1
|
Wang X, Zhou S, Huang Y, Chu P, Zhu L, Chen X. Nanoplastics and bisphenol A exposure alone or in combination induce hepatopancreatic damage and disturbances in carbohydrate metabolism in the Portunus trituberculatus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 277:107145. [PMID: 39546969 DOI: 10.1016/j.aquatox.2024.107145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
Bisphenol A (BPA) is a widely found endocrine-disrupting chemical (EDC). Nanoplastics (NPs) represent a novel environmental pollutant, and the combined toxicity of these pollutants on the hepatopancreas of marine arthropods is understudied. To investigate the potential risks associated with co-exposure to BPA and NPs on the hepatopancreas, Portunus trituberculatus was treated with 100 μg/L BPA, 104 particles/L NPs, and a combination of 100 μg/L BPA + 104 particles/L NPs for 21 days, respectively. Histological observation demonstrated that co-exposure severely damaged both hepatopancreas tissue and mitochondrial structure. Transcriptome analysis revealed that 1498 transcripts were differentially expressed under different exposure conditions, and these transcripts are involved in biological processes such as cellular processes and carbohydrate metabolism. BPA and NPs co-exposure modulate pyruvic acid (PA) levels by increasing the activity of pyruvate kinase (PK), leading to changes in glycogen and glucose (GLU) content within tissues, thus affecting glycolysis. The dysregulation of the CHI3L1, ACSS2 and ACYP2 genes induced by BPA and NPs co-exposure may collectively regulate the process of carbohydrate metabolism. Notably, the downregulation of the VPS4 gene and the upregulation of the GBA1, Pin1 and CCND2 gene may affect the cell cycle, potentially impacting cell proliferation after BPA and NPs co-exposure. These data indicate that co-exposure to BPA and NPs is more significantly cytotoxic and leads to changes in carbohydrate metabolism, cell proliferation, and histological damage in the hepatopancreas of P. trituberculatus. This knowledge emphasizes the need for proactive measures to mitigate the adverse effects of these environmental pollutants on human and ecological health while also providing valuable insights into the relevant molecular mechanisms.
Collapse
Affiliation(s)
- Xiaotian Wang
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Shangjie Zhou
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Yutong Huang
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Pengfei Chu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China
| | - Long Zhu
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China; Marine Resources Development Institute of Jiangsu, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China.
| | - Xiaocong Chen
- Key Laboratory of Applied Aquacultral Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
2
|
Quílez C, Bebiano LB, Jones E, Maver U, Meesters L, Parzymies P, Petiot E, Rikken G, Risueño I, Zaidi H, Zidarič T, Bekeschus S, H van den Bogaard E, Caley M, Colley H, López NG, Letsiou S, Marquette C, Maver T, Pereira RF, Tobin DJ, Velasco D. Targeting the Complexity of In Vitro Skin Models: A Review of Cutting-Edge Developments. J Invest Dermatol 2024; 144:2650-2670. [PMID: 39127929 DOI: 10.1016/j.jid.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/29/2024] [Accepted: 04/10/2024] [Indexed: 08/12/2024]
Abstract
Skin in vitro models offer much promise for research, testing drugs, cosmetics, and medical devices, reducing animal testing and extensive clinical trials. There are several in vitro approaches to mimicking human skin behavior, ranging from simple cell monolayer to complex organotypic and bioengineered 3-dimensional models. Some have been approved for preclinical studies in cosmetics, pharmaceuticals, and chemicals. However, development of physiologically reliable in vitro human skin models remains in its infancy. This review reports on advances in in vitro complex skin models to study skin homeostasis, aging, and skin disease.
Collapse
Affiliation(s)
- Cristina Quílez
- Bioengineering Department, Universidad Carlos III de Madrid, Leganés, Spain; Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Luís B Bebiano
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Eleri Jones
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Uroš Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Maribor, Slovenia; Department of Pharmacology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Luca Meesters
- Department of Dermatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Piotr Parzymies
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Emma Petiot
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, UMR5246, ICBMS, Université Lyon 1, Villeurbanne Cedex, France
| | - Gijs Rikken
- Department of Dermatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ignacio Risueño
- Bioengineering Department, Universidad Carlos III de Madrid, Leganés, Spain; Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Hamza Zaidi
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, UMR5246, ICBMS, Université Lyon 1, Villeurbanne Cedex, France
| | - Tanja Zidarič
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Sander Bekeschus
- Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Rostock, Germany; ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany
| | | | - Matthew Caley
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Helen Colley
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Nuria Gago López
- Melanoma group, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Sophia Letsiou
- Department of Biomedical Sciences, University of West Attica, Athens, Greece; Department of Food Science and Technology, University of West Attica, Athens, Greece
| | - Christophe Marquette
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, UMR5246, ICBMS, Université Lyon 1, Villeurbanne Cedex, France
| | - Tina Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Maribor, Slovenia; Department of Pharmacology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Rúben F Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Desmond J Tobin
- Charles Institute of Dermatology, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Diego Velasco
- Bioengineering Department, Universidad Carlos III de Madrid, Leganés, Spain; Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain.
| |
Collapse
|
3
|
Seleka WM, Ramohlola KE, Modibane KD, Makhado E. Quaternary conducting Cs/GO/PANi hydrogel composites: A smart material for room temperature hydrogen sensing. DIAMOND AND RELATED MATERIALS 2024; 146:111156. [DOI: 10.1016/j.diamond.2024.111156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Hwang ET, Yoon Y, Kim KR, Lee CH, Jeon KC, Min JH, Lee JW, Kim J. Hybrid protein microspheres and their responsive release behaviors and inhibitory effects on melanin synthesis. Biomater Sci 2024; 12:2434-2443. [PMID: 38517309 DOI: 10.1039/d4bm00106k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
In this study, the formation of protein microspheres through lysosomal enzyme-assisted biomineralized crystallization was demonstrated. Spherical micro-sized hybrid CaCO3 constructs were synthesized and characterized using field-emission scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and particle size analysis. Additionally, parameters such as the Brunauer-Emmett-Teller surface area and single-point total pore volume, and adsorption/desorption analysis were used to investigate the mesoporous properties, which are advantageous for lysosomal enzyme (LE) loading. A LE can be used as an organic template, not only as a morphological controller but also for entrapping LE during the crystallization pathway. The hybrid protein microspheres accommodated 2.3 mg of LE with a 57% encapsulation efficiency and 5.1 wt% loading. The peroxidase activity of the microspheres was calculated and found to be approximately 0.0238 mM-1 min-1. pH-responsive release of the LE from CaCO3 was observed, suggesting potential biomedical and cosmetic applications in acidic environments. The hybrid LE microsphere treatment significantly alleviated melanin production in a dose-dependent manner and further downregulated the mRNA expression of MITF, tyrosinase, TYRP-1, and TYRP-2. These results indicate skin-whitening effects by inhibiting melanin without inducing cytotoxicity. The data provide the first evidence of the potential use of a LE for obtaining hybrid minerals and the effectiveness of biomineralization-based sustainable delivery of enzyme-based vehicles based on organelle-extract-assisted biomineralization.
Collapse
Affiliation(s)
- Ee Taek Hwang
- Department of Food Biotechnology, Dong-A University, Busan 49315, Republic of Korea.
| | - Yeahwa Yoon
- Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Ka Ram Kim
- GeneCellPharm Corporation, Seoul, 05836, Republic of Korea
| | - Chan Hee Lee
- Department of Food Biotechnology, Dong-A University, Busan 49315, Republic of Korea.
| | - Kyung Chan Jeon
- Division of Chemical Engineering, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Ji Ho Min
- Division of Chemical Engineering, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Jae Won Lee
- Korea Conformity Laboratories, Incheon, 21999, Republic of Korea
| | - Jangyong Kim
- Institute for Integrated Micro and Nano Systems (IMNS), The University of Edinburgh, Edinburgh EH9 3BF, UK
| |
Collapse
|
5
|
Jeon G, Choi H, Park DJ, Nguyen NT, Kim YH, Min J. Melanin Treatment Effect of Vacuoles-Zinc Oxide Nanoparticles Combined with Ascorbic Acid. Mol Biotechnol 2022:10.1007/s12033-022-00608-8. [PMID: 36445610 PMCID: PMC9707414 DOI: 10.1007/s12033-022-00608-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022]
Abstract
Currently, ascorbic acid (AA) is widely used as a skin whitening material, but, AA, an unstable hydrophilic molecule, cannot penetrate the skin easily, due to the hydrophobic character of the stratum corneum. Therefore, we conjugated AA with hydrated zinc oxide-an inorganic matrix with positive surface charge, to improve the stability of AA. The metal-conjugated-ascorbic acid (ZnAA) was then combined with yeast vacuole through the vacuolar membrane proteins that relate to metal transportation to create an enhanced vacuole that contained ZnAA. The characteristics of vacuole with ZnAA (ZnAA_Vac) were next examined by various tests that included X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Field emission scanning electron microscopy (FE-SEM), and energy-dispersive X-ray (EDX) analysis. Furthermore, the ability of ZnAA_Vac to degrade melanin was confirmed in both melanoma cell line B16F10, and the artificial human skin MelanoDerm. The results showed that ZnAA_Vac possessed a higher depigmenting effect than the wild-type vacuole or ascorbic acid by reducing 75% of melanin color. Interestingly, ZnAA_Vac was found to be harmless, and did not cause any cytotoxicity to the cells. Overall, ZnAA_Vac is expected to provide a robust, harmless, and effective whitening agent for the skin.
Collapse
Affiliation(s)
- Gyeongchan Jeon
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-Daero, Deokjin-Gu, Jeonju-Si, Jeollabuk-do 54896 Republic of Korea
| | - Hyojin Choi
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-Daero, Deokjin-Gu, Jeonju-Si, Jeollabuk-do 54896 Republic of Korea
| | - Dong-Jun Park
- Department of Surgery, University of California, San Diego, USA
| | - Ngoc-Tu Nguyen
- Center for Ecology and Environmental Toxicology (CEET), Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, Chungbuk-Do 28644 South Korea
| | - Yang-Hoon Kim
- Center for Ecology and Environmental Toxicology (CEET), Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, Chungbuk-Do 28644 South Korea
- School of Biological Science, Chungbuk National University, Chungdae-Ro 1, Seowon-Gu, Cheongju, Chungbuk-do 28644 Republic of Korea
| | - Jiho Min
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-Daero, Deokjin-Gu, Jeonju-Si, Jeollabuk-do 54896 Republic of Korea
| |
Collapse
|
6
|
Melanin decolorization by lysosome-related extract in Saccharomyces cerevisiae modified to overproduce glutathione peroxidase. Appl Microbiol Biotechnol 2021; 105:8715-8725. [PMID: 34724081 DOI: 10.1007/s00253-021-11643-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/05/2021] [Accepted: 10/10/2021] [Indexed: 10/20/2022]
Abstract
All eukaryotes have lysosomes that contain hydrolytic enzymes, such as protease, that degrade waste materials and cellular fragments. As a cellular organelle, lysosomes function as the digestive system of the cell, serving both to degrade material taken up from outside the cell and to digest obsolete components of the cell itself. In a previous study, melanin compounds were bleached using lysosome-related organelle extract (LOE) in which glutathione peroxidase (GPX) contributed decisively to melanin decolorization. In this study, Saccharomyces cerevisiae was engineered to overproduce GPX, which increases the melanin color reduction activity of LOE. In addition, the peroxidase activity of the recombinant yeast was measured for each compartment. In spite of the modification to overexpress the GPX protein, with the peroxidase activity of the lysosome fraction specifically higher, the overall peroxidase activity of the cells remained constant. The overexpression of GPX2 among the GPX present in S. cerevisiae increased both the melanin-decolorization activity and the peroxidase activity of LOE. These results indicate that the peroxidase activity is related to the melanin decomposition and antioxidant enzymes such as GPX. In an artificial skin tissue test, the LOE extracted from the recombinant yeast was efficient in reducing the melanin. These results confirmed the enzyme's ability to penetrate corneous tissue, and they suggest the possibility of further development as a new whitening cosmetic. KEY POINTS: • Modification of Saccharomyces cerevisiae to overexpress glutathione peroxidase (GPX). • The lysosome fraction of the recombinant strain enhanced the decolorizing function. • The LOE penetrates the skin barrier and works effectively on artificial skin tissue.
Collapse
|
7
|
Insights into health-promoting effects of Jew's ear (Auricularia auricula-judae). Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Letsiou S. Tracing skin aging process: a mini- review of in vitro approaches. Biogerontology 2021; 22:261-272. [PMID: 33721158 DOI: 10.1007/s10522-021-09916-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/04/2021] [Indexed: 12/25/2022]
Abstract
Skin is a rather complex, yet useful organ of our body. Besides, skin aging is a complicated process that gains a growing interest as mediates many molecular processes in our body. Thus, an efficient skin model is important to understand skin aging function as well as to develop an effective innovative product for skin aging treatment. In this mini review, we present in vitro methods for assessments of skin aging in an attempt to pinpoint basic molecular mechanisms behind this process achieving both a better understanding of aging function and an effective evaluation of potential products or ingredients that counteract aging. Specifically, this study presents in vitro assays such as 2D or 3D skin models, to evaluate skin aging-related processes such as skin moisturization, photoaging, wound healing, menopause, and skin microbiome as novel efforts in the designing of efficacy assessments in the development of skincare products.
Collapse
Affiliation(s)
- Sophia Letsiou
- Laboratory of Biochemistry, Research and Development Department, APIVITA S.A., Industrial Park of Markopoulo Mesogaias, Markopoulo Attiki, 19003, Athens, Greece.
| |
Collapse
|