1
|
Kamal R, Paul P, Diksha, Awasthi A. Exploring Gene Therapy: The Next Generation of Colorectal Cancer Treatment. Curr Gene Ther 2025; 25:195-198. [PMID: 40351072 DOI: 10.2174/0115665232326072240809061901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 05/14/2025]
Affiliation(s)
- Raj Kamal
- Department of Quality Assurance, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Priyanka Paul
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Diksha
- Department of Quality Assurance, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Ankit Awasthi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga-142001, Punjab, India
| |
Collapse
|
2
|
Babič D, Jovčevska I, Zottel A. B7-H3 in glioblastoma and beyond: significance and therapeutic strategies. Front Immunol 2024; 15:1495283. [PMID: 39664380 PMCID: PMC11632391 DOI: 10.3389/fimmu.2024.1495283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/06/2024] [Indexed: 12/13/2024] Open
Abstract
Cancer has emerged as the second most prevalent disease and the leading cause of death, claiming the lives of 10 million individuals each year. The predominant varieties of cancer encompass breast, lung, colon, rectal, and prostate cancers. Among the more aggressive malignancies is glioblastoma, categorized as WHO stage 4 brain cancer. Following diagnosis, the typical life expectancy ranges from 12 to 15 months, as current established treatments like surgical intervention, radiotherapy, and chemotherapy using temozolomide exhibit limited effectiveness. Beyond conventional approaches, the exploration of immunotherapy for glioblastoma treatment is underway. A methodology involves CAR-T cells, monoclonal antibodies, ADCC and nanobodies sourced from camelids. Immunotherapy's recent focal point is the cellular ligand B7-H3, notably abundant in tumor cells while either scarce or absent in normal ones. Its expression elevates with cancer progression and serves as a promising prognostic marker. In this article, we delve into the essence of B7-H3, elucidating its function and involvement in signaling pathways. We delineate the receptors it binds to and its significance in glioblastoma and other cancer types. Lastly, we examine its role in immunotherapy and the utilization of nanobodies in this domain.
Collapse
|
3
|
Raonić J, Ždralević M, Vučković L, Šunjević M, Todorović V, Vukmirović F, Marzano F, Tullo A, Giannattasio S, Radunović M. miR-29a expression negatively correlates with Bcl-2 levels in colorectal cancer and is correlated with better prognosis. Pathol Res Pract 2024; 262:155491. [PMID: 39126835 DOI: 10.1016/j.prp.2024.155491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/01/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that act as important regulators of gene expression, involved in various biological pathways. Aberrant miRNAs expression is associated with the onset and progression of colorectal cancer (CRC). The aim of this study was to investigate the correlation between five miRNAs (miR-29a, miR-101, miR-125b, miR-146a, and miR-155), found to be deregulated in tissue samples of CRC patients, and clinicopathological characteristics and histological markers. Analysis of histological markers was performed by immunohistochemical staining of tumour tissues with Ki-67, p53, CD34, and Bcl-2. Our findings revealed a significant negative correlation between miR-29a expression and Bcl-2 levels. Furthermore, high miR-29a expression was associated with a lower incidence of distant metastasis in CRC patients. We observed negative correlations between miR-101 expression and the number of lymph nodes with metastasis, as well as the size of the largest metastasis; miR-125b expression and lymphovascular invasion; and miR-155 expression and mucus presence. Our survival analysis demonstrated that high miR-29a expression correlated with better progression-free survival of CRC patients, underscoring its potential as a prognostic marker. Our study unveiled intricate relationships between specific miRNA expressions and clinicopathological features in CRC, highlighting the potential utility of miR-29a as a valuable prognostic biomarker.
Collapse
Affiliation(s)
- Janja Raonić
- University of Montenegro, Faculty of Medicine, Podgorica 81000, Montenegro; Clinical Centre of Montenegro, Podgorica 81000, Montenegro.
| | - Maša Ždralević
- University of Montenegro, Faculty of Medicine, Podgorica 81000, Montenegro
| | - Ljiljana Vučković
- University of Montenegro, Faculty of Medicine, Podgorica 81000, Montenegro; Clinical Centre of Montenegro, Podgorica 81000, Montenegro
| | - Milena Šunjević
- Clinical Centre of Vojvodina, Novi Sad 21000, Serbia; University of Novi Sad, Faculty of Medicine, Novi Sad 21000, Serbia
| | - Vladimir Todorović
- University of Montenegro, Faculty of Medicine, Podgorica 81000, Montenegro; Clinical Centre of Montenegro, Podgorica 81000, Montenegro
| | - Filip Vukmirović
- University of Montenegro, Faculty of Medicine, Podgorica 81000, Montenegro; Clinical Centre of Montenegro, Podgorica 81000, Montenegro
| | - Flaviana Marzano
- Institute for Biomembranes, Bioenergetics and Molecular biotechnologies, CNR, Bari 70126, Italy
| | - Apollonia Tullo
- Institute for Biomembranes, Bioenergetics and Molecular biotechnologies, CNR, Bari 70126, Italy
| | - Sergio Giannattasio
- Institute for Biomembranes, Bioenergetics and Molecular biotechnologies, CNR, Bari 70126, Italy
| | - Miodrag Radunović
- University of Montenegro, Faculty of Medicine, Podgorica 81000, Montenegro; Clinical Centre of Montenegro, Podgorica 81000, Montenegro
| |
Collapse
|
4
|
Varghese E, Samuel SM, Brockmueller A, Shakibaei M, Kubatka P, Büsselberg D. B7-H3 at the crossroads between tumor plasticity and colorectal cancer progression: a potential target for therapeutic intervention. Cancer Metastasis Rev 2024; 43:115-133. [PMID: 37768439 PMCID: PMC11016009 DOI: 10.1007/s10555-023-10137-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
B7-H3 (B7 homology 3 protein) is an important transmembrane immunoregulatory protein expressed in immune cells, antigen-presenting cells, and tumor cells. Studies reveal a multifaceted role of B7-H3 in tumor progression by modulating various cancer hallmarks involving angiogenesis, immune evasion, and tumor microenvironment, and it is also a promising candidate for cancer immunotherapy. In colorectal cancer (CRC), B7-H3 has been associated with various aspects of disease progression, such as evasion of tumor immune surveillance, tumor-node metastasis, and poor prognosis. Strategies to block or interfere with B7-H3 in its immunological and non-immunological functions are under investigation. In this study, we explore the role of B7-H3 in tumor plasticity, emphasizing tumor glucose metabolism, angiogenesis, epithelial-mesenchymal transition, cancer stem cells, apoptosis, and changing immune signatures in the tumor immune landscape. We discuss how B7-H3-induced tumor plasticity contributes to immune evasion, metastasis, and therapy resistance. Furthermore, we delve into the most recent advancements in targeting B7-H3-based tumor immunotherapy as a potential approach to CRC treatment.
Collapse
Affiliation(s)
- Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar
| | - Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, 80336, Munich, Germany
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, 80336, Munich, Germany
| | - Peter Kubatka
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01, Martin, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar.
| |
Collapse
|
5
|
Zhang D, Huang H, Gao X, Yu G, Zhang X, Jin H, Xu R, Wang Z, Zhang G. High expression of B7-H3 on monocyte/macrophages in tumor microenvironment promotes lung cancer progression by inhibiting apoptosis. Transl Oncol 2024; 41:101874. [PMID: 38262113 PMCID: PMC10832491 DOI: 10.1016/j.tranon.2023.101874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/03/2023] [Accepted: 12/22/2023] [Indexed: 01/25/2024] Open
Abstract
Monocyte/macrophages constitute a significant population of tumor-infiltrating immune cells and play a crucial role in tumor growth, invasion, and metastasis. B7-H3, has immune regulatory functions, however, it is unclear whether B7-H3 expressed on monocyte/macrophages plays a significance role in tumor progression. We found B7-H3 was high-expressed on monocyte/macrophages in tumor microenvironment compared with adjacent tissues in lung cancer, and its expression level was positively correlated with the number of monocyte/macrophages. Furthermore, the expression of B7-H3 was related to clinical stage and lymph node metastasis. Moreover, miR-29a-3p negatively regulated B7-H3, and the expression of B7-H3 on THP-1-derived macrophages was regulated by secreting exosomes containing miR-29a-3p. In addition, knockdown of B7-H3 promoted macrophage apoptosis under hypoxia. Mechanistically, B7-H3 enhanced the antiapoptotic ability of macrophage by up-regulating HIF-1ɑ via activating NF-κB. Taken together, these results imply that B7-H3 as a therapeutic target could hold promise for enhancing anti-tumor immune responses in individuals diagnosed with lung cancer.
Collapse
Affiliation(s)
- Dongze Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, China
| | - Haitao Huang
- Department of Thoracic surgery, The First Affiliated Hospital of Soochow University, China
| | - Xin Gao
- Department of Immunology, School of Biology and Basic Medical Sciences, Soochow University, China
| | - Gehua Yu
- Department of Immunology, School of Biology and Basic Medical Sciences, Soochow University, China
| | - Xueguang Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, China
| | - Haiyan Jin
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, China
| | - Ruyan Xu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, China
| | - Zhenxin Wang
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, China.
| | - Guangbo Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, China.
| |
Collapse
|
6
|
Chen R, Su F, Zhang T, Wu D, Yang J, Guan Q, Chai C. N6-methyladenosine modification of B7-H3 mRNA promotes the development and progression of colorectal cancer. iScience 2024; 27:108956. [PMID: 38318386 PMCID: PMC10839442 DOI: 10.1016/j.isci.2024.108956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/29/2023] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
B7-H3 is a common oncogene found in various cancer types. However, the molecular mechanisms underlying abnormal B7-H3 expression and colorectal cancer (CRC) progression need to be extensively explored. B7-H3 was upregulated in human CRC tissues and its abnormal expression was correlated with a poor prognosis in CRC patients. Notably, gain- and loss-of-function experiments revealed that B7-H3 knockdown substantially inhibited cell proliferation, migration, and invasion in vitro, whereas exogenous B7-H3 expression yielded contrasting results. In addition, silencing of B7-H3 inhibited tumor growth in a xenograft mouse model. Mechanistically, our study demonstrated that the N6-methyladenosine (m6A) binding protein YTHDF1 augmented B7-H3 expression in an m6A-dependent manner. Furthermore, rescue experiments demonstrated that reintroduction of B7-H3 considerably abolished the inhibitory effects on cell proliferation and invasion induced by silencing YTHDF1. Our results suggest that the YTHDF1-m6A-B7-H3 axis is crucial for CRC development and progression and may represent a potential therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Rui Chen
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Fei Su
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Tao Zhang
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Dongjin Wu
- People’s Hospital of Suzhou New District, Suzhou, Jiangsu 215000, P.R. China
| | - Jingru Yang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Quanlin Guan
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
- Department of Oncology Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Chen Chai
- People’s Hospital of Suzhou New District, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
7
|
Koumprentziotis IA, Theocharopoulos C, Foteinou D, Angeli E, Anastasopoulou A, Gogas H, Ziogas DC. New Emerging Targets in Cancer Immunotherapy: The Role of B7-H3. Vaccines (Basel) 2024; 12:54. [PMID: 38250867 PMCID: PMC10820813 DOI: 10.3390/vaccines12010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Immune checkpoints (ICs) are molecules implicated in the fine-tuning of immune response via co-inhibitory or co-stimulatory signals, and serve to secure minimized host damage. Targeting ICs with various therapeutic modalities, including checkpoint inhibitors/monoclonal antibodies (mAbs), antibody-drug conjugates (ADCs), and CAR-T cells has produced remarkable results, especially in immunogenic tumors, setting a paradigm shift in cancer therapeutics through the incorporation of these IC-targeted treatments. However, the large proportion of subjects who experience primary or secondary resistance to available IC-targeted options necessitates further advancements that render immunotherapy beneficial for a larger patient pool with longer duration of response. B7-H3 (B7 Homolog 3 Protein, CD276) is a member of the B7 family of IC proteins that exerts pleiotropic immunomodulatory effects both in physiologic and pathologic contexts. Mounting evidence has demonstrated an aberrant expression of B7-H3 in various solid malignancies, including tumors less sensitive to current immunotherapeutic options, and has associated its expression with advanced disease, worse patient survival and impaired response to IC-based regimens. Anti-B7-H3 agents, including novel mAbs, bispecific antibodies, ADCs, CAR-T cells, and radioimmunotherapy agents, have exhibited encouraging antitumor activity in preclinical models and have recently entered clinical testing for several cancer types. In the present review, we concisely present the functional implications of B7-H3 and discuss the latest evidence regarding its prognostic significance and therapeutic potential in solid malignancies, with emphasis on anti-B7-H3 modalities that are currently evaluated in clinical trial settings. Better understanding of B7-H3 intricate interactions in the tumor microenvironment will expand the oncological utility of anti-B7-H3 agents and further shape their role in cancer therapeutics.
Collapse
|
8
|
Osei GY, Adu-Amankwaah J, Koomson S, Beletaa S, Asiamah EA, Smith-Togobo C, Razak SRA. MicroRNAs and colorectal cancer: clinical potential and regulatory networks. Mol Biol Rep 2023; 50:9575-9585. [PMID: 37776413 DOI: 10.1007/s11033-023-08810-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/08/2023] [Indexed: 10/02/2023]
Abstract
Colorectal cancer (CRC) is a serious global health concern, with a high incidence and mortality rate. Although there have been advancements in the early detection and treatment of CRC, therapy resistance is common. MicroRNAs (miRNAs), a type of small non-coding RNA that regulates gene expression, are key players in the initiation and progression of CRC. Recently, there has been growing attention to the complex interplay of miRNAs in cancer development. miRNAs are powerful RNA molecules that regulate gene expression and have been implicated in various physiological and pathological processes, including carcinogenesis. By identifying current challenges and limitations of treatment strategies and suggesting future research directions, this review aims to contribute to ongoing efforts to enhance CRC diagnosis and treatment. It also provides a comprehensive overview of the role miRNAs play in CRC carcinogenesis and explores the potential of miRNA-based therapies as a treatment option. Importantly, this review highlights the exciting potential of targeted modulation of miRNA function as a therapeutic approach for CRC.
Collapse
Affiliation(s)
- George Yiadom Osei
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang, 13200, Malaysia
- Department of Medical Laboratory Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana
| | - Joseph Adu-Amankwaah
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Selina Koomson
- Department of Medical Laboratory Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana
| | - Solomon Beletaa
- Department of Medical Laboratory Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana
| | - Emmanuel Akomanin Asiamah
- Department of Medical Laboratory Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana
- Discipline of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, 4001, South Africa
- Cancer and Infectious Diseases Epidemiology Research Unit (CIDERU), College of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Cecilia Smith-Togobo
- Department of Medical Laboratory Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana
| | - Siti Razila Abdul Razak
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang, 13200, Malaysia.
| |
Collapse
|
9
|
Ždralević M, Raonić J, Popovic N, Vučković L, Rovčanin Dragović I, Vukčević B, Todorović V, Vukmirović F, Marzano F, Tullo A, Guaragnella N, Giannattasio S, Radunović M. The role of miRNA in colorectal cancer diagnosis: A pilot study. Oncol Lett 2023; 25:267. [PMID: 37216163 PMCID: PMC10193376 DOI: 10.3892/ol.2023.13853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
Despite recent advances in diagnosis and treatment, colorectal cancer (CRC) remains the third most common cancer worldwide, and has both a poor prognosis and a high recurrence rate, thus indicating the need for new, sensitive and specific biomarkers. MicroRNAs (miRNAs/miRs) are important regulators of gene expression, which are involved in numerous biological processes implicated in tumorigenesis. The objective of the present study was to investigate the expression of miRNAs in plasma and tissue samples from patients with CRC, and to examine their potential as CRC biomarkers. Using reverse transcription-quantitative PCR, it was revealed that miR-29a, miR-101, miR-125b, miR-146a and miR-155 were dysregulated in the formalin-fixed paraffin-embedded tissues of patients with CRC, compared with the surrounding healthy tissue, and these miRNAs were associated with several pathological features of the tumor. Bioinformatics analysis of overlapping target genes identified AGE-RAGE signaling as a putative joint regulatory pathway. miR-146a was also upregulated in the plasma of patients with CRC, compared with the healthy control group, and had a fair discriminatory power (area under the curve, 0.7006), with 66.7% sensitivity and 77.8% specificity. To the best of our knowledge, this distinct five-miRNA deregulation pattern in tumor tissue, and upregulation of plasma miR-146a, were shown for the first time in patients with CRC; however, studies on larger patient cohorts are warranted to confirm their potential to be used as CRC diagnostic biomarkers.
Collapse
Affiliation(s)
- Maša Ždralević
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
| | - Janja Raonić
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
- Center for Pathology, Clinical Center of Montenegro, 81000 Podgorica, Montenegro
| | - Natasa Popovic
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
| | - Ljiljana Vučković
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
- Center for Pathology, Clinical Center of Montenegro, 81000 Podgorica, Montenegro
| | | | - Batrić Vukčević
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
- Center for Digestive Surgery, Clinical Center of Montenegro, 81000 Podgorica, Montenegro
| | - Vladimir Todorović
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
- Institute for Oncology, Clinical Center of Montenegro, 81000 Podgorica, Montenegro
| | - Filip Vukmirović
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
- Center for Pathology, Clinical Center of Montenegro, 81000 Podgorica, Montenegro
| | - Flaviana Marzano
- Institute for Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, I-70126 Bari, Italy
| | - Apollonia Tullo
- Institute for Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, I-70126 Bari, Italy
| | - Nicoletta Guaragnella
- Department of Biosciences, Biotechnologies and Environment, University of Bari ‘Aldo Moro’, I-70126 Bari, Italy
| | - Sergio Giannattasio
- Institute for Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, I-70126 Bari, Italy
| | - Miodrag Radunović
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
- Center for Digestive Surgery, Clinical Center of Montenegro, 81000 Podgorica, Montenegro
| |
Collapse
|
10
|
Rasic P, Jeremic M, Jeremic R, Dusanovic Pjevic M, Rasic M, Djuricic SM, Milickovic M, Vukadin M, Mijovic T, Savic D. Targeting B7-H3-A Novel Strategy for the Design of Anticancer Agents for Extracranial Pediatric Solid Tumors Treatment. Molecules 2023; 28:molecules28083356. [PMID: 37110590 PMCID: PMC10145344 DOI: 10.3390/molecules28083356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Recent scientific data recognize the B7-H3 checkpoint molecule as a potential target for immunotherapy of pediatric solid tumors (PSTs). B7-H3 is highly expressed in extracranial PSTs such as neuroblastoma, rhabdomyosarcoma, nephroblastoma, osteosarcoma, and Ewing sarcoma, whereas its expression is absent or very low in normal tissues and organs. The influence of B7-H3 on the biological behavior of malignant solid neoplasms of childhood is expressed through different molecular mechanisms, including stimulation of immune evasion and tumor invasion, and cell-cycle disruption. It has been shown that B7-H3 knockdown decreased tumor cell proliferation and migration, suppressed tumor growth, and enhanced anti-tumor immune response in some pediatric solid cancers. Antibody-drug conjugates targeting B7-H3 exhibited profound anti-tumor effects against preclinical models of pediatric solid malignancies. Moreover, B7-H3-targeting chimeric antigen receptor (CAR)-T cells demonstrated significant in vivo activity against different xenograft models of neuroblastoma, Ewing sarcoma, and osteosarcoma. Finally, clinical studies demonstrated the potent anti-tumor activity of B7-H3-targeting antibody-radioimmunoconjugates in metastatic neuroblastoma. This review summarizes the established data from various PST-related studies, including in vitro, in vivo, and clinical research, and explains all the benefits and potential obstacles of targeting B7-H3 by novel immunotherapeutic agents designed to treat malignant extracranial solid tumors of childhood.
Collapse
Affiliation(s)
- Petar Rasic
- Department of Abdominal Surgery, Mother and Child Health Care Institute of Serbia "Dr. Vukan Cupic", 11000 Belgrade, Serbia
| | - Marija Jeremic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Rada Jeremic
- Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Marija Dusanovic Pjevic
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Milica Rasic
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Slavisa M Djuricic
- Department of Clinical Pathology, Mother and Child Health Care Institute of Serbia "Dr. Vukan Cupic", 11000 Belgrade, Serbia
- Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina
| | - Maja Milickovic
- Department of Abdominal Surgery, Mother and Child Health Care Institute of Serbia "Dr. Vukan Cupic", 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Miroslav Vukadin
- Department of Abdominal Surgery, Mother and Child Health Care Institute of Serbia "Dr. Vukan Cupic", 11000 Belgrade, Serbia
| | - Tanja Mijovic
- Department of Abdominal Surgery, Mother and Child Health Care Institute of Serbia "Dr. Vukan Cupic", 11000 Belgrade, Serbia
| | - Djordje Savic
- Department of Abdominal Surgery, Mother and Child Health Care Institute of Serbia "Dr. Vukan Cupic", 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
11
|
Farc O, Budisan L, Berindan-Neagoe I, Braicu C, Zanoaga O, Zaharie F, Cristea V. A Group of Tumor-Suppressive micro-RNAs Changes Expression Coordinately in Colon Cancer. Curr Issues Mol Biol 2023; 45:975-989. [PMID: 36826008 PMCID: PMC9955927 DOI: 10.3390/cimb45020063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
MicroRNAs (miRNAs) are molecules with a role in the post-transcriptional regulation of messenger RNA, being involved in a wide range of biological and pathological processes. In the present study, we aim to characterize the behavior of a few miRNAs with roles in the cell cycle and differentiation of colon cancer (CC) cells. The present work considers miRNAs as reflections of the complex cellular processes in which they are generated, their observed variations being used to characterize the molecular networks in which they are part and through which cell proliferation is achieved. Tumoral and adjacent normal tissue samples were obtained from 40 CC patients, and the expression of miR-29a, miR-146a, miR-215 and miR-449 were determined by qRT-PCR analysis. Subsequent bioinformatic analysis was performed to highlight the transcription factors (TFs) network that regulate the miRNAs and functionally characterizes this network. There was a significant decrease in the expression of all miRNAs in tumor tissue. All miRNAs were positively correlated with each other. The analysis of the TF network showed tightly connected functional modules related to the cell cycle and associated processes. The four miRNAs are downregulated in CC; they are strongly correlated, showing coherence within the cellular network that regulates them and highlighting possible approach strategies.
Collapse
Affiliation(s)
- Ovidiu Farc
- Immunology Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Liviuta Budisan
- Research Center for Functional Genomics, Biomedicine and Translational Medicine “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Oana Zanoaga
- Research Center for Functional Genomics, Biomedicine and Translational Medicine “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Florin Zaharie
- Surgical Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Victor Cristea
- Immunology Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| |
Collapse
|
12
|
Mo WY, Cao SQ. MiR-29a-3p: a potential biomarker and therapeutic target in colorectal cancer. Clin Transl Oncol 2023; 25:563-577. [PMID: 36355327 PMCID: PMC9941256 DOI: 10.1007/s12094-022-02978-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/07/2022] [Indexed: 11/11/2022]
Abstract
Cancer is frequently caused by microRNAs, which control post-transcriptional levels of gene expression by binding to target mRNAs. MiR-29a-3p has recently been shown to play a twofold function in the majority of malignancies, including colorectal cancer (CRC), according to mounting evidence. Here, we not only briefly summarize such connection between miR-29a-3p and cancers, but aslo primarily evaluate the miR-29a-3p expression pattern, clinical applicability, and molecular mechanisms in CRC to provide a guide for future studies. This review established the diagnostic and prognostic value of miR-29a-3p abnormalty in a variety of clinical samples for CRC. Furthermore, current molecular mechanisms of miR-29a-3p for regulating cancerous biological processes such growth, invasion, metastasis, the epithelial-mesenchymal transformation process, and immunomodulation through its upstream regulatory factors and downstream targeted genes were briefly explored. More specifically, miR-29a-3p has been linked to a few medications that have been shown to have anticancer benefits. To sum up, miR-29a-3p is a promising biomarker and prospective therapeutic target for the diagnosis and prognosis of CRC, but further research is still needed to establish a theoretical basis for more practical applications.
Collapse
Affiliation(s)
- Wen-Yan Mo
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430077, Hubei, China
| | - Shi-Qiong Cao
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430077, Hubei, China.
| |
Collapse
|
13
|
The Features of Immune Checkpoint Gene Regulation by microRNA in Cancer. Int J Mol Sci 2022; 23:ijms23169324. [PMID: 36012588 PMCID: PMC9409052 DOI: 10.3390/ijms23169324] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 02/06/2023] Open
Abstract
Currently, the search for new promising tools of immunotherapy continues. In this regard, microRNAs (miRNAs) that influence immune checkpoint (IC) gene expression in tumor and T-cells and may be important regulators of immune cells are considered. MiRNAs regulate gene expression by blocking mRNA translation. An important feature of miRNA is its ability to affect the expression of several genes simultaneously, which corresponds to the trend toward the use of combination therapy. The article provides a list of miRNAs acting simultaneously on several ICs and miRNAs that, in addition to IC, can regulate the expression of targeted therapy genes. There is dependence of miRNA interactions with IC genes on the type of cancer. The analysis of the accumulated data demonstrates that only about 14% (95% CI: 9.8–20.1%) of the studied miRNAs regulate the expression of specific IC in more than one type of cancer. That is, there is tumor specificity in the miRNA action on ICs. A number of miRNAs demonstrated high efficiency in vitro and in vivo. This indicates the potential of miRNAs as promising agents for cancer immunotherapy. Additional studies of the miRNA–gene interaction features and the search for an optimal miRNA mimic structure are necessary.
Collapse
|
14
|
Li G, Fang T, Zhang Y, Liang C, Xiao Q, Luo J. Predicting miRNA-disease associations based on graph attention network with multi-source information. BMC Bioinformatics 2022; 23:244. [PMID: 35729531 PMCID: PMC9215044 DOI: 10.1186/s12859-022-04796-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is a growing body of evidence from biological experiments suggesting that microRNAs (miRNAs) play a significant regulatory role in both diverse cellular activities and pathological processes. Exploring miRNA-disease associations not only can decipher pathogenic mechanisms but also provide treatment solutions for diseases. As it is inefficient to identify undiscovered relationships between diseases and miRNAs using biotechnology, an explosion of computational methods have been advanced. However, the prediction accuracy of existing models is hampered by the sparsity of known association network and single-category feature, which is hard to model the complicated relationships between diseases and miRNAs. RESULTS In this study, we advance a new computational framework (GATMDA) to discover unknown miRNA-disease associations based on graph attention network with multi-source information, which effectively fuses linear and non-linear features. In our method, the linear features of diseases and miRNAs are constructed by disease-lncRNA correlation profiles and miRNA-lncRNA correlation profiles, respectively. Then, the graph attention network is employed to extract the non-linear features of diseases and miRNAs by aggregating information of each neighbor with different weights. Finally, the random forest algorithm is applied to infer the disease-miRNA correlation pairs through fusing linear and non-linear features of diseases and miRNAs. As a result, GATMDA achieves impressive performance: an average AUC of 0.9566 with five-fold cross validation, which is superior to other previous models. In addition, case studies conducted on breast cancer, colon cancer and lymphoma indicate that 50, 50 and 48 out of the top fifty prioritized candidates are verified by biological experiments. CONCLUSIONS The extensive experimental results justify the accuracy and utility of GATMDA and we could anticipate that it may regard as a utility tool for identifying unobserved disease-miRNA relationships.
Collapse
Affiliation(s)
- Guanghui Li
- School of Information Engineering, East China Jiaotong University, Nanchang, China.
| | - Tao Fang
- School of Information Engineering, East China Jiaotong University, Nanchang, China
| | - Yuejin Zhang
- School of Information Engineering, East China Jiaotong University, Nanchang, China
| | - Cheng Liang
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Qiu Xiao
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Jiawei Luo
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China.
| |
Collapse
|
15
|
Yang M, Chen W, Liu H, Yu L, Tang M, Liu Y. Long Non-coding RNA CBR3 Antisense RNA 1 is Downregulated in Colorectal Cancer and Inhibits miR-29a-Mediated Cell Migration and Invasion. Mol Biotechnol 2022; 64:773-779. [PMID: 35107754 DOI: 10.1007/s12033-021-00444-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/24/2021] [Indexed: 01/07/2023]
Abstract
Although CBR3 Antisense RNA 1 (CBR3-AS1) has been characterized as an oncogenic long non-coding RNA (lncRNA) in several cancers, a recent study reported the downregulation of CBR3-AS1 in colorectal cancer (CRC). Therefore, we analyzed its role in CRC. CBR3-AS1 and microRNA-29a (miR-29a) expression in tissue samples from CRC patients were analyzed by RT-qPCR. The interaction between CBR3-AS1 and miR-29a was predicted by IntaRNA and validated by RNA pull-down assay. The location of CBR3-AS1 was analyzed by nuclear fractionation assay. CBR3-AS1 overexpression was performed to analyze its role in miR-29a expression. The roles of CBR3-AS1 and miR-29a in CRC cell migration and invasion were analyzed by Transwell assay. CBR3-AS1 was downregulated, and miR-29a was upregulated in CRC. CBR3-AS1 and miR-29a directly interacted with each other. CBR3-AS1 was localized in both nucleus and cytoplasm fractions. CBR3-AS1 overexpression failed to alter miR-29a expression but reduced its enhancing effects on cell invasion and migration. CBR3-AS1 is downregulated in CRC and inhibits miR-29a-mediated cell migration and invasion by sponging miR-29a.
Collapse
Affiliation(s)
- Mei Yang
- Department of Gastroenterology, EZhou Central Hospital, No. 9, Wenxing Road, Echeng District, Ezhou, 436000, Hubei, People's Republic of China
| | - Wenxi Chen
- Department of Gastroenterology, EZhou Central Hospital, No. 9, Wenxing Road, Echeng District, Ezhou, 436000, Hubei, People's Republic of China.
| | - Haojie Liu
- Department of Gastroenterology, EZhou Central Hospital, No. 9, Wenxing Road, Echeng District, Ezhou, 436000, Hubei, People's Republic of China
| | - Liang Yu
- Department of Gastroenterology, EZhou Central Hospital, No. 9, Wenxing Road, Echeng District, Ezhou, 436000, Hubei, People's Republic of China
| | - Mingwu Tang
- Department of Gastroenterology, EZhou Central Hospital, No. 9, Wenxing Road, Echeng District, Ezhou, 436000, Hubei, People's Republic of China
| | - Yinghui Liu
- Department of Gastroenterology, EZhou Central Hospital, No. 9, Wenxing Road, Echeng District, Ezhou, 436000, Hubei, People's Republic of China
| |
Collapse
|