1
|
Gui Y, Hou R, Huang Y, Zhou Y, Liu S, Meng L, Li Y, Sang Lam F, Ding R, Cao Y, Li G, Lu X, Li X. Discovering Cell-Targeting Ligands and Cell-Surface Receptors by Selection of DNA-Encoded Chemical Libraries against Cancer Cells without Predefined Targets. Angew Chem Int Ed Engl 2025; 64:e202421172. [PMID: 39794292 DOI: 10.1002/anie.202421172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/26/2024] [Accepted: 01/10/2025] [Indexed: 01/13/2025]
Abstract
Small molecules that can bind to specific cells have broad application in cancer diagnosis and treatment. Screening large chemical libraries against live cells is an effective strategy for discovering cell-targeting ligands. The DNA-encoded chemical library (DEL or DECL) technology has emerged as a robust tool in drug discovery and has been successfully utilized in identifying ligands for biological targets. However, nearly all DEL selections have predefined targets, while target-agnostic DEL selections interrogating the entire cell surface remain underexplored. Herein, we systematically optimized a cell-based DEL selection method against cancer cells without predefined targets. A 104.96-million-member DEL was selected against MDA-MB-231 and MCF-7 breast cancer cells, representing high and low metastatic properties, respectively, which led to the identification of cell-specific small molecules. We further demonstrated cell-targeting applications of these ligands in cancer photodynamic therapy and targeted drug delivery. Finally, leveraging the DNA tag of DEL compounds, we identified α-enolase (ENO1) as the cell surface receptor of one of the ligands targeting the more aggressive MDA-MB-231 cells. Overall, this work offers an efficient approach for discovering cell-targeting small molecule ligands by using DELs and demonstrates that DELs can be a useful tool to identify specific surface receptors on cancer cells.
Collapse
Grants
- 2023A1515010711 Basic and Applied Basic Research Foundation of Guangdong Province
- AoE/P-705/16, 17301118, 17111319, 17303220, 17300321, 17300423, C7005-20G, C7016-22G, C7035-23G, N_HKU702/23, and T12-705-24-R Research Grants Council, University Grants Committee
- SZBL2020090501008 Shenzhen Bay Laboratory
- 91953203, 22377139 National Natural Science Foundation of China
- Major Project Science and Technology Commission of Shanghai Municipality
- Laboratory for Synthetic Chemistry and Chemical Biology Innovation and Technology Commission
Collapse
Affiliation(s)
- Yuhan Gui
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
| | - Rui Hou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
| | - Yuchen Huang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yu Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
- Present address: Institute of Translational Medicine & School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China, 211198
| | - Shihao Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Ling Meng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
| | - Ying Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Fong Sang Lam
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
| | - Ruoyun Ding
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yan Cao
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Gang Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, P. R. China
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
| |
Collapse
|
2
|
Yang L, Li J, Zhang Y, Chen L, Ouyang Z, Liao D, Zhao F, Han S. Characterization of the enzyme kinetics of EMP and HMP pathway in Corynebacterium glutamicum: reference for modeling metabolic networks. Front Bioeng Biotechnol 2023; 11:1296880. [PMID: 38090711 PMCID: PMC10713844 DOI: 10.3389/fbioe.2023.1296880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/13/2023] [Indexed: 04/04/2024] Open
Abstract
The model of intracellular metabolic network based on enzyme kinetics parameters plays an important role in understanding the intracellular metabolic process of Corynebacterium glutamicum, and constructing such a model requires a large number of enzymological parameters. In this work, the genes encoding the relevant enzymes of the EMP and HMP metabolic pathways from Corynebacterium glutamicum ATCC 13032 were cloned, and engineered strains for protein expression with E.coli BL21 and P.pastoris X33 as hosts were constructed. The twelve enzymes (GLK, GPI, TPI, GAPDH, PGK, PMGA, ENO, ZWF, RPI, RPE, TKT, and TAL) were successfully expressed and purified by Ni2+ chelate affinity chromatography in their active forms. In addition, the kinetic parameters (V max, K m, and K cat) of these enzymes were measured and calculated at the same pH and temperature. The kinetic parameters of enzymes associated with EMP and the HMP pathway were determined systematically and completely for the first time in C.glutamicum. These kinetic parameters enable the prediction of key enzymes and rate-limiting steps within the metabolic pathway, and support the construction of a metabolic network model for important metabolic pathways in C.glutamicum. Such analyses and models aid in understanding the metabolic behavior of the organism and can guide the efficient production of high-value chemicals using C.glutamicum as a host.
Collapse
Affiliation(s)
- Liu Yang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Junyi Li
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yaping Zhang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Linlin Chen
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zhilin Ouyang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Daocheng Liao
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Fengguang Zhao
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, China
| | - Shuangyan Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
3
|
Aygün C, Kocer S, Danış Ö, Cubuk S, Mutlu O. Heterologous expression, purification, and partial characterisation of the apicoplast protein 3-oxoacyl-[acyl-carrier-protein] reductase from Toxoplasma gondii. Protein Expr Purif 2023; 202:106187. [PMID: 36216219 DOI: 10.1016/j.pep.2022.106187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Recombinant expression and purification of proteins have become a staple of modern drug discovery as it enables more precise in vitro analyses of drug targets, which may help obtain biochemical and biophysical parameters of a known enzyme and even uncover unknown characteristics indicative of novel enzymatic functions. Such information is often necessary to prepare adequate screening assays and drug-discovery experiments in general. Toxoplasma gondii is an obligate protozoan parasite that is a member of the phylum Apicomplexa, can develop several neuro-degenerative symptoms and, in specific cases, certain death for human hosts. Its relict non-photosynthetic plastid, the apicoplast, harbours a unique de novo long-chain fatty acid synthesis pathway of a prokaryotic character, FASII. The FASII pathway shows plasticity and, is essential for many intracellular and membranal components, along with fatty acid uptake via salvaging from the host, therefore, its disruption causes parasite death. TgFabG, a FASII enzyme responsible for a single reduction step in the pathway, was recombinantly expressed, purified and biochemically and biophysically characterised in this study. The bioengineering hurdle of expressing the recombinant gene of a eukaryotic, signal peptide-containing protein in a prokaryotic system was overcome for the apicomplexan enzyme TgFabG, by truncating the N-terminal signal peptide. TgFabG was ultimately recombinantly produced in a plasmid expression vector from its 1131 base pair gene, purified as 260 and 272 amino acid proteins using a hexahistidine (6 × Histag) affinity chromatography and its biochemical (enzyme activity and kinetics) and biophysical characteristics were analysed in vitro.
Collapse
Affiliation(s)
- Can Aygün
- Marmara University, Faculty of Arts and Sciences, Department of Biology, 34722, Istanbul, Turkey
| | - Sinem Kocer
- Istanbul Yeni Yüzyıl University, Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, 34010, Istanbul, Turkey
| | - Özkan Danış
- Marmara University, Faculty of Arts and Sciences, Department of Chemistry, 34722, Istanbul, Turkey
| | - Soner Cubuk
- Marmara University, Faculty of Arts and Sciences, Department of Chemistry, 34722, Istanbul, Turkey
| | - Ozal Mutlu
- Marmara University, Faculty of Arts and Sciences, Department of Biology, 34722, Istanbul, Turkey.
| |
Collapse
|
4
|
Heterologous Expression, Biochemical Characterisation and Computational Analysis of Bacteroides fragilis Enolase. Comput Biol Chem 2022; 98:107658. [DOI: 10.1016/j.compbiolchem.2022.107658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 02/05/2022] [Accepted: 02/25/2022] [Indexed: 11/21/2022]
|
5
|
Liang P, Cui X, Fu R, Liang P, Lu G, Wang D. Identification of an enolase gene and its physiological role in Spirometra mansoni. Parasitol Res 2021; 120:2095-2102. [PMID: 34031713 DOI: 10.1007/s00436-021-07175-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 04/26/2021] [Indexed: 11/29/2022]
Abstract
Enolase is a crucial enzyme involved in the glycolytic pathway and gluconeogenesis in parasites. It also has been reported to function as a plasminogen receptor and may be involved in tissue invasion. In this study, the biochemical properties of the enolase of Spirometra mansoni (Smenolase) were investigated. The Smenolase gene was found to cluster closely with the enolase genes of Clonorchis sinensis and Echinococcus granulosus, and some functional motifs were identified as conserved. Smenolase was confirmed to be a component of the secretory/excretory products (ESPs) and a circulating antigen of spargana. Recombinant Smenolase expressed in vitro was able to bind to human plasminogen. Smenolase was detected in the eggs, testicles, and vitellaria of adult worms and the tegument of spargana. The transcription level of Smenolase was highest at the gravid proglottid stage. When spargana were cultured with glucose of different concentration in vitro, it was observed that the expression levels of Smenolase in the low-glucose groups were consistent with that of Smenolase in vivo. These results indicate that Smenolase is a critical enzyme involved in supplying energy to support the development and reproduction of the parasite, and it may also play a role in sparganum invasion.
Collapse
Affiliation(s)
- Pei Liang
- Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, China.,School of Tropical Medicine and Laboratory Medicine, Hainan Medical College, Haikou, 571199, Hainan, China.,Key Laboratory of Tropical Translational Medicine of the Ministry of Education of China, Hainan Medical College, Haikou, 571199, Hainan, China
| | - Xiuji Cui
- Key Laboratory of Tropical Translational Medicine of the Ministry of Education of China, Hainan Medical College, Haikou, 571199, Hainan, China
| | - Ruijia Fu
- Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, China.,School of Tropical Medicine and Laboratory Medicine, Hainan Medical College, Haikou, 571199, Hainan, China.,Key Laboratory of Tropical Translational Medicine of the Ministry of Education of China, Hainan Medical College, Haikou, 571199, Hainan, China
| | - Peng Liang
- School of Tropical Medicine and Laboratory Medicine, Hainan Medical College, Haikou, 571199, Hainan, China
| | - Gang Lu
- Key Laboratory of Tropical Translational Medicine of the Ministry of Education of China, Hainan Medical College, Haikou, 571199, Hainan, China
| | - Dayong Wang
- Laboratory of Biotechnology and Molecular Pharmacology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, China.
| |
Collapse
|
6
|
Sariyer E, Kocer S, Danis O, Turgut-Balik D. In vitro inhibition studies of coumarin derivatives on Bos taurus enolase and elucidating their interaction by molecular docking, molecular dynamics simulations and MMGB(PB)SA binding energy calculation. Bioorg Chem 2021; 110:104796. [PMID: 33799179 DOI: 10.1016/j.bioorg.2021.104796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 11/19/2022]
Abstract
Tropical theileriosis is among the most common vector-borne diseases and caused by Theileria parasites. Theileria annulata is an obligate intracellular protozoan parasite and transmitted to especially Bos taurus and Bos indicus by Hyalomma tick vectors. C8 ([4-(3,4-dimethoxyphenyl)-6,7-dihydroxy-2H-chromen-2-one); C9 (4-(3,4-dihydroxyphenyl)-7,8 dihydroxy-2H-chromen-2-one); C21 (4-(3,4-dihydroxyphenyl)-6,7-dihydroxy-2H-chromen-2 one) were identified as potent Theileria annulata enolase (TaEno) inhibitors in our previous studies. An ideal drug compound must inhibit the target parasite enzyme without inhibiting its homolog in the host. In this study, the inhibitory effect of the compounds previously evaluated on TaEno were tested on the host Bos taurus enolase (BtEno3) by in vitro studies. The interactions of enzyme-coumarin and enzyme-coumarin-substrate by in silico studies were also performed. All of the coumarin derivatives tested showed very low inhibitory effects on B. taurus enolase; 36,87% inhibition at 100 μM concentration for C8, 8,13% inhibition at 100 μM concentration for C9 and 77,69 μM of IC50 value for C21. In addition, these three coumarin derivatives and substrate 2PG were docked into the BtEno3 using molecular docking methods. Molecular interactions between enolase-coumarin and enolase-coumarin-substrate complexes were analyzed using molecular dynamics simulation methods for 100 ns. Estimated free energy of bindings of the substrate 2PG and coumarin derivatives to the BtEno3 were calculated by MM-GB(PB)SA methods. In comparison to the inhibition studies performed on TaEno, C8 and C9 coumarin derivatives remain the possible inhibitor candidates as they inhibit the host enolase at very high concentrations. These two promising compounds will be further analyzed by in vitro and in vivo studies towards developing an alternative drug against tropical theileriosis.
Collapse
Affiliation(s)
- Emrah Sariyer
- Yıldız Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Davutpasa campus, 34210, Istanbul, Turkey; Artvin Coruh University, Vocational School of Health Services, Medical Laboratory Techniques, 08000, Artvin, Turkey
| | - Sinem Kocer
- İstanbul Yeni Yüzyıl University, Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, 34010, Istanbul, Turkey
| | - Ozkan Danis
- Marmara University, Faculty of Arts and Sciences, Department of Chemistry, 34722, Istanbul, Turkey
| | - Dilek Turgut-Balik
- Yıldız Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Davutpasa campus, 34210, Istanbul, Turkey.
| |
Collapse
|
7
|
Discovery and evaluation of inhibitory activity and mechanism of arylcoumarin derivatives on Theileria annulata enolase by in vitro and molecular docking studies. Mol Divers 2019; 24:1149-1164. [PMID: 31754915 DOI: 10.1007/s11030-019-10018-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/15/2019] [Indexed: 10/25/2022]
Abstract
In this study, the inhibition potential of 3- and 4-arylcoumarin derivatives on Theileria annulata enolase (TaENO) was assessed for the first time in the literature. Firstly, protein stabilization analyses of TaENO were performed and it was found that the enzyme remains stable with the addition of 6 M ethylene glycol at + 4 °C. Inhibitor screening analyses were carried out using 25 coumarin derivatives on highly purified TaENO (> 95%), and four coumarin derivatives [4-(3,4-dimethoxyphenyl)-6,7-dihydroxy-2H-chromen-2-one (C8); 4-(3,4-dihydroxyphenyl)-7,8 dihydroxy-2H-chromen-2-one (C9); 4-(3,4-dihydroxyphenyl)-6,7-dihydroxy-2H-chromen-2 one (C21); and 3-(3,4-dihydroxyphenyl)-7,8-dihydroxy-2H-chromen-2-one (C23)] showed the highest inhibitory effects with the IC50 values of 10.450, 13.170, 8.871 and 10.863 µM, respectively. The kinetic results indicated that these compounds inhibited the enzyme by uncompetitive inhibition. In addition, the successful binding of the most potent inhibitor (C21) into TaENO was confirmed by using MALDI-TOF mass spectrophotometry. Molecular docking analyses have predicted that C8 and C21 coumarin derivatives which showed high inhibitory effects on TaENO were interacted with high affinity to the potential regions out of the active site. Taken together, these coumarin derivatives (C8, C9, C21 and C23) are first known potent, nonsubstrate, uncompetitive inhibitors of TaENO and these results will facilitate further in vitro and in vivo analysis toward structure-based drug design studies.
Collapse
|
8
|
Yakarsonmez S, Cengiz EC, Mutlu O, Turgut-Balik D. Functional analyses of dipeptide and pentapeptide insertions on Theileria annulata enolase by site-directed mutagenesis and in silico approaches. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:732-739. [DOI: 10.1016/j.bbapap.2019.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 01/06/2023]
|
9
|
Ugurel E, Danis O, Mutlu O, Yuce-Dursun B, Gunduz C, Turgut-Balik D. Inhibitory effects of arylcoumarin derivatives on Bacteroides fragilisd‑lactate dehydrogenase. Int J Biol Macromol 2019; 127:197-203. [PMID: 30639654 DOI: 10.1016/j.ijbiomac.2019.01.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 11/26/2022]
Abstract
Bacteroides fragilis is an anaerobic bacterium naturally hosted in the human colon flora. B. fragilisd‑lactate dehydrogenase (Bfd‑LDH) is an important enzyme which catalyzes the conversion of d‑lactate to pyruvate and regulates anaerobic glycolysis. In this study Bfd‑LDH has been targeted for structure based drug design. B. fragilisd‑lactate dehydrogenase has been expressed, purified and inhibitory activities of 25 coumarin derivatives previously synthetize for their antioxidant activity were evaluated. Among the 25 coumarin derivatives, compound 6a, 5l, and 6b exhibited the highest inhibitory activity with IC50 values of 0,47 μM, 0,57 μM ve 0,057 μM, respectively. The results indicate that the mechanism by which 6a, 5l and 6b coumarin derivatives inhibit Bfd‑LDH by reversible non-competitive inhibition. Docking experiments were carried out to further explain the results and compare the theoretical and experimental affinity of these compounds to the Bfd‑LDH protein. According to docking results, all coumarins bind to the site occupied by pyruvate and the nicotinamide ring of NADH.
Collapse
Affiliation(s)
- Erennur Ugurel
- Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Davutpasa Campus, 34210/Esenler, Istanbul, Turkey
| | - Ozkan Danis
- Marmara University, Faculty of Arts and Sciences, Department of Chemistry, Goztepe Campus, 34722/Kadıkoy, Istanbul, Turkey
| | - Ozal Mutlu
- Marmara University, Faculty of Arts and Sciences, Department of Biology, Goztepe Campus, 34722/Kadikoy, Istanbul, Turkey
| | - Basak Yuce-Dursun
- Marmara University, Faculty of Arts and Sciences, Department of Chemistry, Goztepe Campus, 34722/Kadıkoy, Istanbul, Turkey
| | - Cihan Gunduz
- Manhattan College, Department of Chemistry & Biochemistry, 10471, Riverdale, New York, U.S.A
| | - Dilek Turgut-Balik
- Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Davutpasa Campus, 34210/Esenler, Istanbul, Turkey.
| |
Collapse
|
10
|
Sariyer E, Yakarsonmez S, Danis O, Turgut-Balik D. A study of Bos taurus muscle specific enolase; biochemical characterization, homology modelling and investigation of molecular interaction using molecular docking and dynamics simulations. Int J Biol Macromol 2018; 120:2346-2353. [DOI: 10.1016/j.ijbiomac.2018.08.184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 01/09/2023]
|
11
|
Troncoso-Ponce MA, Rivoal J, Dorion S, Sánchez R, Venegas-Calerón M, Moreno-Pérez AJ, Baud S, Garcés R, Martínez-Force E. Molecular and biochemical characterization of the sunflower (Helianthus annuus L.) cytosolic and plastidial enolases in relation to seed development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:117-130. [PMID: 29807582 DOI: 10.1016/j.plantsci.2018.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 05/19/2023]
Abstract
In the present study, we describe the molecular and biochemical characterization of sunflower (Helianthus annuus L.) enolase (ENO, EC 4.2.1.11) proteins, which catalyze the formation of phosphoenolpyruvate, the penultimate intermediate in the glycolytic pathway. We cloned and characterized three cDNAs encoding different ENO isoforms from developing sunflower seeds. Studies using fluorescently tagged ENOs confirmed the predicted subcellular localization of ENO isoforms: HaENO1 in the plastid while HaENO2 and HaENO3 were found in the cytosol. The cDNAs were used to express the corresponding 6(His)-tagged proteins in Escherichia coli. The proteins were purified to electrophoretic homogeneity, using immobilized metal ion affinity chromatography, and biochemically characterized. Recombinant HaENO1 and HaENO2, but not HaENO3 were shown to have enolase activity, in agreement with data obtained with the Arabidopsis homolog proteins. Site directed mutagenesis of several critical amino acids was used to attempt to recover enolase activity in recombinant HaENO3, resulting in very small increases that were not additive. A kinetic characterization of the two active isoforms showed that pH had similar effect on their velocity, that they had similar affinity for 2-phosphoglycerate, but that the kcat/Km of the plastidial enzyme was higher than that of the cytosolic isoform. Even though HaENO2 was always the most highly expressed transcript, the levels of expression of the three ENO genes were remarkably distinct in all the vegetative and reproductive tissues studied. This indicates that in seeds the conversion of 2-phosphoglycerate to phosphoenolpyruvate takes place through the cytosolic and the plastidial pathways therefore both routes could contribute to the supply of carbon for lipid synthesis. The identity of the main source of carbon during the period of stored products synthesis is discussed.
Collapse
Affiliation(s)
- M A Troncoso-Ponce
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain; Sorbonne University, Université de technologie de Compiègne, CNRS, Institute for Enzyme and Cell Engineering, Centre de recherche Royallieu, CS 60 319, 60 203 Compiègne cedex, France.
| | - J Rivoal
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke est, Montréal, QC, Canada
| | - S Dorion
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke est, Montréal, QC, Canada
| | - R Sánchez
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain
| | - M Venegas-Calerón
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain
| | - A J Moreno-Pérez
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain
| | - S Baud
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - R Garcés
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain
| | - E Martínez-Force
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1, 41013, Sevilla, Spain
| |
Collapse
|
12
|
Mi R, Yang X, Huang Y, Cheng L, Lu K, Han X, Chen Z. Immunolocation and enzyme activity analysis of Cryptosporidium parvum enolase. Parasit Vectors 2017; 10:273. [PMID: 28569179 PMCID: PMC5452291 DOI: 10.1186/s13071-017-2200-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 05/16/2017] [Indexed: 12/27/2022] Open
Abstract
Background Enolase is an essential multifunctional glycolytic enzyme that is involved in many biological processes of apicomplexan protozoa, such as adhesion and invasion. However, the characteristics of enolase in Cryptosporidium parvum, including the location on the oocyst and the enzyme activity, remain unclear. Methods The C. parvum enolase gene (cpeno) was amplified by RT-PCR and sequenced. The deduced amino acid sequence was analysed by bioinformatics software. The gene was expressed in Escherichia coli BL21 (DE3) and purified recombinant protein was used for enzyme activity analysis, binding experiments and antibody preparation. The localisation of enolase on oocysts was examined via immunofluorescence techniques. Results A 1,350 bp DNA sequence was amplified from cDNA taken from C. parvum oocysts. The deduced amino acids sequence of C. parvum enolase (CpEno) had 82.1% homology with Cryptosporidium muris enolase, and 54.7–68.0% homology with others selected species. Western blot analysis indicated that recombinant C. parvum enolase (rCpEno) could be recognised by C. parvum-infected cattle sera. Immunolocalization testing showed that CpEno was found to locate mainly on the surface of oocysts. The enzyme activity was 33.5 U/mg, and the Michaelis constant (Km) was 0.571 mM/l. Kinetic measurements revealed that the most suitable pH value was 7.0–7.5, and there were only minor effects on the activity of rCpEno with a change in the reaction temperature. The enzyme activity decreased when the Ca2+, K+, Mg2+ and Na+ concentrations of the reaction solution increased. The binding assays demonstrated that rCpEno could bind to human plasminogen. Conclusion This study is the first report of immunolocation, binding activity and enzyme characteristics of CpEno. The results of this study suggest that the surface-associated CpEno not only functions as a glycolytic enzyme but may also participate in attachment and invasion process of the parasite. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2200-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rongsheng Mi
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou, 730046, China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Xiaojiao Yang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Yan Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Long Cheng
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Ke Lu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Xiangan Han
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Zhaoguo Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou, 730046, China. .,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
13
|
Yakarsonmez S, Cayir E, Mutlu O, Nural B, Sariyer E, Topuzogullari M, Milward MR, Cooper PR, Erdemir A, Turgut-Balik D. Cloning, expression and characterization of the gene encoding the enolase from Fusobacterium nucleatum. APPL BIOCHEM MICRO+ 2016. [DOI: 10.1134/s0003683816010142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Usefulness of gel filtration fraction as potential biomarker for neurocysticercosis in serum: towards a new diagnostic tool. Parasitology 2016; 144:426-435. [DOI: 10.1017/s0031182016001839] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
SUMMARYThere is an increasing interest in improving neurocysticercosis (NCC) diagnosis through the search of new and alternative antigenic sources, as those obtained from heterologous antigens. The aim of this study was to obtain potential biomarkers for NCC diagnosis after gel filtration chromatography [gel filtration fraction (GFF)] from the total saline extract (SE) from Taenia saginata metacestodes, followed by protein identification and application in immunodiagnostic. SE and GFF proteic profiles were characterized in gel electrophoresis, and diagnostic performance was verified by testing 160 serum samples through enzyme-linked immunosorbent assay and immunoblotting. Sensitivity (Se), specificity (Sp) and other diagnostic parameters were calculated. Polypeptides of interest in the diagnosis of human NCC present at GFF were analysed by mass spectrometry (MS) and B-cell epitopes were predicted. GFF had the best diagnostic parameters: Se 93·3%; Sp 93%; AUC 0·990; LR+ = 13·42 and LR− = 0·07, and proved to be useful reacting with serum samples in immunoblotting. Proteic profile ranged from 64 to 68 kDa and enolase and calcium binding protein calreticulin precursor were identified after MS. The enolase and calcium-binding protein calreticulin precursor showed 18 and 10 predicted B-cell epitopes, respectively. In conclusion we identified important markers in the GFF with high efficiency to diagnose NCC.
Collapse
|
15
|
Li WH, Qu ZG, Zhang NZ, Yue L, Jia WZ, Luo JX, Yin H, Fu BQ. Molecular characterization of enolase gene from Taenia multiceps. Res Vet Sci 2015; 102:53-8. [PMID: 26412520 DOI: 10.1016/j.rvsc.2015.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 06/15/2015] [Accepted: 06/21/2015] [Indexed: 11/28/2022]
Abstract
Taenia multiceps is a cestode parasite with its larval stage, known as Coenurus cerebralis, mainly encysts in the central nervous system of sheep and other livestocks. Enolase is a key glycolytic enzyme and represents multifunction in most organisms. In the present study, a 1617bp full-length cDNA encoding enolase was cloned from T. multiceps and designated as TmENO. A putative encoded protein of 433 amino acid residues that exhibited high similarity to helminth parasites. The recombinant TmENO protein (rTmENO) showed the catalytic and plasminogen-binding characteristics after the TmENO was subcloned and expressed in the pET30a(+) vector. The TmENO gene was transcribed during the adult and larval stages and was also identified in both cyst fluid and as a component of the adult worms and the metacestode by western blot analysis. Taken together, our results will facilitate further structural characterization for TmENO and new potential control strategies for T. multiceps.
Collapse
Affiliation(s)
- W H Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of the Ministry of Agriculture, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Z G Qu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of the Ministry of Agriculture, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - N Z Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of the Ministry of Agriculture, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - L Yue
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of the Ministry of Agriculture, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - W Z Jia
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of the Ministry of Agriculture, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease, Yangzhou, China
| | - J X Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of the Ministry of Agriculture, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease, Yangzhou, China
| | - H Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of the Ministry of Agriculture, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease, Yangzhou, China
| | - B Q Fu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of the Ministry of Agriculture, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease, Yangzhou, China.
| |
Collapse
|