1
|
Abstract
Although viral vectors comprise the majority of gene delivery vectors, their various safety, production, and other practical concerns have left a research gap to be addressed. The non-viral vector space encompasses a growing variety of physical and chemical methods capable of gene delivery into the nuclei of target cells. Major physical methods described in this chapter are microinjection, electroporation, and ballistic injection, magnetofection, sonoporation, optical transfection, and localized hyperthermia. Major chemical methods described in this chapter are lipofection, polyfection, gold complexation, and carbon-based methods. Combination approaches to improve transfection efficiency or reduce immunological response have shown great promise in expanding the scope of non-viral gene delivery.
Collapse
Affiliation(s)
- Chi Hong Sum
- University of Waterloo, School of Pharmacy, Waterloo, ON, Canada
| | | | - Shirley Wong
- University of Waterloo, School of Pharmacy, Waterloo, ON, Canada
| | | |
Collapse
|
2
|
Ralph M, Bednarchik M, Tomer E, Rafael D, Zargarian S, Gerlic M, Kobiler O. Promoting Simultaneous Onset of Viral Gene Expression Among Cells Infected with Herpes Simplex Virus-1. Front Microbiol 2017; 8:2152. [PMID: 29163436 PMCID: PMC5671993 DOI: 10.3389/fmicb.2017.02152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/20/2017] [Indexed: 11/30/2022] Open
Abstract
Synchronous viral infection facilitates the study of viral gene expression, viral host interactions, and viral replication processes. However, the protocols for achieving synchronous infections were hardly ever tested in proper temporal resolution at the single-cell level. We set up a fluorescence-based, time lapse microscopy assay to study sources of variability in the timing of gene expression during herpes simplex virus-1 (HSV-1) infection. We found that with the common protocol, the onset of gene expression within different cells can vary by more than 3 h. We showed that simultaneous viral genome entry to the nucleus can be achieved with a derivative of the previously characterized temperature sensitive mutant tsB7, however, this did not improve gene expression synchrony. We found that elevating the temperature in which the infection is done and increasing the multiplicity of infection (MOI) significantly promoted simultaneous onset of viral gene expression among infected cells. Further, elevated temperature result in a decrease in the coefficient of variation (a standardized measure of dispersion) of viral replication compartments (RCs) sizes among cells as well as a slight increment of viral late gene expression synchrony. We conclude that simultaneous viral gene expression can be improved by simple modifications to the infection process and may reduce the effect of single-cell variability on population-based assays.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Oren Kobiler
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Marine viruses: the beneficial side of a threat. Appl Biochem Biotechnol 2014; 174:2368-79. [PMID: 25245677 DOI: 10.1007/s12010-014-1194-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 08/21/2014] [Indexed: 10/24/2022]
Abstract
Marine viruses are ubiquitous, extremely diverse, and outnumber any form of life in the sea. Despite their ecological importance, viruses in marine environments have been largely ignored by the academic community, and only those that have caused substantial economic losses have received more attention. Fortunately, our current understanding on marine viruses has advanced considerably during the last decades. These advances have opened new and exciting research opportunities as several unique structural and genetic characteristics of marine viruses have shown to possess an immense potential for various biotechnological applications. Here, a condensed overview of the possibilities of using the enormous potential offered by marine viruses to develop innovative products in industries as pharmaceuticals, environmental remediation, cosmetics, material sciences, and several others, is presented. The importance of marine viruses to biotechnology should not be underestimated.
Collapse
|
4
|
Wei F, Wang H, Zhang J, Chen X, Li C, Huang Q. Pharmacokinetics of combined gene therapy expressing constitutive human GM-CSF and hyperthermia-regulated human IL-12. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2013; 32:5. [PMID: 23352035 PMCID: PMC3564871 DOI: 10.1186/1756-9966-32-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 01/20/2013] [Indexed: 11/10/2022]
Abstract
Background An adenovirus that expresses both interleukin (IL)-12 and granulocyte-macrophage colony-stimulating-factor (GM-CSF) has been proven to be very effective in treating several tumors, but causes serious normal tissue toxicities. Methods In this study, a novel adenoviral vector was constructed by placing the human GM-CSF gene under the control of the CMV-IE promoter and human IL-12 gene under the control of heat shock protein 70B gene promoter. Both hGM-CSF and hIL-12 expressions in virus-infected tumor cells were analyzed in vitro and in vivo when underlying single or multiple rounds of hyperthermia. Results We observed constitutive high expression of human GM-CSF and heat-induced expression of human IL-12 after a single round of hyperthermia post viral infection. The heat-induced hIL-12 expression exhibited a pulse-like pattern with a peak at 24 hrs followed by a decline 48 hrs post heat stress. Repeated heat treatment was more effective in inducing hIL-12 expression than a one-time heat treatment. Interestedly, we also observed that constitutive expression of hGM-CSF could be stimulated by heat stress in tested tumor cells. Conclusion Our study provided a novel strategy for combined gene therapy that allows constitutive expression of a non-toxic gene such as GM-CSF and heat-induced expression of a toxic gene such as IL-12. In addition, our study also showed that hyperthermia can be used to trigger gene expression in temporal and special manner.
Collapse
Affiliation(s)
- Fang Wei
- Experimental Research Center, First People's Hospital, School of Medicine, Shanghai Jiaotong University, 85 Wujin Road, Shanghai, 200080, China.
| | | | | | | | | | | |
Collapse
|
5
|
Marcinowski L, Lidschreiber M, Windhager L, Rieder M, Bosse JB, Rädle B, Bonfert T, Györy I, de Graaf M, da Costa OP, Rosenstiel P, Friedel CC, Zimmer R, Ruzsics Z, Dölken L. Real-time transcriptional profiling of cellular and viral gene expression during lytic cytomegalovirus infection. PLoS Pathog 2012; 8:e1002908. [PMID: 22969428 PMCID: PMC3435240 DOI: 10.1371/journal.ppat.1002908] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 08/01/2012] [Indexed: 01/08/2023] Open
Abstract
During viral infections cellular gene expression is subject to rapid alterations induced by both viral and antiviral mechanisms. In this study, we applied metabolic labeling of newly transcribed RNA with 4-thiouridine (4sU-tagging) to dissect the real-time kinetics of cellular and viral transcriptional activity during lytic murine cytomegalovirus (MCMV) infection. Microarray profiling on newly transcribed RNA obtained at different times during the first six hours of MCMV infection revealed discrete functional clusters of cellular genes regulated with distinct kinetics at surprising temporal resolution. Immediately upon virus entry, a cluster of NF-κB- and interferon-regulated genes was induced. Rapid viral counter-regulation of this coincided with a very transient DNA-damage response, followed by a delayed ER-stress response. Rapid counter-regulation of all three clusters indicated the involvement of novel viral regulators targeting these pathways. In addition, down-regulation of two clusters involved in cell-differentiation (rapid repression) and cell-cycle (delayed repression) was observed. Promoter analysis revealed all five clusters to be associated with distinct transcription factors, of which NF-κB and c-Myc were validated to precisely match the respective transcriptional changes observed in newly transcribed RNA. 4sU-tagging also allowed us to study the real-time kinetics of viral gene expression in the absence of any interfering virion-associated-RNA. Both qRT-PCR and next-generation sequencing demonstrated a sharp peak of viral gene expression during the first two hours of infection including transcription of immediate-early, early and even well characterized late genes. Interestingly, this was subject to rapid gene silencing by 5–6 hours post infection. Despite the rapid increase in viral DNA load during viral DNA replication, transcriptional activity of some viral genes remained remarkably constant until late-stage infection, or was subject to further continuous decline. In summary, this study pioneers real-time transcriptional analysis during a lytic herpesvirus infection and highlights numerous novel regulatory aspects of virus-host-cell interaction. Cytomegaloviruses are large DNA viruses, which establish life-long latent infections, leaving the infected individual at risk of reactivation and disease. Here, we applied 4-thiouridine-(4sU)-tagging of newly transcribed RNA to monitor the real-time kinetics of transcriptional activity of both cellular and viral genes during lytic murine CMV (MCMV) infection. We observed a cascade of MCMV-induced signaling events including a rapid inflammatory/interferon-response, a transient DNA-damage-response and a delayed ER-stress-response. All of these were heavily counter-regulated by viral gene expression. Besides dramatically increasing temporal resolution, our approach provides the unique opportunity to study viral transcriptional activity in absence of any interfering virion-associated-RNA. Virion-associated-RNA consists of transcripts that are unspecifically incorporated into the virus particles thereby resembling the cellular RNA profile of late stage infection. A clear picture of which viral genes are expressed, particularly at very early times of infection, could thus not be obtained. By overcoming this problem, we provide intriguing insights into the regulation of viral gene expression, namely 1) a peak of viral gene expression during the first two hours of infection including the expression of well-characterized late genes and 2) remarkably constant or even continuously declining expression of some viral genes despite the onset of rapid viral DNA replication.
Collapse
Affiliation(s)
- Lisa Marcinowski
- Max von Pettenkofer-Institute, Ludwig-Maximilians-University, Munich, Germany
| | - Michael Lidschreiber
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University, Munich, Germany
| | - Lukas Windhager
- Institute for Informatics, Ludwig-Maximilians-University, Munich, Germany
| | - Martina Rieder
- Max von Pettenkofer-Institute, Ludwig-Maximilians-University, Munich, Germany
| | - Jens B. Bosse
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Bernd Rädle
- Max von Pettenkofer-Institute, Ludwig-Maximilians-University, Munich, Germany
| | - Thomas Bonfert
- Institute for Informatics, Ludwig-Maximilians-University, Munich, Germany
| | - Ildiko Györy
- School of Biomedical and Biological Sciences, Centre for Research in Translational Biomedicine, Plymouth University, Plymouth, United Kingdom
| | - Miranda de Graaf
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | | | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | | | - Ralf Zimmer
- Institute for Informatics, Ludwig-Maximilians-University, Munich, Germany
| | - Zsolt Ruzsics
- Max von Pettenkofer-Institute, Ludwig-Maximilians-University, Munich, Germany
| | - Lars Dölken
- Max von Pettenkofer-Institute, Ludwig-Maximilians-University, Munich, Germany
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|