1
|
Novianti MT, Subroto T, Efendi YS, Baroroh U, Kusumawardani S, Gumilar G, Yusuf M, Gaffar S. Expression, Sarkosyl Solubilization, DNase Activity, Purification, and SPR Binding Affinity of Recombinant Diphtheria Toxoid (rCRM197EK) Expressed in Escherichia coli BL21(DE3). Mol Biotechnol 2025; 67:2774-2784. [PMID: 39107502 DOI: 10.1007/s12033-024-01238-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/11/2024] [Indexed: 05/29/2025]
Abstract
CRM197EK is a derivative of diphtheria toxoid cross-reactive material-197 (CRM197) with two-point mutations (K51E and E148K) to improve its properties for a vaccine conjugate and drug delivery. A previous study has shown that intracellularly expressing CRM197EK in Escherichia coli (E. coli) host formed inclusion bodies that need a complicated purification and refolding step. Protein purification from inclusion bodies can be overcome by solubilization of inclusion bodies by using N-lauroyl sarcosine (sarkosyl). In this work, recombinant CRM197EK (rCRM197EK) was expressed in E. coli BL21 (DE3) as inclusion bodies, then solubilized using sarkosyl to form a soluble rCRM197EK without the need for a renaturation process. Furthermore, rCRM197EK was purified using the Ni-NTA column, characterized by SDS-PAGE and Western Blot, and its biological activity was assayed through its DNase activity. Moreover, its binding affinity with anti-diphtheria toxin (DT) antibody was measured using the surface plasmon resonance (SPR). The result showed that solubilization with sarkosyl form soluble rCRM197EK (61.61 kDa) was confirmed by SDS-PAGE and Western Blot with a yield of 2.8 mg/mL. rCRM197EK shows DNase activity, and the SPR assay shows that it can interact with an anti-DT antibody with a binding energy of - 9.2 kcal/mol.
Collapse
Affiliation(s)
- Mia Tria Novianti
- Biotechnology Master Program, Postgraduate School, Universitas Padjadjaran, Bandung, 40132, West Java, Indonesia
| | - Toto Subroto
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang, 45363, West Java, Indonesia
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, 40133, West Java, Indonesia
| | | | - Umi Baroroh
- Department of Biotechnology, Indonesian School of Pharmacy, Soekarno Hatta 354, Bandung, 40266, West Java, Indonesia
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, 40133, West Java, Indonesia
| | - Shinta Kusumawardani
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, 40133, West Java, Indonesia
| | - Gilang Gumilar
- Research Center for Electronics, National Research and Innovation Agency Republic of Indonesia (BRIN), Bandung, 40135, West Java, Indonesia
- BRIN and ITB Collaboration Research Center for Biosensor and Biodevices, Institut Teknologi Bandung, Bandung, 40132, Indonesia
- Advanced Functional Materials Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Muhammad Yusuf
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang, 45363, West Java, Indonesia
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, 40133, West Java, Indonesia
| | - Shabarni Gaffar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Jatinangor, Sumedang, 45363, West Java, Indonesia.
| |
Collapse
|
2
|
High-Level Production of Soluble Cross-Reacting Material 197 in Escherichia coli Cytoplasm Due to Fine Tuning of the Target Gene's mRNA Structure. BIOTECH (BASEL (SWITZERLAND)) 2023; 12:biotech12010009. [PMID: 36648835 PMCID: PMC9844443 DOI: 10.3390/biotech12010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
Cross-reacting material 197 (CRM197) is a non-toxic mutant of the diphtheria toxin and is widely used as a carrier protein in conjugate vaccines. This protein was first obtained from the supernatant of the mutant Corynebacterium diphtheriae strain. This pathogenic bacteria strain is characterized by a slow growth rate and a relatively low target protein yield, resulting in high production costs for CRM197. Many attempts have been made to establish high-yield protocols for the heterologous expression of recombinant CRM197 in different host organisms. In the present work, a novel CRM197-producing Escherichia coli strain was constructed. The target protein was expressed in the cytoplasm of SHuffle T7 E. coli cells without any additional tags and with a single potential mutation-an additional Met [-1]. The fine tuning of the mRNA structure (the disruption of the single hairpin in the start codon area) was sufficient to increase the CRM197 expression level several times, resulting in 150-270 mg/L (1.1-2.0 mg/g wet biomass) yields of pure CRM197 protein. Besides the high yield, the advantages of the obtained expression system include the absence of the necessity of CRM197 refolding or tag removal. Thus, an extensive analysis of the mRNA structure and the removal of the unwanted hairpins in the 5' area may significantly improve the target protein expression rate.
Collapse
|
3
|
Aw R, Ashik MR, Islam AAZM, Khan I, Mainuddin M, Islam MA, Ahasan MM, Polizzi KM. Production and purification of an active CRM197 in Pichia pastoris and its immunological characterization using a Vi-typhoid antigen vaccine. Vaccine 2021; 39:7379-7386. [PMID: 34774362 DOI: 10.1016/j.vaccine.2021.10.083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/06/2021] [Accepted: 10/31/2021] [Indexed: 10/19/2022]
Abstract
CRM197 is a commonly used glycoconjugate carrier that improves the immunogenicity of vaccines, particularly in infants. Despite the advantages of this diphtheria toxoid mutant, low yields, production in inclusion bodies, and the requirement for specific growth conditions have limited the breadth of successful recombinant protein expression platforms available for its expression. We evaluated Pichia pastoris as a production host, using the methanol inducible AOX1 promoter and a modified α-mating factor signal peptide for secretion into the supernatant. Final purified yields >100 mg L-1 culture were achieved when produced in a bioreactor, which is equivalent to the productivity obtained from bioprocesses using the native Corynebacterium diphtheriae host. Recombinant CRM197 was purified to ≥95% homogeneity and showed the expected endonuclease activity. Furthermore, mice immunized with a Salmonella enterica serovar Typhi capsular Vi antigen conjugated to our recombinant CRM197 showed greater than 5-fold increase in immune response. Overall, the results demonstrate that Pichia pastoris is a suitable expression host for the production of high quality CRM197 for vaccine applications.
Collapse
Affiliation(s)
- Rochelle Aw
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK; Imperial College Centre for Synthetic Biology, Imperial College London, SW7 2AZ, UK
| | | | | | - Imran Khan
- Incepta Vaccine Ltd, Savar, Dhaka 1341, Bangladesh
| | | | | | | | - Karen M Polizzi
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK; Imperial College Centre for Synthetic Biology, Imperial College London, SW7 2AZ, UK.
| |
Collapse
|
4
|
Fatima K, Naqvi F, Younas H. A Review: Molecular Chaperone-mediated Folding, Unfolding and Disaggregation of Expressed Recombinant Proteins. Cell Biochem Biophys 2021; 79:153-174. [PMID: 33634426 DOI: 10.1007/s12013-021-00970-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/01/2021] [Indexed: 12/26/2022]
Abstract
The advancements in biotechnology over time have led to an increase in the demand of pure, soluble and functionally active proteins. Recombinant protein production has thus been employed to obtain high expression of purified proteins in bulk. E. coli is considered as the most desirable host for recombinant protein production due to its inexpensive and fast cultivation, simple nutritional requirements and known genetics. Despite all these benefits, recombinant protein production often comes with drawbacks, such as, the most common being the formation of inclusion bodies due to improper protein folding. Consequently, this can lead to the loss of the structure-function relationship of a protein. Apart from various strategies, one major strategy to resolve this issue is the use of molecular chaperones that act as folding modulators for proteins. Molecular chaperones assist newly synthesized, aggregated or misfolded proteins to fold into their native conformations. Chaperones have been widely used to improve the expression of various proteins which are otherwise difficult to produce in E. coli. Here, we discuss the structure, function, and role of major E. coli molecular chaperones in recombinant technology such as trigger factor, GroEL, DnaK and ClpB.
Collapse
Affiliation(s)
- Komal Fatima
- Department of Biochemistry, Kinnaird College for Women, Lahore, Punjab, Pakistan
| | - Fatima Naqvi
- Department of Biochemistry, Kinnaird College for Women, Lahore, Punjab, Pakistan
| | - Hooria Younas
- Department of Biochemistry, Kinnaird College for Women, Lahore, Punjab, Pakistan.
| |
Collapse
|
5
|
Saio T, Kawagoe S, Ishimori K, Kalodimos CG. Oligomerization of a molecular chaperone modulates its activity. eLife 2018; 7:35731. [PMID: 29714686 PMCID: PMC5988418 DOI: 10.7554/elife.35731] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/30/2018] [Indexed: 11/13/2022] Open
Abstract
Molecular chaperones alter the folding properties of cellular proteins via mechanisms that are not well understood. Here, we show that Trigger Factor (TF), an ATP-independent chaperone, exerts strikingly contrasting effects on the folding of non-native proteins as it transitions between a monomeric and a dimeric state. We used NMR spectroscopy to determine the atomic resolution structure of the 100 kDa dimeric TF. The structural data show that some of the substrate-binding sites are buried in the dimeric interface, explaining the lower affinity for protein substrates of the dimeric compared to the monomeric TF. Surprisingly, the dimeric TF associates faster with proteins and it exhibits stronger anti-aggregation and holdase activity than the monomeric TF. The structural data show that the dimer assembles in a way that substrate-binding sites in the two subunits form a large contiguous surface inside a cavity, thus accounting for the observed accelerated association with unfolded proteins. Our results demonstrate how the activity of a chaperone can be modulated to provide distinct functional outcomes in the cell.
Collapse
Affiliation(s)
- Tomohide Saio
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Soichiro Kawagoe
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Koichiro Ishimori
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Charalampos G Kalodimos
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, United States
| |
Collapse
|