1
|
Vajente M, Clerici R, Ballerstedt H, Blank LM, Schmidt S. Using Cupriavidus necator H16 to Provide a Roadmap for Increasing Electroporation Efficiency in Nonmodel Bacteria. ACS Synth Biol 2024. [PMID: 39482869 DOI: 10.1021/acssynbio.4c00380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Bacteria are a treasure trove of metabolic reactions, but most industrial biotechnology applications rely on a limited set of established host organisms. In contrast, adopting nonmodel bacteria for the production of various chemicals of interest is often hampered by their limited genetic amenability coupled with their low transformation efficiency. In this study, we propose a series of steps that can be taken to increase electroporation efficiency in nonmodel bacteria. As a test strain, we use Cupriavidus necator H16, a lithoautotrophic bacterium that has been engineered to produce a wide range of products from CO2 and hydrogen. However, its low electroporation efficiency hampers the high-throughput genetic engineering required to develop C. necator into an industrially relevant host organism. Thus, conjugation has often been the method of choice for introducing exogenous DNA, especially when introducing large plasmids or suicide plasmids. We first propose a species-independent technique based on natively methylated DNA and Golden Gate assembly to increase one-pot cloning and electroporation efficiency by 70-fold. Second, bioinformatic tools were used to predict defense systems and develop a restriction avoidance strategy that was used to introduce suicide plasmids by electroporation to obtain a domesticated strain. The results are discussed in the context of metabolic engineering of nonmodel bacteria.
Collapse
Affiliation(s)
- Matteo Vajente
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Riccardo Clerici
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Hendrik Ballerstedt
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Lars M Blank
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Sandy Schmidt
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| |
Collapse
|
2
|
Mandal RK, Jiang T, Kwon YM. Genetic Determinants in Salmonella enterica Serotype Typhimurium Required for Overcoming In Vitro Stressors in the Mimicking Host Environment. Microbiol Spectr 2021; 9:e0015521. [PMID: 34878334 PMCID: PMC8653844 DOI: 10.1128/spectrum.00155-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/29/2021] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serotype Typhimurium, a nontyphoidal Salmonella (NTS), results in a range of enteric diseases, representing a major disease burden worldwide. There is still a significant portion of Salmonella genes whose mechanistic basis to overcome host innate defense mechanisms largely remains unknown. Here, we have applied transposon insertion sequencing (Tn-seq) method to unveil the genetic factors required for the growth or survival of S. Typhimurium under various host stressors simulated in vitro. A highly saturating Tn5 library of S. Typhimurium 14028s was subjected to selection during growth in the presence of short-chain fatty acid (100 mM propionate), osmotic stress (3% NaCl), or oxidative stress (1 mM H2O2) or survival in extreme acidic pH (30 min in pH 3) or starvation (12 days in 1× phosphate-buffered saline [PBS]). We have identified a total of 339 conditionally essential genes (CEGs) required to overcome at least one of these conditions mimicking host insults. Interestingly, all eight genes encoding FoF1-ATP synthase subunit proteins were required for fitness in all five stresses. Intriguingly, a total of 88 genes in Salmonella pathogenicity islands (SPI), including SPI-1, SPI-2, SPI-3, SPI-5, SPI-6, and SPI-11, are also required for fitness under the in vitro conditions. Additionally, by comparative analysis of the genes identified in this study and the genes previously shown to be required for in vivo fitness, we identified novel genes (marBCT, envF, barA, hscA, rfaQ, rfbI, and the genes encoding putative proteins STM14_1138, STM14_3334, STM14_4825, and STM_5184) that have compelling potential for the development of vaccines and antibacterial drugs to curb Salmonella infection. IMPORTANCE Salmonella enterica serotype Typhimurium is a major human bacterial pathogen that enters the food chain through meat animals asymptomatically carrying this pathogen. Despite the rich genome sequence data, a significant portion of Salmonella genes remain to be characterized for their potential contributions to virulence. In this study, we used transposon insertion sequencing (Tn-seq) to elucidate the genetic factors required for growth or survival under various host stressors, including short-chain fatty acids, osmotic stress, oxidative stress, extreme acid, and starvation. Among the total of 339 conditionally essential genes (CEGs) that are required under at least one of these five stress conditions were 221 previously known virulence genes required for in vivo fitness during infection in at least one of four animal species, including mice, chickens, pigs, and cattle. This comprehensive map of virulence phenotype-genotype in S. Typhimurium provides a roadmap for further interrogation of the biological functions encoded by the genome of this important human pathogen to survive in hostile host environments.
Collapse
Affiliation(s)
- Rabindra K. Mandal
- Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Tieshan Jiang
- Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Young Min Kwon
- Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
3
|
Zhang M, Wang X, Ahmed T, Liu M, Wu Z, Luo J, Tian Y, Jiang H, Wang Y, Sun G, Li B. Identification of Genes Involved in Antifungal Activity of Burkholderia seminalis Against Rhizoctonia solani Using Tn5 Transposon Mutation Method. Pathogens 2020; 9:pathogens9100797. [PMID: 32992669 PMCID: PMC7600168 DOI: 10.3390/pathogens9100797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
Rhizoctonia solani is the causative agent of rice sheath blight disease. In a previous study, we found that the growth of R. solani was inhibited by Burkholderia seminalis strain R456. Therefore, the present study was conducted to identify the genes involved in the antifungal activity of B. seminalis strain R456 by using a Tn5 transposon mutation method. Firstly, we constructed a random insertion transposon library of 997 mutants, out of which 11 mutants showed the defective antifungal activity against R. solani. Furthermore, the 10 antagonism-related genes were successfully identified based on analysis of the Tn5 transposon insertion site. Indeed, this result indicated that three mutants were inserted on an indigenous plasmid in which the same insertion site was observed in two mutants. In addition, the remaining eight mutants were inserted on different genes encoding glycosyl transferase, histone H1, nonribosomal peptide synthetase, methyltransferase, MnmG, sulfate export transporter, catalase/peroxidase HPI and CysD, respectively. Compared to the wild type, the 11 mutants showed a differential effect in bacteriological characteristics such as cell growth, biofilm formation and response to H2O2 stress, revealing the complexity of action mode of these antagonism-related genes. However, a significant reduction of cell motility was observed in the 11 mutants compared to the wild type. Therefore, it can be inferred that the antifungal mechanism of the 10 above-mentioned genes may be, at least partially, due to the weakness of cell motility. Overall, the result of this study will be helpful for us to understand the biocontrol mechanism of this bacterium.
Collapse
Affiliation(s)
- Muchen Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (X.W.); (T.A.); (M.L.); (Z.W.); (Y.T.); (H.J.)
| | - Xiaoxuan Wang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (X.W.); (T.A.); (M.L.); (Z.W.); (Y.T.); (H.J.)
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (X.W.); (T.A.); (M.L.); (Z.W.); (Y.T.); (H.J.)
| | - Mengju Liu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (X.W.); (T.A.); (M.L.); (Z.W.); (Y.T.); (H.J.)
| | - Zhifeng Wu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (X.W.); (T.A.); (M.L.); (Z.W.); (Y.T.); (H.J.)
| | - Jinyan Luo
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai 201103, China;
| | - Ye Tian
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (X.W.); (T.A.); (M.L.); (Z.W.); (Y.T.); (H.J.)
| | - Hubiao Jiang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (X.W.); (T.A.); (M.L.); (Z.W.); (Y.T.); (H.J.)
| | - Yanli Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
- Correspondence: (Y.W.); (B.L.); Tel.: +86-0571-88982412 (Y.W. & B.L.)
| | - Guochang Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Bin Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (X.W.); (T.A.); (M.L.); (Z.W.); (Y.T.); (H.J.)
- Correspondence: (Y.W.); (B.L.); Tel.: +86-0571-88982412 (Y.W. & B.L.)
| |
Collapse
|
4
|
Laurenceau R, Bliem C, Osburne MS, Becker JW, Biller SJ, Cubillos-Ruiz A, Chisholm SW. Toward a genetic system in the marine cyanobacterium Prochlorococcus. Access Microbiol 2020; 2:acmi000107. [PMID: 33005871 PMCID: PMC7523629 DOI: 10.1099/acmi.0.000107] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/30/2020] [Indexed: 11/26/2022] Open
Abstract
As the smallest and most abundant primary producer in the oceans, the cyanobacterium Prochlorococcus is of interest to diverse branches of science. For the past 30 years, research on this minimal phototroph has led to a growing understanding of biological organization across multiple scales, from the genome to the global ocean ecosystem. Progress in understanding drivers of its diversity and ecology, as well as molecular mechanisms underpinning its streamlined simplicity, has been hampered by the inability to manipulate these cells genetically. Multiple attempts have been made to develop an efficient genetic transformation method for Prochlorococcus over the years; all have been unsuccessful to date, despite some success with their close relative, Synechococcus. To avoid the pursuit of unproductive paths, we report here what has not worked in our hands, as well as our progress developing a method to screen the most efficient electroporation parameters for optimal DNA delivery into Prochlorococcus cells. We also report a novel protocol for obtaining axenic colonies and a new method for differentiating live and dead cells. The electroporation method can be used to optimize DNA delivery into any bacterium, making it a useful tool for advancing transformation systems in other genetically recalcitrant microorganisms.
Collapse
Affiliation(s)
- Raphaël Laurenceau
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christina Bliem
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marcia S Osburne
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Present address: Department of Molecular Biology and Microbiology Tufts University School of Medicine, Boston, MA, USA
| | - Jamie W Becker
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Present address: Department of Biology, Haverford College, Haverford, PA, USA
| | - Steven J Biller
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Present address: Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - Andres Cubillos-Ruiz
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Present address: Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA.,Present address: Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Present address: Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Sallie W Chisholm
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
5
|
Pesingi PV, Singh BR, Pesingi PK, Bhardwaj M, Singh SV, Kumawat M, Sinha DK, Gandham RK. MexAB-OprM Efflux Pump of Pseudomonas aeruginosa Offers Resistance to Carvacrol: A Herbal Antimicrobial Agent. Front Microbiol 2019; 10:2664. [PMID: 31803171 PMCID: PMC6877666 DOI: 10.3389/fmicb.2019.02664] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 11/01/2019] [Indexed: 11/13/2022] Open
Abstract
Carvacrol is a herbal antimicrobial agent with in vitro activity against several bacterial pathogens. However, multidrug resistant strains of Pseudomonas aeruginosa are resistant to herbal antimicrobial compounds including carvacrol. Resistance of P. aeruginosa to carvacrol is not well studied. This study was aimed to identify the gene(s) associated with carvacrol resistance, thus to understand its mechanisms in P. aeruginosa. A herbal drug resistant strain was isolated from a hospital environment. Carvacrol sensitive mutant was generated using transposon mutagenesis. The inactivated gene in the mutant was identified as mexA, which is part of the mexAB-oprM operon. Inactivation of the mexA gene resulted in a >31-fold reduction in MIC of carvacrol, whereas a >80-fold reduction was observed in the presence of drug efflux inhibitor phenylalanine-arginine β-naphthylamide (PAβN). The parental herbal-resistant strain was completely killed within 3 h of incubation in the presence of carvacrol and PAβN. The mexA inactivation did not affect the resistance to other herbal compounds used. The results demonstrate that resistance to carvacrol in P. aeruginosa is mediated by the MexAB-OprM efflux pump.
Collapse
Affiliation(s)
| | - Bhoj Raj Singh
- Division of Epidemiology, Indian Veterinary Research Institute, Bareilly, India
| | - Pavan Kumar Pesingi
- Veterinary Public Health Division, Indian Veterinary Research Institute, Bareilly, India
| | - Monika Bhardwaj
- Bacteriology & Mycology Division, Indian Veterinary Research Institute, Bareilly, India
| | - Shiv Varan Singh
- Bacteriology & Mycology Division, Indian Veterinary Research Institute, Bareilly, India
| | - Manoj Kumawat
- Division of Biochemistry, Indian Veterinary Research Institute, Bareilly, India
| | | | - Ravi Kumar Gandham
- Division of Animal Biotechnology, Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
6
|
Josi C, Bürki S, Vidal S, Dordet-Frisoni E, Citti C, Falquet L, Pilo P. Large-Scale Analysis of the Mycoplasma bovis Genome Identified Non-essential, Adhesion- and Virulence-Related Genes. Front Microbiol 2019; 10:2085. [PMID: 31572317 PMCID: PMC6753880 DOI: 10.3389/fmicb.2019.02085] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/23/2019] [Indexed: 12/21/2022] Open
Abstract
Mycoplasma bovis is an important pathogen of cattle causing bovine mycoplasmosis. Clinical manifestations are numerous, but pneumonia, mastitis, and arthritis cases are mainly reported. Currently, no efficient vaccine is available and antibiotic treatments are not always satisfactory. The design of new, efficient prophylactic and therapeutic approaches requires a better understanding of the molecular mechanisms responsible for M. bovis pathogenicity. Random transposon mutagenesis has been widely used in Mycoplasma species to identify potential gene functions. Such an approach can also be used to screen genomes and search for essential and non-essential genes for growth. Here, we generated a random transposon mutant library of M. bovis strain JF4278 containing approximately 4000 independent insertion sites. We then coupled high-throughput screening of this mutant library to transposon sequencing and bioinformatic analysis to identify M. bovis non-essential, adhesion- and virulence-related genes. Three hundred and fifty-two genes of M. bovis were assigned as essential for growth in rich medium. Among the remaining non-essential genes, putative virulence-related factors were subsequently identified. The complete mutant library was screened for adhesion using primary bovine mammary gland epithelial cells. Data from this assay resulted in a list of conditional-essential genes with putative adhesion-related functions by identifying non-essential genes for growth that are essential for host cell-adhesion. By individually assessing the adhesion capacity of six selected mutants, two previously unknown factors and the adhesin TrmFO were associated with a reduced adhesion phenotype. Overall, our study (i) uncovers new, putative virulence-related genes; (ii) offers a list of putative adhesion-related factors; and (iii) provides valuable information for vaccine design and for exploring M. bovis biology, pathogenesis, and host-interaction.
Collapse
Affiliation(s)
- Christoph Josi
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Sibylle Bürki
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | - Sara Vidal
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | | | - Christine Citti
- UMR 1225, IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France
| | - Laurent Falquet
- Department of Biology, Faculty of Science and Medicine, Swiss Institute of Bioinformatics, University of Fribourg, Fribourg, Switzerland
| | - Paola Pilo
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Abstract
Transposon sequencing (Tn-seq) is a technique that combines quantitative next-generation sequencing and a saturating transposon mutant library for an organism of interest, and ultimately allows for quantitation of the relative abundance of all of the mutants under a given condition, such as during experimental infection. The massively parallel sequencing capabilities of this technique provide a significant advance over more traditional methods of screening transposon mutant pools or individually determining the fitness contribution of genes of interest. Here, we describe a method for generating a genome-saturating transposon mutant library in Proteus mirabilis, determining the appropriate number of mutants for inoculation in an experimental infection model, preparing transposon insertion junctions for Illumina sequencing, and downstream analysis of mapped DNA sequencing reads for estimation of the contribution of each gene in the genome to fitness during infection.
Collapse
Affiliation(s)
- Valerie S Forsyth
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Harry L T Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Chelsie E Armbruster
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
8
|
Mandal RK, Kwon YM. Global Screening of Salmonella enterica Serovar Typhimurium Genes for Desiccation Survival. Front Microbiol 2017; 8:1723. [PMID: 28943871 PMCID: PMC5596212 DOI: 10.3389/fmicb.2017.01723] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/24/2017] [Indexed: 01/13/2023] Open
Abstract
Salmonella spp., one of the most common foodborne bacterial pathogens, has the ability to survive under desiccation conditions in foods and food processing facilities for years. This raises the concerns of Salmonella infection in humans associated with low water activity foods. Salmonella responds to desiccation stress via complex pathways involving immediate physiological actions as well as coordinated genetic responses. However, the exact mechanisms of Salmonella to resist desiccation stress remain to be fully elucidated. In this study, we screened a genome-saturating transposon (Tn5) library of Salmonella Typhimurium (S. Typhimurium) 14028s under the in vitro desiccation stress using transposon sequencing (Tn-seq). We identified 61 genes and 6 intergenic regions required to overcome desiccation stress. Salmonella desiccation resistance genes were mostly related to energy production and conversion; cell wall/membrane/envelope biogenesis; inorganic ion transport and metabolism; regulation of biological process; DNA metabolic process; ABC transporters; and two component system. More than 20% of the Salmonella desiccation resistance genes encode either putative or hypothetical proteins. Phenotypic evaluation of 12 single gene knockout mutants showed 3 mutants (atpH, atpG, and corA) had significantly (p < 0.02) reduced survival as compared to the wild type during desiccation survival. Thus, our study provided new insights into the molecular mechanisms utilized by Salmonella for survival against desiccation stress. The findings might be further exploited to develop effective control strategies against Salmonella contamination in low water activity foods and food processing facilities.
Collapse
Affiliation(s)
- Rabindra K Mandal
- Department of Poultry Science, University of ArkansasFayetteville, AR, United States
| | - Young M Kwon
- Department of Poultry Science, University of ArkansasFayetteville, AR, United States.,Cell and Molecular Biology Program, University of ArkansasFayetteville, AR, United States
| |
Collapse
|
9
|
Avdyusheva EF, Lopasteyska YA, Sharov TN, Teteryatnikova NN, Molchanova EV. Modification of the Method of Receiving of Insertion Mutants with the EZ::TN5 System. Bull Exp Biol Med 2017; 163:519-522. [PMID: 28853077 DOI: 10.1007/s10517-017-3842-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Indexed: 11/30/2022]
Abstract
We demonstrated the possibility of obtaining insertion mutants by a modified technique using EZ::TN5 system during culturing of the recipient strain on a dense nutrient medium and exclusion of the centrifugation stage. The frequency of transposon mutants of E. coli 10979/EZ::TN5 was 2×10-6. Genetically modified strains were characterized by kanamycin resistance, inability to L-malate assimilation, changes in the expression of individual proteins of protein mass-spectra (5096.3, 6252.9, and 9067.7 Da), and the presence of fragments in genomic DNA amplified by specific forward and reverse primers that were homologous to Tn5 transposon insertion sites. The modified procedure for obtaining insertion mutants by using EZ::TN5 system was not inferior by the efficiency to the standard procedure, but shortens experiment duration, simplifies it, and reduces the risks related to working with group 2 pathogenicity microorganisms.
Collapse
Affiliation(s)
- E F Avdyusheva
- Department of Molecular Biology and Genetics, Volgograd State Medical University, Ministry of Health of the Russian Federation, Volgograd, Russia
| | - Ya A Lopasteyska
- Department of Molecular Biology and Genetics, Volgograd State Medical University, Ministry of Health of the Russian Federation, Volgograd, Russia.,Volgograd Research Anti-Plague Institute, Federal Service for Supervision of Consumer Right Protection and Human Welfare, Volgograd, Russia
| | - T N Sharov
- Volgograd Research Anti-Plague Institute, Federal Service for Supervision of Consumer Right Protection and Human Welfare, Volgograd, Russia
| | - N N Teteryatnikova
- Department of Molecular Biology and Genetics, Volgograd State Medical University, Ministry of Health of the Russian Federation, Volgograd, Russia.,Volgograd Research Anti-Plague Institute, Federal Service for Supervision of Consumer Right Protection and Human Welfare, Volgograd, Russia
| | - E V Molchanova
- Department of Molecular Biology and Genetics, Volgograd State Medical University, Ministry of Health of the Russian Federation, Volgograd, Russia. .,Volgograd Research Anti-Plague Institute, Federal Service for Supervision of Consumer Right Protection and Human Welfare, Volgograd, Russia.
| |
Collapse
|
10
|
Abstract
BACKGROUND Campylobacter species are a leading cause of bacterial foodborne illness worldwide. Despite the global efforts to curb them, Campylobacter infections have increased continuously in both developed and developing countries. The development of effective strategies to control the infection by this pathogen is warranted. The essential genes of bacteria are the most prominent targets for this purpose. In this study, we used transposon sequencing (Tn-seq) of a genome-saturating library of Tn5 insertion mutants to define the essential genome of C. jejuni at a high resolution. RESULT We constructed a Tn5 mutant library of unprecedented complexity in C. jejuni NCTC 11168 with 95,929 unique insertions throughout the genome and used the genomic DNA of the library for the reconstruction of Tn5 libraries in the same (C. jejuni NCTC 11168) and different strain background (C. jejuni 81-176) through natural transformation. We identified 166 essential protein-coding genes and 20 essential transfer RNAs (tRNA) in C. jejuni NCTC 11168 which were intolerant to Tn5 insertions during in vitro growth. The reconstructed C. jejuni 81-176 library had 384 protein coding genes with no Tn5 insertions. Essential genes in both strain backgrounds were highly enriched in the cluster of orthologous group (COG) categories of 'Translation, ribosomal structure and biogenesis (J)', 'Energy production and conversion (C)', and 'Coenzyme transport and metabolism (H)'. CONCLUSION Comparative analysis among this and previous studies identified 50 core essential genes of C. jejuni, which can be further investigated for the development of novel strategies to control the spread of this notorious foodborne bacterial pathogen.
Collapse
Affiliation(s)
- Rabindra K. Mandal
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701 USA
- Present Address: Department of Microbiology and Immunology, Clinical Translational Research Building, University of Louisville, Louisville, KY 40202 USA
| | - Tieshan Jiang
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701 USA
| | - Young Min Kwon
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701 USA
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701 USA
| |
Collapse
|
11
|
Kwon YM, Ricke SC, Mandal RK. Transposon sequencing: methods and expanding applications. Appl Microbiol Biotechnol 2015; 100:31-43. [DOI: 10.1007/s00253-015-7037-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/15/2015] [Accepted: 09/20/2015] [Indexed: 12/26/2022]
|
12
|
Genome modifications and cloning using a conjugally transferable recombineering system. ACTA ACUST UNITED AC 2015; 8:24-35. [PMID: 28352570 PMCID: PMC4980705 DOI: 10.1016/j.btre.2015.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/24/2015] [Accepted: 08/24/2015] [Indexed: 11/21/2022]
Abstract
The genetic modification of primary bacterial disease isolates is challenging due to the lack of highly efficient genetic tools. Herein we describe the development of a modified PCR-based, λ Red-mediated recombineering system for efficient deletion of genes in Gram-negative bacteria. A series of conjugally transferrable plasmids were constructed by cloning an oriT sequence and different antibiotic resistance genes into recombinogenic plasmid pKD46. Using this system we deleted ten different genes from the genomes of Edwardsiella ictaluri and Aeromonas hydrophila. A temperature sensitive and conjugally transferable flp recombinase plasmid was developed to generate markerless gene deletion mutants. We also developed an efficient cloning system to capture larger bacterial genetic elements and clone them into a conjugally transferrable plasmid for facile transferring to Gram-negative bacteria. This system should be applicable in diverse Gram-negative bacteria to modify and complement genomic elements in bacteria that cannot be manipulated using available genetic tools.
Collapse
|
13
|
Heat Shock-Enhanced Conjugation Efficiency in Standard Campylobacter jejuni Strains. Appl Environ Microbiol 2015; 81:4546-52. [PMID: 25911489 DOI: 10.1128/aem.00346-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/21/2015] [Indexed: 12/12/2022] Open
Abstract
Campylobacter jejuni, the leading bacterial cause of human gastroenteritis in the United States, displays significant strain diversity due to horizontal gene transfer. Conjugation is an important horizontal gene transfer mechanism contributing to the evolution of bacterial pathogenesis and antimicrobial resistance. It has been observed that heat shock could increase transformation efficiency in some bacteria. In this study, the effect of heat shock on C. jejuni conjugation efficiency and the underlying mechanisms were examined. With a modified Escherichia coli donor strain, different C. jejuni recipient strains displayed significant variation in conjugation efficiency ranging from 6.2 × 10(-8) to 6.0 × 10(-3) CFU per recipient cell. Despite reduced viability, heat shock of standard C. jejuni NCTC 11168 and 81-176 strains (e.g., 48 to 54°C for 30 to 60 min) could dramatically enhance C. jejuni conjugation efficiency up to 1,000-fold. The phenotype of the heat shock-enhanced conjugation in C. jejuni recipient cells could be sustained for at least 9 h. Filtered supernatant from the heat shock-treated C. jejuni cells could not enhance conjugation efficiency, which suggests that the enhanced conjugation efficiency is independent of secreted substances. Mutagenesis analysis indicated that the clustered regularly interspaced short palindromic repeats system and the selected restriction-modification systems (Cj0030/Cj0031, Cj0139/Cj0140, Cj0690c, and HsdR) were dispensable for heat shock-enhanced conjugation in C. jejuni. Taking all results together, this study demonstrated a heat shock-enhanced conjugation efficiency in standard C. jejuni strains, leading to an optimized conjugation protocol for molecular manipulation of this organism. The findings from this study also represent a significant step toward elucidation of the molecular mechanism of conjugative gene transfer in C. jejuni.
Collapse
|