1
|
Ingawale M, Dalkan T, Durocher Y, Ghosh R. An alternating flow-direction method for increasing productivity in the purification of large biotherapeutic modalities using size exclusion chromatography. J Chromatogr A 2025; 1740:465592. [PMID: 39673816 DOI: 10.1016/j.chroma.2024.465592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/27/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
The purification of large biotherapeutic modalities such as viral coat proteins, plasmid DNA, mRNA, therapeutic viruses and vesicles is more challenging than the purification of smaller and more established products such as monoclonal antibodies. This is because these entities, due to their large size, have limited access to binding sites present in the pores of conventional resin-based chromatographic media. However, this transport limitation could potentially be exploited for their purification using size exclusion chromatography (SEC). Here, the strategy is to isolate these in the void fraction of an appropriate SEC column. However, challenges such as low capacity, low productivity and poor scalability typically associated with SEC would first need to be addressed. In this study, we propose an alternating flow-direction-based SEC technique as an approach for increasing the productivity of preparative SEC. The feed is introduced into the SEC device from opposite directions in an alternating manner. By doing so, the separation time could be significantly reduced. Proof of concept for this technique was obtained using a z2 cuboid SEC device, having a volume of 24 mL, and packed with Sephacryl S 200 resin. The effect of alternating flow direction on the separation time was examined based on a case study for the purification SARS-CoV-2 delta spike protein from small molecular weight impurities present in cell-free supernatant. Compared to conventional unidirectional SEC, the time (or volume of mobile phase) required for purifying the spike protein could be reduced by about 42 %.
Collapse
Affiliation(s)
- Mrunal Ingawale
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4L7
| | - Taylan Dalkan
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4L7
| | - Yves Durocher
- National Research Council of Canada, Montreal, Quebec, H4P 2R2, Canada
| | - Raja Ghosh
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4L7.
| |
Collapse
|
2
|
Buzas D, Bunzel AH, Staufer O, Milodowski EJ, Edmunds GL, Bufton JC, Vidana Mateo BV, Yadav SKN, Gupta K, Fletcher C, Williamson MK, Harrison A, Borucu U, Capin J, Francis O, Balchin G, Hall S, Vega MV, Durbesson F, Lingappa S, Vincentelli R, Roe J, Wooldridge L, Burt R, Anderson RJL, Mulholland AJ, Bristol UNCOVER Group, Hare J, Bailey M, Davidson AD, Finn A, Morgan D, Mann J, Spatz J, Garzoni F, Schaffitzel C, Berger I. In vitro generated antibodies guide thermostable ADDomer nanoparticle design for nasal vaccination and passive immunization against SARS-CoV-2. Antib Ther 2023; 6:277-297. [PMID: 38075238 PMCID: PMC10702856 DOI: 10.1093/abt/tbad024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 01/10/2024] Open
Abstract
Background Due to COVID-19, pandemic preparedness emerges as a key imperative, necessitating new approaches to accelerate development of reagents against infectious pathogens. Methods Here, we developed an integrated approach combining synthetic, computational and structural methods with in vitro antibody selection and in vivo immunization to design, produce and validate nature-inspired nanoparticle-based reagents against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Results Our approach resulted in two innovations: (i) a thermostable nasal vaccine called ADDoCoV, displaying multiple copies of a SARS-CoV-2 receptor binding motif derived epitope and (ii) a multivalent nanoparticle superbinder, called Gigabody, against SARS-CoV-2 including immune-evasive variants of concern (VOCs). In vitro generated neutralizing nanobodies and electron cryo-microscopy established authenticity and accessibility of epitopes displayed by ADDoCoV. Gigabody comprising multimerized nanobodies prevented SARS-CoV-2 virion attachment with picomolar EC50. Vaccinating mice resulted in antibodies cross-reacting with VOCs including Delta and Omicron. Conclusion Our study elucidates Adenovirus-derived dodecamer (ADDomer)-based nanoparticles for use in active and passive immunization and provides a blueprint for crafting reagents to combat respiratory viral infections.
Collapse
Affiliation(s)
- Dora Buzas
- Max Planck Bristol Centre for Minimal Biology, University of Bristol, Bristol BS8 1TS, UK
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Adrian H Bunzel
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Oskar Staufer
- Max Planck Bristol Centre for Minimal Biology, University of Bristol, Bristol BS8 1TS, UK
- Leibniz Institute for New Materials, Helmholtz Institute for Pharmaceutical Research and Center for Biophysics, Saarland University, Saarbrücken 66123, Germany
| | | | - Grace L Edmunds
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU UK
| | - Joshua C Bufton
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | | | | | - Kapil Gupta
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
- Imophoron Ltd, Science Creates Old Market, Midland Rd, Bristol BS2 0JZ UK
| | | | - Maia K Williamson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | | | - Ufuk Borucu
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Julien Capin
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Ore Francis
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU UK
| | - Georgia Balchin
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Sophie Hall
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Mirella V Vega
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Fabien Durbesson
- Architecture et Fonction des Macromolécules Biologiques, UMR 7257, CNRS, Aix-Marseille Université, Marseille, France
| | | | - Renaud Vincentelli
- Architecture et Fonction des Macromolécules Biologiques, UMR 7257, CNRS, Aix-Marseille Université, Marseille, France
| | - Joe Roe
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU UK
| | - Linda Wooldridge
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU UK
| | - Rachel Burt
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU UK
| | | | | | | | - Jonathan Hare
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Mick Bailey
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU UK
| | - Andrew D Davidson
- Imophoron Ltd, Science Creates Old Market, Midland Rd, Bristol BS2 0JZ UK
| | - Adam Finn
- Bristol University COVID-19 Emergency Research Group, Bristol BS8 1TH, UK
- Children's Vaccine Centre, Bristol Medical School, Bristol BS2 8EF UK
| | - David Morgan
- Imophoron Ltd, Science Creates Old Market, Midland Rd, Bristol BS2 0JZ UK
| | - Jamie Mann
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU UK
| | - Joachim Spatz
- Max Planck Bristol Centre for Minimal Biology, University of Bristol, Bristol BS8 1TS, UK
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany
| | - Frederic Garzoni
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Christiane Schaffitzel
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
- Bristol University COVID-19 Emergency Research Group, Bristol BS8 1TH, UK
| | - Imre Berger
- Max Planck Bristol Centre for Minimal Biology, University of Bristol, Bristol BS8 1TS, UK
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
- Bristol University COVID-19 Emergency Research Group, Bristol BS8 1TH, UK
| |
Collapse
|
3
|
Purification of high-temperature resistant polyethylene terephthalate (PET) hydrolase by simple heating protocol. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
4
|
Inline-tandem purification of viruses from cell lysate by agarose-based chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1192:123140. [DOI: 10.1016/j.jchromb.2022.123140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/15/2022]
|
5
|
Prasanna M, Podsiadla-Bialoskorska M, Mielecki D, Ruffier N, Fateh A, Lambert A, Fanuel M, Camberlein E, Szolajska E, Grandjean C. On the use of adenovirus dodecahedron as a carrier for glycoconjugate vaccines. Glycoconj J 2021; 38:437-446. [PMID: 33852106 DOI: 10.1007/s10719-021-09999-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/28/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
Virus-Like Particles (VLPs) have been used as immunogenic molecules in numerous recombinant vaccines. VLPs can also serve as vaccine platform to exogenous antigens, usually peptides incorporated within the protein sequences which compose the VLPs or conjugated to them. We herein described the conjugation of a synthetic tetrasaccharide mimicking the Streptococcus pneumoniae serotype 14 capsular polysaccharide to recombinant adenoviral type 3 dodecahedron, formed by the self-assembling of twelve penton bases and investigated the induced immune response when administered subcutaneously (s.c.). Whether formulated in the form of a dodecahedron or disassembled, the glycoconjugate induced an anti-protein response after two and three immunizations equivalent to that observed when the native dodecahedron was administered. On the other hand, the glycoconjugate induced a weak anti-IgM response which diminishes after two doses but no IgM-to-IgG switch was observed in mice against the serotype 14 capsular polysaccharide. In definitive, the whole conjugation process preserved both particulate nature and immunogenicity of the adenoviral dodecahedron. Further studies are needed to fully exploit adenoviral dodecahedron potential in terms of plasticity towards sequence engineering and of its capacity to stimulate the immune system via the intranasal route of administration as well as to shift the response to the carbohydrate antigen by playing both with the carbohydrate to protein ratio and the length of the synthetic carbohydrate antigen.
Collapse
Affiliation(s)
- Maruthi Prasanna
- Unité Fonctionnalité et Ingénierie des Protéines (UFIP), Université de Nantes, CNRS, UMR 6286, F-44000, Nantes, France
| | | | - Damian Mielecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warszawa, Poland
| | - Nicolas Ruffier
- Unité Fonctionnalité et Ingénierie des Protéines (UFIP), Université de Nantes, CNRS, UMR 6286, F-44000, Nantes, France.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warszawa, Poland
| | - Amina Fateh
- Unité Fonctionnalité et Ingénierie des Protéines (UFIP), Université de Nantes, CNRS, UMR 6286, F-44000, Nantes, France
| | - Annie Lambert
- Unité Fonctionnalité et Ingénierie des Protéines (UFIP), Université de Nantes, CNRS, UMR 6286, F-44000, Nantes, France
| | - Mathieu Fanuel
- UR BIA, INRAE, F-44316, Nantes, France.,BIBS facility, INRAE, F-44316, Nantes, France
| | - Emilie Camberlein
- Unité Fonctionnalité et Ingénierie des Protéines (UFIP), Université de Nantes, CNRS, UMR 6286, F-44000, Nantes, France
| | - Ewa Szolajska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warszawa, Poland
| | - Cyrille Grandjean
- Unité Fonctionnalité et Ingénierie des Protéines (UFIP), Université de Nantes, CNRS, UMR 6286, F-44000, Nantes, France.
| |
Collapse
|
6
|
Junter GA, Lebrun L. Polysaccharide-based chromatographic adsorbents for virus purification and viral clearance. J Pharm Anal 2020; 10:291-312. [PMID: 32292625 PMCID: PMC7104128 DOI: 10.1016/j.jpha.2020.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/20/2022] Open
Abstract
Viruses still pose a significant threat to human and animal health worldwide. In the fight against viral infections, high-purity viral stocks are needed for manufacture of safer vaccines. It is also a priority to ensure the viral safety of biopharmaceuticals such as blood products. Chromatography techniques are widely implemented at both academic and industrial levels in the purification of viral particles, whole viruses and virus-like particles to remove viral contaminants from biopharmaceutical products. This paper focuses on polysaccharide adsorbents, particulate resins and membrane adsorbers, used in virus purification/removal chromatography processes. Different chromatographic modes are surveyed, with particular attention to ion exchange and affinity/pseudo-affinity adsorbents among which commercially available agarose-based resins (Sepharose®) and cellulose-based membrane adsorbers (Sartobind®) occupy a dominant position. Mainly built on the development of new ligands coupled to conventional agarose/cellulose matrices, the development perspectives of polysaccharide-based chromatography media in this antiviral area are stressed in the conclusive part.
Collapse
Affiliation(s)
- Guy-Alain Junter
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000, Rouen, France
| | - Laurent Lebrun
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000, Rouen, France
| |
Collapse
|
7
|
Jedynak M, Worch R, Podsiadła-Białoskórska M, Chroboczek J, Szołajska E. Cholesterol and phosphatidylserine are engaged in adenoviral dodecahedron endocytosis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2215-2223. [DOI: 10.1016/j.bbamem.2018.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/14/2018] [Accepted: 09/05/2018] [Indexed: 12/31/2022]
|
8
|
Naskalska A, Dabrowska A, Nowak P, Szczepanski A, Jasik K, Milewska A, Ochman M, Zeglen S, Rajfur Z, Pyrc K. Novel coronavirus-like particles targeting cells lining the respiratory tract. PLoS One 2018; 13:e0203489. [PMID: 30183777 PMCID: PMC6124810 DOI: 10.1371/journal.pone.0203489] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/21/2018] [Indexed: 12/13/2022] Open
Abstract
Virus like particles (VLPs) produced by the expression of viral structural proteins can serve as versatile nanovectors or potential vaccine candidates. In this study we describe for the first time the generation of HCoV-NL63 VLPs using baculovirus system. Major structural proteins of HCoV-NL63 have been expressed in tagged or native form, and their assembly to form VLPs was evaluated. Additionally, a novel procedure for chromatography purification of HCoV-NL63 VLPs was developed. Interestingly, we show that these nanoparticles may deliver cargo and selectively transduce cells expressing the ACE2 protein such as ciliated cells of the respiratory tract. Production of a specific delivery vector is a major challenge for research concerning targeting molecules. The obtained results show that HCoV-NL63 VLPs may be efficiently produced, purified, modified and serve as a delivery platform. This study constitutes an important basis for further development of a promising viral vector displaying narrow tissue tropism.
Collapse
Affiliation(s)
- Antonina Naskalska
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- * E-mail: (AN); (KP)
| | - Agnieszka Dabrowska
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Paulina Nowak
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Artur Szczepanski
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Jasik
- Department of Skin Structural Studies, Medical University of Silesia in Katowice, School of Pharmacy with the Division of Laboratory Medicine, Sosnowiec, Poland
| | - Aleksandra Milewska
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Marek Ochman
- Department of Cardiac Surgery and Transplantology, Silesian Center for Heart Diseases, Zabrze, Poland
| | - Slawomir Zeglen
- Department of Cardiac Surgery and Transplantology, Silesian Center for Heart Diseases, Zabrze, Poland
| | - Zenon Rajfur
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Sciences, Jagiellonian University, Krakow, Poland
| | - Krzysztof Pyrc
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- * E-mail: (AN); (KP)
| |
Collapse
|
9
|
Jedynak M, Laurin D, Dolega P, Podsiadla-Bialoskorska M, Szurgot I, Chroboczek J, Szolajska E. Leukocytes and drug-resistant cancer cells are targets for intracellular delivery by adenoviral dodecahedron. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1853-1865. [DOI: 10.1016/j.nano.2018.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/04/2018] [Accepted: 05/04/2018] [Indexed: 12/15/2022]
|