1
|
Fan Y, Qi J, Xiao X, Li H, Lan J, Huang Y, Yang J, Zhang Y, Zhang S, Tao J, Tang C. Transcript and Protein Profiling Provides Insights Into the Molecular Mechanisms of Harvesting-Induced Latex Production in Rubber Tree. Front Genet 2022; 13:756270. [PMID: 35222526 PMCID: PMC8869608 DOI: 10.3389/fgene.2022.756270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/17/2022] [Indexed: 11/27/2022] Open
Abstract
Natural rubber, an important industrial raw material with wide applications, is harvested in the form of latex (cytoplasm of rubber-producing laticifers) from Hevea brasiliensis (para rubber tree) by the way of tapping. Conspicuous stimulation on latex production is observed for the first few tappings conducted on virgin (untapped before) or resting (tapped before but no tapping for a period) rubber trees. To understand the underlying mechanisms, an integrative analysis of the latex transcriptome and proteome was conducted on virgin or resting Hevea trees for the first five tappings. A total of 505 non-redundant differentially expressed (DE) transcript-derived fragments (TDFs) were identified by silver-staining cDNA-AFLP, with 217 exhibiting patterns of upregulated, 180 downregulated and 108 irregularly-regulated. Meanwhile, 117 two dimensional gel electrophoresis DE-protein spots were isolated and subjected to mass spectrometry analysis, with 89 and 57 being successfully identified by MALDI-TOF and MALDI-TOF/TOF, respectively. About 72.5% DE-TDFs and 76.1% DE-proteins were functionally annotated and categorized. Noteworthily, most of the DE-TDFs implicated in sugar transport and metabolism as well as rubber biosynthesis were upregulated by the tapping treatment. The importance of sugar metabolism in harvesting-induced latex production was reinforced by the identification of abundant relevant DE-protein spots. About 83.8% of the randomly selected DE-TDFs were validated for expression patterns by semi-quantitative RT-PCR, and an 89.7% consistency for the 29 latex regeneration-related DE-TDFs examined by quantitative RT-PCR analysis. In brief, our results reveal extensive physiological and molecular changes in Hevea laticifers incurred by the tapping treatment, and the vast number of DE genes and proteins identified here contribute to unraveling the gene regulatory network of tapping-stimulated latex production.
Collapse
Affiliation(s)
- Yujie Fan
- Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, Hainan University, Haikou, China
| | - Jiyan Qi
- Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, Hainan University, Haikou, China
| | - Xiaohu Xiao
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Heping Li
- Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, Hainan University, Haikou, China
| | - Jixian Lan
- Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, Hainan University, Haikou, China
| | - Yacheng Huang
- Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, Hainan University, Haikou, China
| | - Jianghua Yang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yi Zhang
- Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, Hainan University, Haikou, China
| | - Shengmin Zhang
- Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, Hainan University, Haikou, China
| | - Jun Tao
- Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, Hainan University, Haikou, China
| | - Chaorong Tang
- Natural Rubber Cooperative Innovation Center of Hainan Province and Ministry of Education of PRC, Hainan University, Haikou, China
- *Correspondence: Chaorong Tang,
| |
Collapse
|
2
|
Zaini F, Lotfali E, Fattahi A, Siddig E, Farahyar S, Kouhsari E, Saffari M. Voriconazole resistance genes in Aspergillus flavus clinical isolates. J Mycol Med 2020; 30:100953. [PMID: 32362445 DOI: 10.1016/j.mycmed.2020.100953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 01/05/2020] [Accepted: 03/18/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The present study was designed to discover novel biomarkers involved in voriconazole resistance in clinical isolates of Aspergillus flavus. MATERIALS AND METHODS Two voriconazole non-wild-type and two voriconazole-wild-type A. flavus clinical isolates were selected to evaluate possible molecular mechanism involved in A. flavus resistance to voriconazole using the mutation assessment, Quantitative real- time PCR of cyp51A and cyp51C genes and complementary DNA- amplified fragment length polymorphism technique. RESULTS No mutations were seen in the cyp51A and cyp51C genes in voriconazole non-wild-type isolates compared to wild- type and reference strains. Regarding to mRNA expression results, no changes were observed in expression fold of cyp51A and cyp51C mRNA expression level in first non- wild- type isolate compared to wild-type isolate. For second isolate cyp51C mRNA expression level was down regulated (5.6 fold). The set of genes including ABC fatty acid transporter XM- 002375835 and aldehydereductase XM- 002376518 and three unknown functional genes were identified. Based on results, the over-expression of AKR1 and ABC fatty acid transporter in the voriconazole non- wild- type isolates suggests these genes could represent a novel molecular marker linked to the voriconazole resistance in A. flavus. CONCLUSION The results obtained in this study showed a novel finding as the authors identified AKR1 and ABC fatty acid transporter genes as possible voriconazole target genes in Iranian clinical isolates of A. flavus.
Collapse
Affiliation(s)
- F Zaini
- Department of Medical Parasitology and Mycology, Tehran University of Medical Sciences, Tehran, Iran
| | - E Lotfali
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - A Fattahi
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran.
| | - E Siddig
- Mycetoma Research Center, University of Khartoum, Khartoum, Sudan
| | - S Farahyar
- Microbial Biotechnology Research Center(MBIRC), School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Mycology, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - E Kouhsari
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - M Saffari
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Pozzi FI, Green GY, Barbona IG, Rodríguez GR, Felitti SA. CleanBSequences: an efficient curator of biological sequences in R. Mol Genet Genomics 2020; 295:837-841. [PMID: 32300860 DOI: 10.1007/s00438-020-01671-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/30/2020] [Indexed: 10/24/2022]
Abstract
This work presents a new method and tool to solve a common problem of molecular biologists and geneticists who use molecular markers in their scientific research and developments: curation of sequences. Omic studies conducted by molecular biologists and geneticists usually involve the use of molecular markers. AFLP, cDNA-AFLP, and MSAP are examples of markers that render information at the genomics, transcriptomics, and epigenomics levels, respectively. These three types of molecular markers use adaptors that are the template for PCR amplification. The sequences of the adaptors have to be eliminated for the analysis of the results. Since a large number of sequences are usually obtained in these studies, this clean-up of the data could demand long time and work. To automate this work, an R package, named CleanBSequences, was created that allows the sequences to be curated massively, quickly, without errors and can be used offline. The curating is performed by aligning the forward and/or reverse primers or ends of cloning vectors with the sequences to be removed. After the alignment, new subsequences are generated without biological fragments not desired by the user, i.e., sequences needed by the techniques. In conclusion, the CleanBSequences tool facilitates the work of researchers, reducing time, effort, and working errors. Therefore, the present tool would respond to the problems related to the curation of sequences obtained from the use of some types of molecular markers. In addition to the above, being an open source, CleanBSequences is a flexible tool that has the potential to be used in future improvements to respond to new problems.
Collapse
Affiliation(s)
- Florencia I Pozzi
- Instituto de Tecnología Agropecuaria, EEA Marcos Juárez, Ruta 12 km. 3, 2580, Marcos Juárez, Córdoba, Argentina. .,Cátedra de Microbiología, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, S2125ZAA, Zavalla, Santa Fe, Argentina.
| | - Gisela Y Green
- Cátedra de Epidemiología, Facultad de Ciencias Veterinarias, Universidad Nacional de Rosario, S2170, Casilda, Santa Fe, Argentina
| | - Ivana G Barbona
- Cátedra de Estadística, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, S2125ZAA, Zavalla, Santa Fe, Argentina
| | - Gustavo R Rodríguez
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR) (CONICET-UNR), Zavalla, Argentina.,Cátedra de Genética, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, S2125ZAA, Zavalla, Santa Fe, Argentina
| | - Silvina A Felitti
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR) (CONICET-UNR), Zavalla, Argentina
| |
Collapse
|
4
|
Differential transcript profiling alters regulatory gene expression during the development of Gossypium arboreum, G.stocksii and somatic hybrids. Sci Rep 2017; 7:3120. [PMID: 28600526 PMCID: PMC5466607 DOI: 10.1038/s41598-017-03431-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 05/02/2017] [Indexed: 11/20/2022] Open
Abstract
Polyploidy or genome doubling (i.e., the presence of two or more diploid parental genome sets within an organism) are very important in higher plants. Of particular interest are the mechanisms in the new microenvironment of the common nucleus, where doubled regulatory networks interact to generate a viable genetic system capable of regulating growth, development and responses to the environment. To determine the effects of whole genome merging and doubling on the global gene expression architecture of a new polyploid, derived from protoplast fusion of the A1A1 genome of Gossypium arboreum and the E1E1 genome of Gossypium stocksii, we monitored gene expression through cDNA-AFLP in the somatic hybrids (G. arboreum + G. stocksii). The genomic expression patterns of the somatic hybrids revealed that changes in expression levels mainly involved regulatory genes (31.8% of the gene expression profiles), and the AA and EE genomes contributed equally to genome-wide expression in the newly formed AAEE genome from additivity and dominance effects. These results provide a novel perspective on polyploid gene regulation and hint at the underlying genetic basis of allopolyploid adaption in the new microenvironmental nucleus.
Collapse
|
5
|
Moustafa K, Cross JM. Genetic Approaches to Study Plant Responses to Environmental Stresses: An Overview. BIOLOGY 2016; 5:biology5020020. [PMID: 27196939 PMCID: PMC4929534 DOI: 10.3390/biology5020020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/02/2016] [Accepted: 05/10/2016] [Indexed: 12/31/2022]
Abstract
The assessment of gene expression levels is an important step toward elucidating gene functions temporally and spatially. Decades ago, typical studies were focusing on a few genes individually, whereas now researchers are able to examine whole genomes at once. The upgrade of throughput levels aided the introduction of systems biology approaches whereby cell functional networks can be scrutinized in their entireties to unravel potential functional interacting components. The birth of systems biology goes hand-in-hand with huge technological advancements and enables a fairly rapid detection of all transcripts in studied biological samples. Even so, earlier technologies that were restricted to probing single genes or a subset of genes still have their place in research laboratories. The objective here is to highlight key approaches used in gene expression analysis in plant responses to environmental stresses, or, more generally, any other condition of interest. Northern blots, RNase protection assays, and qPCR are described for their targeted detection of one or a few transcripts at a once. Differential display and serial analysis of gene expression represent non-targeted methods to evaluate expression changes of a significant number of gene transcripts. Finally, microarrays and RNA-seq (next-generation sequencing) contribute to the ultimate goal of identifying and quantifying all transcripts in a cell under conditions or stages of study. Recent examples of applications as well as principles, advantages, and drawbacks of each method are contrasted. We also suggest replacing the term “Next-Generation Sequencing (NGS)” with another less confusing synonym such as “RNA-seq”, “high throughput sequencing”, or “massively parallel sequencing” to avoid confusion with any future sequencing technologies.
Collapse
Affiliation(s)
- Khaled Moustafa
- Conservatoire National des Arts et Métiers, Paris 75003, France.
| | - Joanna M Cross
- Faculty of Agriculture, Inonu University, Malatya 44000, Turkey.
| |
Collapse
|
6
|
Wang LF. Physiological and molecular responses to variation of light intensity in rubber Tree (Hevea brasiliensis Muell. Arg.). PLoS One 2014; 9:e89514. [PMID: 24586839 PMCID: PMC3937338 DOI: 10.1371/journal.pone.0089514] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/23/2014] [Indexed: 11/18/2022] Open
Abstract
Light is one of most important factors to plants because it is necessary for photosynthesis. In this study, physiological and gene expression analyses under different light intensities were performed in the seedlings of rubber tree (Hevea brasiliensis) clone GT1. When light intensity increased from 20 to 1000 µmol m(-2) s(-1), there was no effect on the maximal quantum yield of photosystem II (PSII) photochemistry (Fv/Fm), indicating that high light intensity did not damage the structure and function of PSII reaction center. However, the effective photochemical quantum yield of PSII (Y(II)), photochemical quenching coefficient (qP), electron transfer rate (ETR), and coefficient of photochemical fluorescence quenching assuming interconnected PSII antennae (qL) were increased significantly as the light intensity increased, reached a maximum at 200 µmol m(-2) s(-1), but decreased from 400 µmol m(-2) s(-1). These results suggested that the PSII photochemistry showed an optimum performance at 200 µmol m(-2) s(-1) light intensity. The chlorophyll content was increased along with the increase of light intensity when it was no more than 400 µmol m(-2) s(-1). Since increasing light intensity caused significant increase in H2O2 content and decreases in the per unit activity of antioxidant enzymes SOD and POD, but the malondialdehyde (MDA) content was preserved at a low level even under high light intensity of 1000 µmol m(-2) s(-1), suggesting that high light irradiation did not induce membrane lipid peroxidation in rubber tree. Moreover, expressions of antioxidant-related genes were significantly up-regulated with the increase of light intensity. They reached the maximum expression at 400 µmol m(-2) s(-1), but decreased at 1000 µmol m(-2) s(-1). In conclusion, rubber tree could endure strong light irradiation via a specific mechanism. Adaptation to high light intensity is a complex process by regulating antioxidant enzymes activities, chloroplast formation, and related genes expressions in rubber tree.
Collapse
Affiliation(s)
- Li-feng Wang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, State Key Laboratory Incubation Base for Cultivation and Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, China
- * E-mail:
| |
Collapse
|
7
|
Xiao X, Tang C, Fang Y, Yang M, Zhou B, Qi J, Zhang Y. Structure and expression profile of the sucrose synthase gene family in the rubber tree: indicative of roles in stress response and sucrose utilization in the laticifers. FEBS J 2013; 281:291-305. [PMID: 24279382 DOI: 10.1111/febs.12595] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/29/2013] [Accepted: 10/28/2013] [Indexed: 12/17/2022]
Abstract
Sucrose synthase (Sus, EC 2.4.1.13) is widely recognized as a key enzyme in sucrose metabolism in plants. However, nothing is known about this gene family in Hevea brasiliensis (para rubber tree). Here, we identified six Sus genes in H. brasiliensis that comprise the entire Sus family in this species. Analysis of the gene structure and phylogeny of the Sus genes demonstrates evolutionary conservation in the Sus families across Hevea and other plant species. The expression of Sus genes was investigated via Solexa sequencing and quantitative PCR in various tissues, at various phases of leaf development, and under abiotic stresses and ethylene treatment. The Sus genes exhibited distinct but partially redundant expression profiles. Each tissue has one abundant Sus isoform, with HbSus3, 4 and 5 being the predominant isoforms in latex (cytoplasm of rubber-producing laticifers), bark and root, respectively. HbSus1 and 6 were barely expressed in any tissue examined. In mature leaves (source), all HbSus genes were expressed at low levels, but HbSus3 and 4 were abundantly expressed in immature leaves (sink). Low temperature and drought treatments conspicuously induced HbSus5 expression in root and leaf, suggesting a role in stress responses. HbSus2 and 3 transcripts were decreased by ethylene treatment, consistent with the reduced sucrose-synthesizing activity of Sus enzymes in the latex in response to ethylene stimulation. Our results are beneficial to further determination of functions for the Sus genes in Hevea trees, especially roles in regulating latex regeneration.
Collapse
Affiliation(s)
- Xiaohu Xiao
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, China; College of Agronomy, Hainan University, Haikou, China
| | | | | | | | | | | | | |
Collapse
|
8
|
Guo H, Li Z, Zhou M, Cheng H. cDNA-AFLP analysis reveals heat shock proteins play important roles in mediating cold, heat, and drought tolerance in Ammopiptanthus mongolicus. Funct Integr Genomics 2013; 14:127-33. [DOI: 10.1007/s10142-013-0347-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/19/2013] [Accepted: 10/29/2013] [Indexed: 01/13/2023]
|
9
|
Tang C, Xiao X, Li H, Fan Y, Yang J, Qi J, Li H. Comparative analysis of latex transcriptome reveals putative molecular mechanisms underlying super productivity of Hevea brasiliensis. PLoS One 2013; 8:e75307. [PMID: 24066172 PMCID: PMC3774812 DOI: 10.1371/journal.pone.0075307] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/13/2013] [Indexed: 01/02/2023] Open
Abstract
Increasing demand for natural rubber prompts studies into the mechanisms governing the productivity of rubber tree (Heveabrasiliensis). It is very interesting to notice that a rubber tree of clone PR107 in Yunnan, China is reported to yield more than 20 times higher than the average rubber tree. This super-high-yielding (SHY) rubber tree (designated as SY107), produced 4.12 kg of latex (cytoplasm of rubber producing laticifers, containing about 30% of rubber) per tapping, more than 7-fold higher than that of the control. This rubber tree is therefore a good material to study how the rubber production is regulated at a molecular aspect. A comprehensive cDNA-AFLP transcript profiling was performed on the latex of SY107 and its average counterparts by using the 384 selective primer pairs for two restriction enzyme combinations (ApoI/MseI and TaqI/MseI). A total of 746 differentially expressed (DE) transcript-derived fragments (TDFs) were identified, of which the expression patterns of 453 TDFs were further confirmed by RT-PCR. These RT-PCR confirmed TDFs represented 352 non-redundant genes, of which 215 had known or partially known functions and were grouped into 10 functional categories. The top three largest categories were transcription and protein synthesis (representing 24.7% of the total genes), defense and stress (15.3%), and primary and secondary metabolism (14.0%). Detailed analysis of the DE-genes suggests notable characteristics of SHY phenotype in improved sucrose loading capability, rubber biosynthesis-preferred sugar utilization, enhanced general metabolism and timely stress alleviation. However, the SHY phenotype has little correlation with rubber-biosynthesis pathway genes.
Collapse
Affiliation(s)
- Chaorong Tang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Song Y, Wang Z, Bo W, Ren Y, Zhang Z, Zhang D. Transcriptional profiling by cDNA-AFLP analysis showed differential transcript abundance in response to water stress in Populus hopeiensis. BMC Genomics 2012; 13:286. [PMID: 22747754 PMCID: PMC3443059 DOI: 10.1186/1471-2164-13-286] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 05/15/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Drought is one of the main environmental factors limiting tree growth and productivity of plantation forests worldwide. Populus hopeiensis Hu et Chow is one of the most important commercial plantation tree species in China. However, the genes controlling drought tolerance in this species have not been identified or characterized. Here, we conducted differential expression analyses and identified a number of genes that were up- or downregulated in P. hopeiensis during water stress. To the best of our knowledge, this is the first comprehensive study of differentially expressed genes in water-stressed P. hopeiensis. RESULTS Using the cDNA-AFLP detection technique, we used 256 primer combinations to identify differentially expressed genes in P. hopeiensis during water stress. In total, 415 transcript derived-fragments (TDFs) were obtained from 10× deep sequencing of 473 selected TDFs. Of the 415 TDFs, 412 were annotated by BLAST searches against various databases. The majority of these genes encoded products involved in ion transport and compartmentalization, cell division, metabolism, and protein synthesis. The TDFs were clustered into 12 groups on the basis of their expression patterns. Of the 415 reliable TDFs, the sequences of 35 were homologous to genes that play roles in short or long-term resistance to drought stress. Some genes were further selected for validation of cDNA-AFLP expression patterns using real-time PCR analyses. The results confirmed the expression patterns that were detected using the cDNA-AFLP technique. CONCLUSION The cDNA-AFLP technique is an effective and powerful tool for identifying candidate genes that are differentially expressed under water stress. We demonstrated that 415 TDFs were differentially expressed in water-stressed poplar. The products of these genes are involved in various biological processes in the drought response of poplar. The results of this study will aid in the identification of candidate genes of future experiments aimed at understanding this response of poplar.
Collapse
Affiliation(s)
- Yuepeng Song
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Zeliang Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Wenhao Bo
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Yuanyuan Ren
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Zhiyi Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
| |
Collapse
|
11
|
Bove CG, Lazzi C, Bernini V, Bottari B, Neviani E, Gatti M. cDNA-amplified fragment length polymorphism to study the transcriptional responses of Lactobacillus rhamnosus growing in cheese-like medium. J Appl Microbiol 2011; 111:855-64. [PMID: 21762473 DOI: 10.1111/j.1365-2672.2011.05101.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS Lactobacillus rhamnosus is a dominant species during Parmigiano Reggiano cheese ripening and exhibits a great adaptability to unfavourable growth conditions. Gene expression of a Lact. rhamnosus, isolated from Parmigiano Reggiano cheese, grown in a rich medium (MRS) and in a cheese-like medium (CB) has been compared by a novel cDNA-amplified fragment length polymorphism (cDNA-AFLP) protocol. METHODS AND RESULTS Two techniques, capillary and gel electrophoresis cDNA-AFLP, were applied to generate unique transcript tags from reverse-transcribed messenger RNA using the immobilization of biotinylated 3'-terminal cDNA fragments on streptavidin-coated Dynabeads. The use of three pairs of primers allowed detecting 64 genes expressed in MRS and 96 in CB. Different transcripts were observed when Lact. rhamnosus was cultured on CB and MRS. CONCLUSIONS The cDNA-AFLP approach proved to be able to show that Lact. rhamnosus modifies the expression of a large part of genes when cultivated in CB compared with growth under optimal conditions (MRS). In particular, the profiles of the strain grown in CB were more complex probably because the cells activate different metabolic pathways to generate energy and to respond to the environmental changes. SIGNIFICANCE AND IMPACT OF STUDY This is the first research on Lact. rhamnosus isolated from cheese and represents one of the few concerning bacterial transcriptomic analysis towards cDNA-AFLP approaches.
Collapse
Affiliation(s)
- C G Bove
- Department of Genetics, Biology of Microorganisms, Anthropology and Evolution, University of Parma, Parma, Italy.
| | | | | | | | | | | |
Collapse
|
12
|
Chen YY, Wang LF, Dai LJ, Yang SG, Tian WM. Characterization of HbEREBP1, a wound-responsive transcription factor gene in laticifers of Hevea brasiliensis Muell. Arg. Mol Biol Rep 2011; 39:3713-9. [PMID: 21761140 DOI: 10.1007/s11033-011-1146-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 06/24/2011] [Indexed: 02/03/2023]
Abstract
AP2/ERF transcription factors play an important role in regulation of the cross-talk between ethylene and jasmonate signaling pathways mediating defense responses of plants to biotic and abiotic stresses. In this study, an AP2/ERF transcription factor gene was isolated and characterized from laticifers of rubber tree by using RACE and real time PCR. The full length cDNA, referred to as HbEREBP1, was 1,095 bp in length and contained a 732 bp open reading frame encoding a putative protein of 243 amino acid residues. The molecular mass of the putative protein is 26.4 kDa with a pI of 9.46. The deduced amino acid sequence had a specific domain of AP2 superfamily and an ethylene-responsive element binding factor-associated amphiphilic repression motif, sharing 42.4, 39.1, and 38.0% identity with that of AtERF11, AtERF4, and AtERF8 in Arabidopsis, respectively. HbEREBP1 expression was down-regulated by tapping and mechanical wounding in the laticifers of adult trees. It was also down-regulated at early stage while up-regulated at late stage upon treatment with exogenous ethephon or methyl jasmonate, which was reverse to the case of defense genes in laticifers of epicormic shoots of rubber tree. Our results suggest that HbEREBP1 may be a negative regulator of defense genes in laticifers.
Collapse
Affiliation(s)
- Yue-Yi Chen
- Ministry of Agriculture Key Laboratory for Rubber Biology, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, 571737, China
| | | | | | | | | |
Collapse
|
13
|
Martínez-Fernández M, Bernatchez L, Rolán-Alvarez E, Quesada H. Insights into the role of differential gene expression on the ecological adaptation of the snail Littorina saxatilis. BMC Evol Biol 2010; 10:356. [PMID: 21087461 PMCID: PMC2996406 DOI: 10.1186/1471-2148-10-356] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 11/18/2010] [Indexed: 12/22/2022] Open
Abstract
Background In the past 40 years, there has been increasing acceptance that variation in levels of gene expression represents a major source of evolutionary novelty. Gene expression divergence is therefore likely to be involved in the emergence of incipient species, namely, in a context of adaptive radiation. In this study, a genome-wide expression profiling approach (cDNA-AFLP), validated by quantitative real-time polymerase chain reaction (qPCR) were used to get insights into the role of differential gene expression on the ecological adaptation of the marine snail Littorina saxatilis. This gastropod displays two sympatric ecotypes (RB and SU) which are becoming one of the best studied systems for ecological speciation. Results Among the 99 transcripts shared between ecotypes, 12.12% showed significant differential expression. At least 4% of these transcripts still displayed significant differences after correction for multiple tests, highlighting that gene expression can differ considerably between subpopulations adapted to alternative habitats in the face of gene flow. One of the transcripts identified was Cytochrome c Oxidase subunit I (COI). In addition, 6 possible reference genes were validated to normalize and confirm this result using qPCR. α-Tubulin and histone H3.3 showed the more stable expression levels, being therefore chosen as the best option for normalization. The qPCR analysis confirmed a higher COI expression in SU individuals. Conclusions At least 4% of the transcriptome studied is being differentially expressed between ecotypes living in alternative habitats, even when gene flow is still substantial between ecotypes. We could identify a candidate transcript of such ecotype differentiation: Cytochrome c Oxidase Subunit I (COI), a mitochondrial gene involved in energy metabolism. Quantitative PCR was used to confirm the differences found in COI and its over-expression in the SU ecotype. Interestingly, COI is involved in the oxidative phosphorylation, suggesting an enhanced mitochondrial gene expression (or increased number of mitochondria) to improve energy supply in the ecotype subjected to the strongest wave action.
Collapse
Affiliation(s)
- Mónica Martínez-Fernández
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Campus As Lagoas-Marcosende, Universidad de Vigo, 36310 Vigo, Spain
| | | | | | | |
Collapse
|
14
|
Tang C, Huang D, Yang J, Liu S, Sakr S, Li H, Zhou Y, Qin Y. The sucrose transporter HbSUT3 plays an active role in sucrose loading to laticifer and rubber productivity in exploited trees of Hevea brasiliensis (para rubber tree). PLANT, CELL & ENVIRONMENT 2010; 33:1708-20. [PMID: 20492551 DOI: 10.1111/j.1365-3040.2010.02175.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Efficient sucrose loading in rubber-producing cells (laticifer cells) is essential for retaining rubber productivity in Hevea brasiliensis, but the molecular mechanisms underlying the regulation of this process remain unknown. Here, we functionally characterized a putative Hevea SUT member, HbSUT3, mainly in samples from regularly exploited trees. When expressed in yeast, HbSUT3 encodes a functional sucrose transporter that exhibits high sucrose affinity with a K(m) value of 1.24 mm at pH 4.0, and possesses features typical of sucrose/H(+) symporters. In planta, when compared to the expression of other Hevea SUT genes, HbSUT3 was found to be the predominant member expressed in the rubber-containing cytoplasm (latex) of laticifers. The comparison of HbSUT3 expression among twelve Hevea tissues demonstrates a relatively tissue-specific pattern, i.e. expression primarily in the latex and in female flowers. HbSUT3 expression is induced by the latex stimulator Ethrel (an ethylene generator), and relates to its yield-stimulating effect. Tapping (the act of rubber harvesting) markedly increased the expression of HbSUT3, whereas wounding alone had little effect. Moreover, the expression of HbSUT3 was found to be positively correlated with latex yield. Taken together, our results provide evidence favouring the involvement of HbSUT3 in sucrose loading into laticifers and in rubber productivity.
Collapse
Affiliation(s)
- Chaorong Tang
- Key Lab of Rubber Biology, Ministry of Agriculture & Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, College of Agronomy, Hainan University, Danzhou, Hainan 571737, China.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Levterova V, Panaiotov S, Brankova N, Tankova K. Typing of Genetic Markers Involved in Stress Response by Fluorescent cDNA-Amplified Fragment Length Polymorphism Technique. Mol Biotechnol 2010; 45:34-8. [DOI: 10.1007/s12033-009-9236-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Martínez-Fernández M, Bernatchez L, Rolán-Alvarez E, Quesada H. Semi-quantitative differences in gene transcription profiles between sexes of a marine snail by a new variant of cDNA-AFLP analysis. Mol Ecol Resour 2009; 10:324-30. [PMID: 21565027 DOI: 10.1111/j.1755-0998.2009.02762.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A variant of the cDNA-AFLP method coupled to an automated sequencer was used to quantify transcripts differentially expressed between sexes of the marine snail Littorina saxatilis. First, we conducted a validation study of the technique using known concentrations of a commercial marker. Second, we analysed six replicates of males and females from a population showing no apparent sexual dimorphism. The results confirm that the method can be properly used within the range of DNA concentrations utilized. In addition, we detected a small percentage of spots (1.8%) differentially expressed between sexes, as expected from a low to moderately sexual dimorphic species.
Collapse
Affiliation(s)
- M Martínez-Fernández
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Campus As Lagoas-Marcosende Universidad de Vigo, 36310 Vigo, Spain Department of Biology, Pavillon Charles-Eugène-Marchand, 1030 Avenue de la Médecine, Université Laval, Québec, QC, Canada G1V 0A6
| | | | | | | |
Collapse
|