la propagación efectiva, el presente estudio tuvo como objetivo evaluar su potencial de propagación por los sistemas de regeneración <em>in vitro</em>, organogénesis y embriogénesis somática. Para este propósito, capas delgadas de células (CDCs) de tallos y de hojas, así como segmentos foliares fueron sometidos a diferentes tratamientos con reguladores de crecimiento y condiciones de luz. Además se estableció el efecto de diferentes longitudes de onda vía diodos emisores de luz (LEDs), sobre la regeneración en estos explantes y nudos provenientes de plantas <em>in vitro</em>. Los resultados obtenidos mostraron que los segmentos de hoja y las CDCs de tallo sembrados en el medio de cultivo MS suplementado con las combinaciones de los reguladores de crecimiento IBA + BAP e IBA + TDZ formaron embriones somáticos y brotes. Los cortes histológicos realizados corroboraron estos dos tipos de origen. Se encontró que bajo la condición lumínica 16/8, se alcanzaron los mejores resultados de inducción de brotes y embriones. En cuanto al efecto de las diferentes longitudes de onda de luz, se encontró que las correspondientes al rojo, verde y blanca, favorecieron el crecimiento y desarrollo de brotes y la inducción de embriones somáticos. El desarrollo de los brotes a partir de los nudos no presentó diferencias estadísticas entre los tratamientos con LEDs, por lo que se recomienda el uso de la luz blanca continua y con fotoperiodo durante el proceso de multiplicación y desarrollo de estos.</p><p><strong>Regeneration Potential of <em>Psychotria Ipecacuanha</em> (Rubiaceae) from Thin Cell Layers </strong></p><p>Knowing the medicinal properties of the plant specie <em>Psychotria ipecacuanha</em> (Brot.) Stokes, its critical condition and the difficulties for its effective propagation, the present study aimed to assess the potential of propagation of <em>P. ipecacuanha</em> by <em>in vitro</em> systems of regeneration, organogenesis and somatic embryogenesis. For this purpose, thin cell layers (TCL) of stems and leaves, as well as leaf segments were subjected to different treatments of plant growth regulators and light conditions. Furthermore, the effect of different wavelengths via light emitting diodes (LED’s), was established for the regeneration in these explants and nodal explants from <em>in vitro</em> plants. The results showed that leaf segments and stem TCL, cultured in MS medium supplemented with the combinations of growth regulators IBA + BAP and IBA + TDZ, formed somatic embryos and shoots. The histological sections supported the two types of source. It was found that the best results in shoot induction and embryos were achieved under the light condition 16/8-h light/dark. Regarding the effect of different wavelengths, it was found that those corresponding to red, green, and white supported the growth and shoot development as well as somatic embryos induction. The shoots development from the nodal explants did not show statistical differences between LEDs treatments, so the use of a continuous white light and photoperiod is recommended during their multiplication and development.</p>
Collapse
|
11
|
Nic-Can GI, Galaz-Ávalos RM, De-la-Peña C, Alcazar-Magaña A, Wrobel K, Loyola-Vargas VM. Somatic Embryogenesis: Identified Factors that Lead to Embryogenic Repression. A Case of Species of the Same Genus. PLoS One 2015; 10:e0126414. [PMID: 26038822 PMCID: PMC4454440 DOI: 10.1371/journal.pone.0126414] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/01/2015] [Indexed: 11/19/2022] Open
Abstract
Somatic embryogenesis is a powerful biotechnological tool for the mass production of economically important cultivars. Due to the cellular totipotency of plants, somatic cells under appropriate conditions are able to develop a complete functional embryo. During the induction of somatic embryogenesis, there are different factors involved in the success or failure of the somatic embryogenesis response. Among these factors, the origin of the explant, the culture medium and the in vitro environmental conditions have been the most studied. However, the secretion of molecules into the media has not been fully addressed. We found that the somatic embryogenesis of Coffea canephora, a highly direct embryogenic species, is disrupted by the metabolites secreted from C. arabica, a poorly direct embryogenic species. These metabolites also affect DNA methylation. Our results show that the abundance of two major phenolic compounds, caffeine and chlorogenic acid, are responsible for inhibiting somatic embryogenesis in C. canephora.
Collapse
Affiliation(s)
- Geovanny I. Nic-Can
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, CP 97200, Mérida, Yucatán, México
| | - Rosa M. Galaz-Ávalos
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, CP 97200, Mérida, Yucatán, México
| | - Clelia De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, CP 97200, Mérida, Yucatán, México
| | - Armando Alcazar-Magaña
- Department of Chemistry, University of Guanajuato, L. de Retana 5, CP 36000 Guanajuato, Mexico
| | - Kazimierz Wrobel
- Department of Chemistry, University of Guanajuato, L. de Retana 5, CP 36000 Guanajuato, Mexico
| | - Víctor M. Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, CP 97200, Mérida, Yucatán, México
- * E-mail:
| |
Collapse
|
12
|
Cheng WH, Wang FL, Cheng XQ, Zhu QH, Sun YQ, Zhu HG, Sun J. Polyamine and Its Metabolite H2O2 Play a Key Role in the Conversion of Embryogenic Callus into Somatic Embryos in Upland Cotton (Gossypium hirsutum L.). FRONTIERS IN PLANT SCIENCE 2015; 6:1063. [PMID: 26697030 PMCID: PMC4667013 DOI: 10.3389/fpls.2015.01063] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/16/2015] [Indexed: 05/23/2023]
Abstract
The objective of this study was to increase understanding about the mechanism by which polyamines (PAs) promote the conversion of embryogenic calli (EC) into somatic embryos in cotton (Gossypium hirsutum L.). We measured the levels of endogenous PAs and H2O2, quantified the expression levels of genes involved in the PAs pathway at various stages of cotton somatic embryogenesis (SE), and investigated the effects of exogenous PAs and H2O2 on differentiation and development of EC. Putrescine (Put), spermidine (Spd), and spermine (Spm) significantly increased from the EC stage to the early phase of embryo differentiation. The levels of Put then decreased until the somatic embryo stage whereas Spd and Spm remained nearly the same. The expression profiles of GhADC genes were consistent with changes in Put during cotton SE. The H2O2 concentrations began to increase significantly at the EC stage, during which time both GhPAO1 and GhPAO4 expressions were highest and PAO activity was significantly increased. Exogenous Put, Spd, Spm, and H2O2 not only enhanced embryogenic callus growth and embryo formation, but also alleviated the effects of D-arginine and 1, 8-diamino-octane, which are inhibitors of PA synthesis and PAO activity. Overall, the results suggest that both PAs and their metabolic product H2O2 are essential for the conversion of EC into somatic embryos in cotton.
Collapse
Affiliation(s)
- Wen-Han Cheng
- College of Agriculture/The Key Laboratory of Oasis Eco-Agriculture, Shihezi UniversityShihezi, China
| | - Fan-Long Wang
- College of Agriculture/The Key Laboratory of Oasis Eco-Agriculture, Shihezi UniversityShihezi, China
| | - Xin-Qi Cheng
- College of Agriculture/The Key Laboratory of Oasis Eco-Agriculture, Shihezi UniversityShihezi, China
| | - Qian-Hao Zhu
- Agriculture, Commonwealth Scientific and Industrial Research OrganisationCanberra, ACT, Australia
| | - Yu-Qiang Sun
- College of Agriculture/The Key Laboratory of Oasis Eco-Agriculture, Shihezi UniversityShihezi, China
- College of Life and Environmental Science, Hangzhou Normal UniversityHangzhou, China
| | - Hua-Guo Zhu
- College of Agriculture/The Key Laboratory of Oasis Eco-Agriculture, Shihezi UniversityShihezi, China
- *Correspondence: Jie Sun, ; Hua-Guo Zhu,
| | - Jie Sun
- College of Agriculture/The Key Laboratory of Oasis Eco-Agriculture, Shihezi UniversityShihezi, China
- *Correspondence: Jie Sun, ; Hua-Guo Zhu,
| |
Collapse
|
13
|
Schmidt A, Schmid MW, Klostermeier UC, Qi W, Guthörl D, Sailer C, Waller M, Rosenstiel P, Grossniklaus U. Apomictic and sexual germline development differ with respect to cell cycle, transcriptional, hormonal and epigenetic regulation. PLoS Genet 2014; 10:e1004476. [PMID: 25010342 PMCID: PMC4091798 DOI: 10.1371/journal.pgen.1004476] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 03/18/2014] [Indexed: 11/18/2022] Open
Abstract
Seeds of flowering plants can be formed sexually or asexually through apomixis. Apomixis occurs in about 400 species and is of great interest for agriculture as it produces clonal offspring. It differs from sexual reproduction in three major aspects: (1) While the sexual megaspore mother cell (MMC) undergoes meiosis, the apomictic initial cell (AIC) omits or aborts meiosis (apomeiosis); (2) the unreduced egg cell of apomicts forms an embryo without fertilization (parthenogenesis); and (3) the formation of functional endosperm requires specific developmental adaptations. Currently, our knowledge about the gene regulatory programs underlying apomixis is scarce. We used the apomict Boechera gunnisoniana, a close relative of Arabidopsis thaliana, to investigate the transcriptional basis underlying apomeiosis and parthenogenesis. Here, we present the first comprehensive reference transcriptome for reproductive development in an apomict. To compare sexual and apomictic development at the cellular level, we used laser-assisted microdissection combined with microarray and RNA-Seq analyses. Conservation of enriched gene ontologies between the AIC and the MMC likely reflects functions of importance to germline initiation, illustrating the close developmental relationship of sexuality and apomixis. However, several regulatory pathways differ between sexual and apomictic germlines, including cell cycle control, hormonal pathways, epigenetic and transcriptional regulation. Enrichment of specific signal transduction pathways are a feature of the apomictic germline, as is spermidine metabolism, which is associated with somatic embryogenesis in various plants. Our study provides a comprehensive reference dataset for apomictic development and yields important new insights into the transcriptional basis underlying apomixis in relation to sexual reproduction. In flowering plants, asexual reproduction through seeds (apomixis) likely evolved from sexual ancestors several times independently. Only three key developmental steps differ between sexual reproduction and apomixis. In contrast to sexual reproduction, in apomicts the first cell of the female reproductive lineage omits or aborts meiosis (apomeiosis) to initiate gamete formation. Subsequently, the egg cell develops into an embryo without fertilization (parthenogenesis), and endosperm formation can either be autonomous or depend on fertilization. Consequently, the offspring of apomicts is genetically identical to the mother plant. The production of clonal seeds bears great promise for agricultural applications. However, the targeted manipulation of reproductive pathways for seed production has proven difficult as knowledge about the underlying gene regulatory processes is limited. We performed cell type-specific transcriptome analyses to study apomictic germline development in Boechera gunnisoniana, an apomictic species closely related to Arabidopsis thaliana. To facilitate these analyses, we first characterized a floral reference transcriptome. In comparison, we identified several regulatory pathways, including core cell cycle regulation, protein degradation, transcription factor activity, and hormonal pathways to be differentially regulated between sexual and apomictic plants. Apart from new insights into the underlying transcriptional networks, our dataset provides a valuable starting point for functional investigations.
Collapse
Affiliation(s)
- Anja Schmidt
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
- * E-mail: (AS); (UG)
| | - Marc W. Schmid
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | | | - Weihong Qi
- Functional Genomics Center Zürich, UZH/ETH Zürich, Zürich, Switzerland
| | - Daniela Guthörl
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Christian Sailer
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Manuel Waller
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts University, Kiel, Germany
| | - Ueli Grossniklaus
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
- * E-mail: (AS); (UG)
| |
Collapse
|