1
|
Adsorption kinetics and self-assembled structures of Aspergillus oryzae hydrophobin RolA on hydrophobic and charged solid surfaces. Appl Environ Microbiol 2022; 88:e0208721. [PMID: 35108098 DOI: 10.1128/aem.02087-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hydrophobins are small secreted amphipathic proteins ubiquitous among filamentous fungi. Hydrophobin RolA produced by Aspergillus oryzae attaches to solid surfaces, recruits polyesterase CutL1, and thus promotes hydrolysis of polyesters. Because the N-terminal region of RolA is involved in the interaction with CutL1, the orientation of RolA on the solid surface is important. However, the kinetic properties of RolA adsorption to solid surfaces with various chemical properties remain unclear, and RolA structures assembled after the attachment to surfaces are unknown. Using a quartz crystal microbalance (QCM), we analyzed the kinetic properties of RolA adsorption to the surfaces of QCM electrodes that had been chemically modified to become hydrophobic or charged. We also observed the assembled RolA structures on the surfaces by atomic force microscopy and performed molecular dynamics (MD) simulations of RolA adsorption to SAM-modified surfaces. The RolA-surface interaction was considerably affected by the zeta potential of RolA, which was affected by pH. The interactions of RolA with the surface seemed to be involved in the self-assembly of RolA. Three types of self-assembled structures of RolA were observed: spherical, rod-like, and mesh-like. The kinetics of RolA adsorption and the structures formed depended on the amount of RolA adsorbed, chemical properties of the electrode surface, and the pH of the buffer. Adsorption of RolA to solid surfaces seemed to depend mainly on its hydrophobic interaction with the surfaces; this was supported by MD simulations, which suggested that hydrophobic Cys-Cys loops of RolA attached to all SAM-modified surfaces at all pH. IMPORTANCE The adsorption kinetics of hydrophobins to solid surfaces and self-assembled structures formed by hydrophobin molecules have been studied mostly independently. In this report, we combined the kinetic analysis of hydrophobin RolA adsorption onto solid surfaces and observation of RolA self-assembly on these surfaces. Since RolA, whose isoelectric point is close to pH 4.0, showed higher affinity to the solid surfaces at pH 4.0 than at pH 7.0 or 10.0, the affinity of RolA to these surfaces depends mainly on hydrophobic interactions. Our combined analyses suggest that not only the adsorbed amount of RolA but also the chemical properties of the solid surfaces and the zeta potential of RolA affect the self-assembled RolA structures formed on these surfaces.
Collapse
|
2
|
Baroni F, Gallo M, Pazzagli L, Luti S, Baccelli I, Spisni A, Pertinhez TA. A mechanistic model may explain the dissimilar biological efficiency of the fungal elicitors cerato-platanin and cerato-populin. Biochim Biophys Acta Gen Subj 2021; 1865:129843. [PMID: 33444726 DOI: 10.1016/j.bbagen.2021.129843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/17/2020] [Accepted: 01/08/2021] [Indexed: 11/19/2022]
Abstract
Among their various functions, the members of the cerato-platanin family can stimulate plants' defense responses and induce resistance against microbial pathogens. Recent results suggest that conserved loops, also involved in chitin binding, might be a structural motif central for their eliciting activity. Here, we focus on cerato-platanin and its orthologous cerato-populin, searching for a rationale of their diverse efficiency to elicit plants' defense and to interact with oligosaccharides. A 3D model of cerato-populin has been generated by homology modeling using the NMR-derived cerato-platanin structure as template, and it has been validated by fitting with residual dipolar couplings. Loops β1-β2 and β2-β3 have been indicated as important for some CPPs members to express their biological function. When compared to cerato-platanin, in cerato-populin they present two mutations and an insertion that significantly modify their electrostatic surface. NMR relaxation experiments point to a reduced conformational plasticity of cerato-populin loops with respect to the ones of cerato-platanin. The different electrostatic surface of the loops combined with a distinct network of intra-molecular interactions are expected to be factors that, by leading to a diverse spatial organization and dissimilar collective motions, can regulate the eliciting efficacy of the two proteins and their affinity for oligosaccharides.
Collapse
Affiliation(s)
- Fabio Baroni
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Mariana Gallo
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Luigia Pazzagli
- Department of Biomedical Experimental and Clinical Sciences, University of Florence, Firenze, Italy
| | - Simone Luti
- Department of Biomedical Experimental and Clinical Sciences, University of Florence, Firenze, Italy
| | - Ivan Baccelli
- Institute for Sustainable Plant Protection, National Research Council of Italy, Sesto Fiorentino (Florence), Italy
| | - Alberto Spisni
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | | |
Collapse
|
3
|
Narváez-Barragán DA, Tovar-Herrera OE, Segovia L, Serrano M, Martinez-Anaya C. Expansin-related proteins: biology, microbe-plant interactions and associated plant-defense responses. MICROBIOLOGY-SGM 2020; 166:1007-1018. [PMID: 33141007 DOI: 10.1099/mic.0.000984] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Expansins, cerato-platanins and swollenins (which we will henceforth refer to as expansin-related proteins) are a group of microbial proteins involved in microbe-plant interactions. Although they share very low sequence similarity, some of their composing domains are near-identical at the structural level. Expansin-related proteins have their target in the plant cell wall, in which they act through a non-enzymatic, but still uncharacterized, mechanism. In most cases, mutagenesis of expansin-related genes affects plant colonization or plant pathogenesis of different bacterial and fungal species, and thus, in many cases they are considered virulence factors. Additionally, plant treatment with expansin-related proteins activate several plant defenses resulting in the priming and protection towards subsequent pathogen encounters. Plant-defence responses induced by these proteins are reminiscent of pattern-triggered immunity or hypersensitive response in some cases. Plant immunity to expansin-related proteins could be caused by the following: (i) protein detection by specific host-cell receptors, (ii) alterations to the cell-wall-barrier properties sensed by the host, (iii) displacement of cell-wall polysaccharides detected by the host. Expansin-related proteins may also target polysaccharides on the wall of the microbes that produced them under certain physiological instances. Here, we review biochemical, evolutionary and biological aspects of these relatively understudied proteins and different immune responses they induce in plant hosts.
Collapse
Affiliation(s)
- Delia A Narváez-Barragán
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62110 Cuernavaca Morelos, Mexico
| | - Omar E Tovar-Herrera
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Marcus Family Campus, BeerSheva, Israel
| | - Lorenzo Segovia
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62110 Cuernavaca Morelos, Mexico
| | - Mario Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, 62110 Cuernavaca Morelos, Mexico
| | - Claudia Martinez-Anaya
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62110 Cuernavaca Morelos, Mexico
| |
Collapse
|
4
|
Cerato-Platanins from Marine Fungi as Effective Protein Biosurfactants and Bioemulsifiers. Int J Mol Sci 2020; 21:ijms21082913. [PMID: 32326352 PMCID: PMC7215997 DOI: 10.3390/ijms21082913] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 12/27/2022] Open
Abstract
Two fungal strains, Aspergillus terreus MUT 271 and Trichoderma harzianum MUT 290, isolated from a Mediterranean marine site chronically pervaded by oil spills, can use crude oil as sole carbon source. Herein, these strains were investigated as producers of biosurfactants, apt to solubilize organic molecules as a preliminary step to metabolize them. Both fungi secreted low molecular weight proteins identified as cerato-platanins, small, conserved, hydrophobic proteins, included among the fungal surface-active proteins. Both proteins were able to stabilize emulsions, and their capacity was comparable to that of other biosurfactant proteins and to commercially available surfactants. Moreover, the cerato-platanin from T. harzianum was able to lower the surface tension value to a larger extent than the similar protein from A. terreus and other amphiphilic proteins from fungi. Both cerato-platanins were able to make hydrophilic a hydrophobic surface, such as hydrophobins, and to form a stable layer, not removable even after surface washing. To the best of our knowledge, the ability of cerato-platanins to work both as biosurfactant and bioemulsifier is herein demonstrated for the first time.
Collapse
|
5
|
Luti S, Sella L, Quarantin A, Pazzagli L, Baccelli I. Twenty years of research on cerato-platanin family proteins: clues, conclusions, and unsolved issues. FUNGAL BIOL REV 2020. [DOI: 10.1016/j.fbr.2019.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
Wang W, An B, Feng L, He C, Luo H. A Colletotrichum gloeosporioides cerato-platanin protein, CgCP1, contributes to conidiation and plays roles in the interaction with rubber tree. Can J Microbiol 2018; 64:826-834. [DOI: 10.1139/cjm-2018-0087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Colletotrichum gloeosporioides is the causal agent of rubber tree anthracnose and leads to serious losses of natural rubber production. The pathogenesis of C. gloeosporioides on rubber tree remains unknown. Cerato-platanin proteins are small, secreted cysteine-rich proteins that contribute to virulence and function in plant–fungal interactions. A gene encoding cerato-platanin protein, CgCP1, was identified in C. gloeosporioides. In silico analysis indicated that CgCP1 belongs to a new branch of the cerato-platanin protein family. The CgCP1 knockout mutants (ΔCgCP1) and complementary strain (Res-ΔCgCP1) were generated to investigate its biological function. The results showed that the speed of growth of aerial hyphae was not significantly different among the wild-type (WT), ΔCgCP1, and Res-ΔCgCP1 strains, but conidiation of ΔCgCP1 significantly decreased in comparison with the WT. The pathogenicity test proved that the severity of symptoms caused by ΔCgCP1 was reduced significantly compared with those caused by the Res-ΔCgCP1 and WT strains. Additionally, CgCP1 induced necrosis-like cell death on tobacco leaf and accumulation of reactive oxygen species in rubber tree mesophyll protoplasts. Altogether, these data indicate the involvement of C. gloeosporioides CgCP1 in conidiation and the interaction with rubber tree.
Collapse
Affiliation(s)
- Wenfeng Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, 58 Renming Road, Haikou, Hainan 570228, China
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Bang An
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, 58 Renming Road, Haikou, Hainan 570228, China
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Liping Feng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, 58 Renming Road, Haikou, Hainan 570228, China
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, 58 Renming Road, Haikou, Hainan 570228, China
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Hongli Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, 58 Renming Road, Haikou, Hainan 570228, China
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| |
Collapse
|
7
|
A single amino acid mutation affects elicitor and expansins-like activities of cerato-platanin, a non-catalytic fungal protein. PLoS One 2017; 12:e0178337. [PMID: 28542638 PMCID: PMC5444802 DOI: 10.1371/journal.pone.0178337] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 05/11/2017] [Indexed: 11/19/2022] Open
Abstract
Cerato-platanin (CP) is a non-catalytic, cysteine-rich protein, the first member of the cerato-platanin family. It is a single-domain protein with a double Ψ/β barrel domain resembling the D1 domain of plant and bacterial expansins. Similarly to expansins, CP shows a cell wall-loosening activity on cellulose and can be defined as an expanisin-like protein, in spite of the missing D2 domain, normally present in plant expansins. The weakening activity shown on cellulose may facilitate the CP-host interaction, corroborating the role of CP in eliciting plant defence response. Indeed, CP is an elicitor of primary defences acting as a Pathogen-Associated Molecular Patterns (PAMP). So far, structure-function relationship study has been mainly performed on the bacterial BsEXLX1 expansin, probably due to difficulties in expressing plant expansins in heterologous systems. Here, we report a subcloning and purification method of CP in the engineered E. coli SHuffle cells, which proved to be suitable to obtain the properly folded and biologically active protein. The method also enabled the production of the mutant D77A, rationally designed to be inactive. The wild-type and the mutated CP were characterized for cellulose weakening activity and for PAMP activity (i.e. induction of Reactive Oxygen Species synthesis and phytoalexins production). Our analysis reveals that the carboxyl group of D77 is crucial for expansin-like and PAMP activities, thus permitting to establish a correlation between the ability to weaken cellulose and the capacity to induce defence responses in plants. Our results enable the structural and functional characterization of a mono-domain eukaryotic expansin and identify the essential role of a specific aspartic residue in cellulose weakening.
Collapse
|
8
|
Chen H, Kovalchuk A, Keriö S, Asiegbu FO. Distribution and bioinformatic analysis of the cerato-platanin protein family in Dikarya. Mycologia 2017; 105:1479-88. [DOI: 10.3852/13-115] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | | | | | - Fred O. Asiegbu
- Department of Forest Sciences, PO Box 27, Latokartanonkaari 7, 00014 University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Wingfield BD, Duong TA, Hammerbacher A, van der Nest MA, Wilson A, Chang R, Wilhelm de Beer Z, Steenkamp ET, Wilken PM, Naidoo K, Wingfield MJ. IMA Genome-F 7: Draft genome sequences for Ceratocystis fagacearum, C. harringtonii, Grosmannia penicillata, and Huntiella bhutanensis. IMA Fungus 2016; 7:317-323. [PMID: 27990338 PMCID: PMC5159602 DOI: 10.5598/imafungus.2016.07.02.11] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/06/2016] [Indexed: 12/20/2022] Open
Abstract
Draft genomes for the fungi Ceratocystis fagacearum, C. harringtonii, Grosmannia penicillata, and Huntiella bhutanensis are presented. Ceratocystis fagacearum is a major causal agent of vascular wilt of oaks and other trees in the family Fagaceae. Ceratocystis harringtonii, previously known as C. populicola, causes disease in Populus species in the USA and Canada. Grosmannia penicillata is the causal agent of bluestain of sapwood on various conifers, including Picea spp. and Pinus spp. in Europe. Huntiella bhutanensis is a fungus in Ceratocystidaceae and known only in association with the bark beetle Ips schmutzenhorferi that infests Picea spinulosa in Bhutan. The availability of these genomes will facilitate further studies on these fungi.
Collapse
Affiliation(s)
- Brenda D. Wingfield
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Tuan A. Duong
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Almuth Hammerbacher
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Magriet A. van der Nest
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Andi Wilson
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Runlei Chang
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Z. Wilhelm de Beer
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Emma T. Steenkamp
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - P. Markus Wilken
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Kershney Naidoo
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Michael J. Wingfield
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
10
|
Ruocco M, Lanzuise S, Lombardi N, Woo SL, Vinale F, Marra R, Varlese R, Manganiello G, Pascale A, Scala V, Turrà D, Scala F, Lorito M. Multiple roles and effects of a novel Trichoderma hydrophobin. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:167-79. [PMID: 25317667 DOI: 10.1094/mpmi-07-14-0194-r] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Fungi belonging to the genus Trichoderma are among the most active and ecologically successful microbes found in natural environments, because they are able to use a variety of substrates and affect the growth of other microbes and virtually any plant species. We isolated and characterized a novel type II hydrophobin secreted by the biocontrol strain MK1 of Trichoderma longibrachiatum. The corresponding gene (Hytlo1) has a multiple role in the Trichoderma-plant-pathogen three-way interaction, while the purified protein displayed a direct antifungal as well as a microbe-associated molecular pattern and a plant growth promotion (PGP) activity. Leaf infiltration with the hydrophobin systemically increased resistance to pathogens and activated defense-related responses involving reactive oxygen species, superoxide dismutase, oxylipin, phytoalexin, and pathogenesis-related protein formation or activity. The hydrophobin was found to enhance development of a variety of plants when applied at very low doses. It particularly stimulated root formation and growth, as demonstrated also by transient expression of the encoding gene in tobacco and tomato. Targeted knock-out of Hytlo1 significantly reduced both antagonistic and PGP effect of the wild-type strain. We conclude that this protein represents a clear example of a molecular factor developed by Trichoderma spp. to establish a mutually beneficial interaction with the colonized plant.
Collapse
|
11
|
Pazzagli L, Seidl-Seiboth V, Barsottini M, Vargas WA, Scala A, Mukherjee PK. Cerato-platanins: elicitors and effectors. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 228:79-87. [PMID: 25438788 DOI: 10.1016/j.plantsci.2014.02.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 02/20/2014] [Accepted: 02/22/2014] [Indexed: 06/04/2023]
Abstract
Cerato-platanins are an interesting group of small, secreted, cysteine-rich proteins that have been implicated in virulence of certain plant pathogenic fungi. The relatively recent discovery of these proteins in plant beneficial fungi like Trichoderma spp., and their positive role in induction of defense in plants against invading pathogens has raised the question as to whether these proteins are effectors or elicitor molecules. Here we present a comprehensive review on the occurrence of these conserved proteins across the fungal kingdom, their structure-function relationships, and their physiological roles in plant pathogenic and symbiotic fungi. We also discuss the usefulness of these proteins in evolving strategies for crop protection through a transgenic approach or direct application as elicitors.
Collapse
Affiliation(s)
- Luigia Pazzagli
- Department of Biomedical Experimental and Clinical Sciences, University of Florence, Morgagni Street, 50134 Florence, Italy
| | - Verena Seidl-Seiboth
- Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorfer Strasse 1a, 1060 Vienna, Austria
| | - Mario Barsottini
- Department of Genetics, Evolution and Bioagents/IB, State University of Campinas, Cidade Universitária Zeferino Vaz, 13083-970, Campinas, Brazil
| | - Walter A Vargas
- Centro de EstudiosFotosintéticos y Bioquímicos (CEFOBI)-CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Aniello Scala
- Department of Production Sciences Agri-Food and the Environment (DISPAA), University of Florence, Sesto Fiorentino, 50019 Florence, Italy
| | - Prasun K Mukherjee
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.
| |
Collapse
|
12
|
Baroni F, Pazzagli L, Luti S, Scala A, Martellini F, Franzoni L, Pertinhez TA, Spisni A. ¹H, ¹⁵N, and ¹³C resonance assignment of cerato-populin, a fungal PAMP from Ceratocystis populicola. BIOMOLECULAR NMR ASSIGNMENTS 2014; 8:405-408. [PMID: 24091893 DOI: 10.1007/s12104-013-9527-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 09/27/2013] [Indexed: 06/02/2023]
Abstract
Plant pathogenic fungi secrete several non-catalytic proteins involved in various aspects of the pathogenesis process. Amongst these, cerato-populin (Pop1) produced by Ceratocystis populicola; a protein orthologous of cerato-platanin (CP), the core member of the CP family. These two proteins interact with host and non-host plants. In plane leaves they induce synthesis of phytoalexins, disruption of intercellular and intracellular leaf tissue, cell plasmolysis, programmed cell death, over-expression of defence-related genes, H2O2 and NO production, activation of MAPK cascade and plant resistance. All these features point to CP and Pop1 as defence inducers, though Pop1 shows a reduced efficiency. Pop1/CP similarity is 73%. CD spectroscopy highlights some secondary structure differences between Pop1 and CP. Indeed, the region between the first two cysteines (C20-C57), that in CP includes the β2-strand and it is involved in GlcNAc (N-acetyl-D-glucosamine) interaction, in Pop1 is predicted to be fully disordered.
Collapse
Affiliation(s)
- Fabio Baroni
- Department of Biomedical, Biotechnological and Translational Sciences (S.Bi.Bi.T.), University of Parma, Parma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Baccelli I, Lombardi L, Luti S, Bernardi R, Picciarelli P, Scala A, Pazzagli L. Cerato-platanin induces resistance in Arabidopsis leaves through stomatal perception, overexpression of salicylic acid- and ethylene-signalling genes and camalexin biosynthesis. PLoS One 2014; 9:e100959. [PMID: 24968226 PMCID: PMC4072723 DOI: 10.1371/journal.pone.0100959] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/30/2014] [Indexed: 12/31/2022] Open
Abstract
Microbe-associated molecular patterns (MAMPs) lead to the activation of the first line of plant defence. Few fungal molecules are universally qualified as MAMPs, and proteins belonging to the cerato-platanin protein (CPP) family seem to possess these features. Cerato-platanin (CP) is the name-giving protein of the CPP family and is produced by Ceratocystis platani, the causal agent of the canker stain disease of plane trees (Platanus spp.). On plane tree leaves, the biological activity of CP has been widely studied. Once applied on the leaf surface, CP acts as an elicitor of defence responses. The molecular mechanism by which CP elicits leaves is still unknown, and the protective effect of CP against virulent pathogens has not been clearly demonstrated. In the present study, we tried to address these questions in the model plant Arabidopsis thaliana. Our results suggest that stomata rapidly sense CP since they responded to the treatment with ROS signalling and stomatal closure, and that CP triggers salicylic acid (SA)- and ethylene (ET)-signalling pathways, but not the jasmonic acid (JA)-signalling pathway, as revealed by the expression pattern of 20 marker genes. Among these, EDS1, PAD4, NPR1, GRX480, WRKY70, ACS6, ERF1a/b, COI1, MYC2, PDF1.2a and the pathogenesis-related (PR) genes 1–5. CP rapidly induced MAPK phosphorylation and induced the biosynthesis of camalexin within 12 hours following treatment. The induction of localised resistance was shown by a reduced susceptibility of the leaves to the infection with Botrytis cinerea and Pseudomonas syringae pv. tomato. These results contribute to elucidate the key steps of the signalling process underlying the resistance induction in plants by CP and point out the central role played by the stomata in this process.
Collapse
Affiliation(s)
- Ivan Baccelli
- Department of Agri-food Production and Environmental Sciences, University of Florence, Florence, Italy
- * E-mail:
| | - Lara Lombardi
- Department of Biology, University of Pisa, Pisa, Italy
| | - Simone Luti
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Rodolfo Bernardi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Piero Picciarelli
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Aniello Scala
- Department of Agri-food Production and Environmental Sciences, University of Florence, Florence, Italy
| | - Luigia Pazzagli
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
14
|
Gaderer R, Bonazza K, Seidl-Seiboth V. Cerato-platanins: a fungal protein family with intriguing properties and application potential. Appl Microbiol Biotechnol 2014; 98:4795-803. [PMID: 24687753 PMCID: PMC4024134 DOI: 10.1007/s00253-014-5690-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/11/2014] [Accepted: 03/11/2014] [Indexed: 11/02/2022]
Abstract
Cerato-platanin proteins are small, secreted proteins with four conserved cysteines that are abundantly produced by filamentous fungi with all types of lifestyles. These proteins appear to be readily recognized by other organisms and are therefore important factors in interactions of fungi with other organisms, e.g. by stimulating the induction of defence responses in plants. However, it is not known yet whether the main function of cerato-platanin proteins is associated with these fungal interactions or rather a role in fungal growth and development. Cerato-platanin proteins seem to unify several biochemical properties that are not found in this combination in other proteins. On one hand, cerato-platanins are carbohydrate-binding proteins and are able to bind to chitin and N-acetylglucosamine oligosaccharides; on the other hand, they are able to self-assemble at hydrophobic/hydrophilic interfaces and form protein layers, e.g. on the surface of aqueous solutions, thereby altering the polarity of solutions and surfaces. The latter property is reminiscent of hydrophobins, which are also small, secreted fungal proteins, but interestingly, the surface-activity-altering properties of cerato-platanins are the opposite of what can be observed for hydrophobins. The so far known biochemical properties of cerato-platanin proteins are summarized in this review, and potential biotechnological applications as well as implications of these properties for the biological functions of cerato-platanin proteins are discussed.
Collapse
Affiliation(s)
- Romana Gaderer
- Research Area Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorfer Strasse 1a, 1060 Vienna, Austria
| | - Klaus Bonazza
- Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria
| | - Verena Seidl-Seiboth
- Research Area Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorfer Strasse 1a, 1060 Vienna, Austria
| |
Collapse
|
15
|
de O Barsottini MR, de Oliveira JF, Adamoski D, Teixeira PJPL, do Prado PFV, Tiezzi HO, Sforça ML, Cassago A, Portugal RV, de Oliveira PSL, de M Zeri AC, Dias SMG, Pereira GAG, Ambrosio ALB. Functional diversification of cerato-platanins in Moniliophthora perniciosa as seen by differential expression and protein function specialization. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1281-93. [PMID: 23902259 DOI: 10.1094/mpmi-05-13-0148-r] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cerato-platanins (CP) are small, cysteine-rich fungal-secreted proteins involved in the various stages of the host-fungus interaction process, acting as phytotoxins, elicitors, and allergens. We identified 12 CP genes (MpCP1 to MpCP12) in the genome of Moniliophthora perniciosa, the causal agent of witches' broom disease in cacao, and showed that they present distinct expression profiles throughout fungal development and infection. We determined the X-ray crystal structures of MpCP1, MpCP2, MpCP3, and MpCP5, representative of different branches of a phylogenetic tree and expressed at different stages of the disease. Structure-based biochemistry, in combination with nuclear magnetic resonance and mass spectrometry, allowed us to define specialized capabilities regarding self-assembling and the direct binding to chitin and N-acetylglucosamine (NAG) tetramers, a fungal cell wall building block, and to map a previously unknown binding region in MpCP5. Moreover, fibers of MpCP2 were shown to act as expansin and facilitate basidiospore germination whereas soluble MpCP5 blocked NAG6-induced defense response. The correlation between these roles, the fungus life cycle, and its tug-of-war interaction with cacao plants is discussed.
Collapse
|
16
|
Lombardi L, Faoro F, Luti S, Baccelli I, Martellini F, Bernardi R, Picciarelli P, Scala A, Pazzagli L. Differential timing of defense-related responses induced by cerato-platanin and cerato-populin, two non-catalytic fungal elicitors. PHYSIOLOGIA PLANTARUM 2013; 149:408-421. [PMID: 23438009 DOI: 10.1111/ppl.12041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/18/2013] [Accepted: 02/01/2013] [Indexed: 06/01/2023]
Abstract
The cerato-platanin (CP) family consists of fungal-secreted proteins involved in various stages of the host-fungus interaction and acting as phytotoxins and elicitors of defense responses. The founder member of this family is CP, a non-catalytic protein with a six-stranded double-ψβ-barrel fold. Cerato-populin (Pop1) is an ortholog showing low sequence identity with CP. CP is secreted by Ceratocystis platani, the causal agent of the canker stain of plane. Pop1 is secreted by Ceratocystis populicola, a pathogen of poplar. CP and Pop1 have been suggested to act as PAMPs (pathogen-associated molecular patterns) because they induce phytoalexin synthesis, transcription of defense-related genes, restriction of conidia growth and cell death in various plants. Here, we treated plane leaves with CP or Pop1, and monitored defense responses to define the role of these elicitors in the plant interactions. Both CP and Pop1 were able to induce mitogen-activated protein kinases (MAPKs) phosphorylation, production of reactive oxygen species and nitric oxide, and overexpression of defense related genes. The characteristic DNA fragmentation and the cytological features indicate that CP and Pop1 induce cell death by a mechanism of programmed cell death. Therefore, CP and Pop1 can be considered as two novel, non-catalytic fungal PAMPs able to enhance primary defense. Of particular interest is the observation that CP showed faster activity compared to Pop1. The different timing in defense activation could potentially be due to the structural differences between CP and Pop1 (i.e. different hydrophobic index and different helix content) therefore constituting a starting point in unraveling their structure-function relationships.
Collapse
Affiliation(s)
- Lara Lombardi
- Department of Biology, Plant Physiology Section, University of Pisa, 56124, Pisa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Cerato-platanin shows expansin-like activity on cellulosic materials. Appl Microbiol Biotechnol 2013; 98:175-84. [DOI: 10.1007/s00253-013-4822-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/26/2013] [Accepted: 02/28/2013] [Indexed: 10/27/2022]
|