1
|
Ravel-Godreuil C, Roy ER, Puttapaka SN, Li S, Wang Y, Yuan X, Eltzschig HK, Cao W. Transcriptional Responses of Different Brain Cell Types to Oxygen Decline. Brain Sci 2024; 14:341. [PMID: 38671993 PMCID: PMC11048388 DOI: 10.3390/brainsci14040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Brain hypoxia is associated with a wide range of physiological and clinical conditions. Although oxygen is an essential constituent of maintaining brain functions, our understanding of how specific brain cell types globally respond and adapt to decreasing oxygen conditions is incomplete. In this study, we exposed mouse primary neurons, astrocytes, and microglia to normoxia and two hypoxic conditions and obtained genome-wide transcriptional profiles of the treated cells. Analysis of differentially expressed genes under conditions of reduced oxygen revealed a canonical hypoxic response shared among different brain cell types. In addition, we observed a higher sensitivity of neurons to oxygen decline, and dissected cell type-specific biological processes affected by hypoxia. Importantly, this study establishes novel gene modules associated with brain cells responding to oxygen deprivation and reveals a state of profound stress incurred by hypoxia.
Collapse
Affiliation(s)
- Camille Ravel-Godreuil
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (C.R.-G.); (E.R.R.); (S.N.P.); (S.L.); (Y.W.); (X.Y.); (H.K.E.)
| | - Ethan R. Roy
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (C.R.-G.); (E.R.R.); (S.N.P.); (S.L.); (Y.W.); (X.Y.); (H.K.E.)
| | - Srinivas N. Puttapaka
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (C.R.-G.); (E.R.R.); (S.N.P.); (S.L.); (Y.W.); (X.Y.); (H.K.E.)
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Sanming Li
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (C.R.-G.); (E.R.R.); (S.N.P.); (S.L.); (Y.W.); (X.Y.); (H.K.E.)
| | - Yanyu Wang
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (C.R.-G.); (E.R.R.); (S.N.P.); (S.L.); (Y.W.); (X.Y.); (H.K.E.)
| | - Xiaoyi Yuan
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (C.R.-G.); (E.R.R.); (S.N.P.); (S.L.); (Y.W.); (X.Y.); (H.K.E.)
| | - Holger K. Eltzschig
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (C.R.-G.); (E.R.R.); (S.N.P.); (S.L.); (Y.W.); (X.Y.); (H.K.E.)
| | - Wei Cao
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (C.R.-G.); (E.R.R.); (S.N.P.); (S.L.); (Y.W.); (X.Y.); (H.K.E.)
| |
Collapse
|
2
|
Martens GA, Geßner C, Osterhof C, Hankeln T, Burmester T. Transcriptomes of Clusterin- and S100B-transfected neuronal cells elucidate protective mechanisms against hypoxia and oxidative stress in the hooded seal (Cystophora cristata) brain. BMC Neurosci 2022; 23:59. [PMID: 36243678 PMCID: PMC9571494 DOI: 10.1186/s12868-022-00744-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The hooded seal (Cystophora cristata) exhibits impressive diving skills and can tolerate extended durations of asphyxia, hypoxia and oxidative stress, without suffering from irreversible neuronal damage. Thus, when exposed to hypoxia in vitro, neurons of fresh cortical and hippocampal tissue from hooded seals maintained their membrane potential 4-5 times longer than neurons of mice. We aimed to identify the molecular mechanisms underlying the intrinsic neuronal hypoxia tolerance. Previous comparative transcriptomics of the visual cortex have revealed that S100B and clusterin (apolipoprotein J), two stress proteins that are involved in neurological disorders characterized by hypoxic conditions, have a remarkably high expression in hooded seals compared to ferrets. When overexpressed in murine neuronal cells (HN33), S100B and clusterin had neuroprotective effects when cells were exposed to hypoxia. However, their specific roles in hypoxia have remained largely unknown. METHODS In order to shed light on potential molecular pathways or interaction partners, we exposed HN33 cells transfected with either S100B, soluble clusterin (sCLU) or nuclear clusterin (nCLU) to normoxia, hypoxia and oxidative stress for 24 h. We then determined cell viability and compared the transcriptomes of transfected cells to control cells. Potential pathways and upstream regulators were identified via Gene Ontology (GO) and Ingenuity Pathway Analysis (IPA). RESULTS HN33 cells transfected with sCLU and S100B demonstrated improved glycolytic capacity and reduced aerobic respiration at normoxic conditions. Additionally, sCLU appeared to enhance pathways for cellular homeostasis to counteract stress-induced aggregation of proteins. S100B-transfected cells sustained lowered energy-intensive synaptic signaling. In response to hypoxia, hypoxia-inducible factor (HIF) pathways were considerably elevated in nCLU- and sCLU-transfected cells. In a previous study, S100B and sCLU decreased the amount of reactive oxygen species and lipid peroxidation in HN33 cells in response to oxidative stress, but in the present study, these functional effects were not mirrored in gene expression changes. CONCLUSIONS sCLU and S100B overexpression increased neuronal survival by decreasing aerobic metabolism and synaptic signaling in advance to hypoxia and oxidative stress conditions, possibly to reduce energy expenditure and the build-up of deleterious reactive oxygen species (ROS). Thus, a high expression of CLU isoforms and S100B is likely beneficial during hypoxic conditions.
Collapse
Affiliation(s)
- Gerrit A Martens
- Institute of Animal Cell and Systems Biology, Biocenter Grindel, University of Hamburg, 20146, Hamburg, Germany.
| | - Cornelia Geßner
- Institute of Animal Cell and Systems Biology, Biocenter Grindel, University of Hamburg, 20146, Hamburg, Germany
| | - Carina Osterhof
- Institute of Organismic and Molecular Evolution, Molecular Genetics & Genome Analysis, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution, Molecular Genetics & Genome Analysis, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Thorsten Burmester
- Institute of Animal Cell and Systems Biology, Biocenter Grindel, University of Hamburg, 20146, Hamburg, Germany
| |
Collapse
|
3
|
Fame RM, Lehtinen MK. Mitochondria in Early Forebrain Development: From Neurulation to Mid-Corticogenesis. Front Cell Dev Biol 2021; 9:780207. [PMID: 34888312 PMCID: PMC8650308 DOI: 10.3389/fcell.2021.780207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/10/2021] [Indexed: 01/07/2023] Open
Abstract
Function of the mature central nervous system (CNS) requires a substantial proportion of the body’s energy consumption. During development, the CNS anlage must maintain its structure and perform stage-specific functions as it proceeds through discrete developmental stages. While key extrinsic signals and internal transcriptional controls over these processes are well appreciated, metabolic and mitochondrial states are also critical to appropriate forebrain development. Specifically, metabolic state, mitochondrial function, and mitochondrial dynamics/localization play critical roles in neurulation and CNS progenitor specification, progenitor proliferation and survival, neurogenesis, neural migration, and neurite outgrowth and synaptogenesis. With the goal of integrating neurodevelopmental biologists and mitochondrial specialists, this review synthesizes data from disparate models and processes to compile and highlight key roles of mitochondria in the early development of the CNS with specific focus on forebrain development and corticogenesis.
Collapse
Affiliation(s)
- Ryann M Fame
- Department of Pathology, Boston Children's Hospital, Boston, MA, United States
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
4
|
Page NF, Gandal MJ, Estes ML, Cameron S, Buth J, Parhami S, Ramaswami G, Murray K, Amaral DG, Van de Water JA, Schumann CM, Carter CS, Bauman MD, McAllister AK, Geschwind DH. Alterations in Retrotransposition, Synaptic Connectivity, and Myelination Implicated by Transcriptomic Changes Following Maternal Immune Activation in Nonhuman Primates. Biol Psychiatry 2021; 89:896-910. [PMID: 33386132 PMCID: PMC8052273 DOI: 10.1016/j.biopsych.2020.10.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Maternal immune activation (MIA) is a proposed risk factor for multiple neuropsychiatric disorders, including schizophrenia. However, the molecular mechanisms through which MIA imparts risk remain poorly understood. A recently developed nonhuman primate model of exposure to the viral mimic poly:ICLC during pregnancy shows abnormal social and repetitive behaviors and elevated striatal dopamine, a molecular hallmark of human psychosis, providing an unprecedented opportunity for studying underlying molecular correlates. METHODS We performed RNA sequencing across psychiatrically relevant brain regions (prefrontal cortex, anterior cingulate, hippocampus) and primary visual cortex for comparison from 3.5- to 4-year-old male MIA-exposed and control offspring-an age comparable to mid adolescence in humans. RESULTS We identify 266 unique genes differentially expressed in at least one brain region, with the greatest number observed in hippocampus. Co-expression networks identified region-specific alterations in synaptic signaling and oligodendrocytes. Although we observed temporal and regional differences, transcriptomic changes were shared across first- and second-trimester exposures, including for the top differentially expressed genes-PIWIL2 and MGARP. In addition to PIWIL2, several other regulators of retrotransposition and endogenous transposable elements were dysregulated following MIA, potentially connecting MIA to retrotransposition. CONCLUSIONS Together, these results begin to elucidate the brain-level molecular processes through which MIA may impart risk for psychiatric disease.
Collapse
Affiliation(s)
- Nicholas F Page
- Department of Psychiatry, Center for Autism Research and Treatment, Los Angeles, California; Department of Cell Biology and Neuroscience, Rutgers University-New Brunswick, Piscataway, New Jersey
| | - Michael J Gandal
- Department of Psychiatry, Center for Autism Research and Treatment, Los Angeles, California
| | - Myka L Estes
- Center for Neuroscience, School of Medicine, University of California, Davis, Davis, California
| | - Scott Cameron
- Center for Neuroscience, School of Medicine, University of California, Davis, Davis, California
| | - Jessie Buth
- Department of Psychiatry, Center for Autism Research and Treatment, Los Angeles, California; Program in Neurobehavioral Genetics, Center for Autism Research and Treatment, Los Angeles, California
| | - Sepideh Parhami
- Department of Psychiatry, Center for Autism Research and Treatment, Los Angeles, California; Program in Neurobehavioral Genetics, Center for Autism Research and Treatment, Los Angeles, California
| | - Gokul Ramaswami
- Department of Psychiatry, Center for Autism Research and Treatment, Los Angeles, California; Program in Neurobehavioral Genetics, Center for Autism Research and Treatment, Los Angeles, California
| | - Karl Murray
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, California
| | - David G Amaral
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, California
| | - Judy A Van de Water
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, California
| | - Cynthia M Schumann
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, California
| | - Cameron S Carter
- Center for Neuroscience, School of Medicine, University of California, Davis, Davis, California; Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, California
| | - Melissa D Bauman
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, California
| | - A Kimberley McAllister
- Center for Neuroscience, School of Medicine, University of California, Davis, Davis, California; Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, California
| | - Daniel H Geschwind
- Department of Psychiatry, Center for Autism Research and Treatment, Los Angeles, California; Program in Neurobehavioral Genetics, Center for Autism Research and Treatment, Los Angeles, California; Department of Neurology, Center for Autism Research and Treatment, Los Angeles, California; Department of Human Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
5
|
Akkaya C, Atak D, Kamacioglu A, Akarlar BA, Guner G, Bayam E, Taskin AC, Ozlu N, Ince-Dunn G. Roles of developmentally regulated KIF2A alternative isoforms in cortical neuron migration and differentiation. Development 2021; 148:dev.192674. [PMID: 33531432 DOI: 10.1242/dev.192674] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/18/2021] [Indexed: 11/20/2022]
Abstract
KIF2A is a kinesin motor protein with essential roles in neural progenitor division and axonal pruning during brain development. However, how different KIF2A alternative isoforms function during development of the cerebral cortex is not known. Here, we focus on three Kif2a isoforms expressed in the developing cortex. We show that Kif2a is essential for dendritic arborization in mice and that the functions of all three isoforms are sufficient for this process. Interestingly, only two of the isoforms can sustain radial migration of cortical neurons; a third isoform, lacking a key N-terminal region, is ineffective. By proximity-based interactome mapping for individual isoforms, we identify previously known KIF2A interactors, proteins localized to the mitotic spindle poles and, unexpectedly, also translation factors, ribonucleoproteins and proteins that are targeted to organelles, prominently to the mitochondria. In addition, we show that a KIF2A mutation, which causes brain malformations in humans, has extensive changes to its proximity-based interactome, with depletion of mitochondrial proteins identified in the wild-type KIF2A interactome. Our data raises new insights about the importance of alternative splice variants during brain development.
Collapse
Affiliation(s)
- Cansu Akkaya
- Department of Molecular Biology and Genetics, Koç University, 34450 Istanbul, Turkey
| | - Dila Atak
- Department of Molecular Biology and Genetics, Koç University, 34450 Istanbul, Turkey
| | - Altug Kamacioglu
- Department of Molecular Biology and Genetics, Koç University, 34450 Istanbul, Turkey
| | - Busra Aytul Akarlar
- Department of Molecular Biology and Genetics, Koç University, 34450 Istanbul, Turkey
| | - Gokhan Guner
- Department of Molecular Biology and Genetics, Koç University, 34450 Istanbul, Turkey
| | - Efil Bayam
- Department of Molecular Biology and Genetics, Koç University, 34450 Istanbul, Turkey
| | - Ali Cihan Taskin
- Embryo Manipulation Laboratory, Animal Research Facility, Translational Medicine Research Center, Koç University, 34450 Istanbul, Turkey
| | - Nurhan Ozlu
- Department of Molecular Biology and Genetics, Koç University, 34450 Istanbul, Turkey
| | - Gulayse Ince-Dunn
- Department of Molecular Biology and Genetics, Koç University, 34450 Istanbul, Turkey .,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| |
Collapse
|
6
|
Fan W, Song Y, Ren Z, Cheng X, Li P, Song H, Jia L. Glioma cells are resistant to inflammation‑induced alterations of mitochondrial dynamics. Int J Oncol 2020; 57:1293-1306. [PMID: 33174046 PMCID: PMC7646598 DOI: 10.3892/ijo.2020.5134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/24/2020] [Indexed: 12/18/2022] Open
Abstract
Accumulating evidence suggests that inflammation is present in solid tumors. However, it is poorly understood whether inflammation exists in glioma and how it affects the metabolic signature of glioma. By analyzing immunohistochemical data and gene expression data downloaded from bioinformatic datasets, the present study revealed an accumulation of inflammatory cells in glioma, activation of microglia, upregulation of proinflammatory factors (including IL-6, IL-8, hypoxia-inducible factor-1α, STAT3, NF-κB1 and NF-κB2), destruction of mitochondrial structure and altered expression levels of electron transfer chain complexes and metabolic enzymes. By monitoring glioma cells following proinflammatory stimulation, the current study observed a remodeling of their mitochondrial network via mitochondrial fission. More than half of the mitochondria presented ring-shaped or spherical morphologies. Transmission electron microscopic analyses revealed mitochondrial swelling with partial or total cristolysis. Furthermore, proinflammatory stimuli resulted in increased generation of reactive oxygen species, decreased mitochondrial membrane potential and reprogrammed metabolism. The defective mitochondria were not eliminated via mitophagy. However, cell viability was not affected, and apoptosis was decreased in glioma cells after proinflammatory stimuli. Overall, the present findings suggested that inflammation may be present in glioma and that glioma cells may be resistant to inflammation-induced mitochondrial dysfunction.
Collapse
Affiliation(s)
- Wange Fan
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yanan Song
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Zongyao Ren
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Xiaoli Cheng
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Pu Li
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Huiling Song
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Liyun Jia
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
7
|
Bigan E, Sasidharan Nair S, Lejeune FX, Fragnaud H, Parmentier F, Mégret L, Verny M, Aaronson J, Rosinski J, Neri C. Genetic cooperativity in multi-layer networks implicates cell survival and senescence in the striatum of Huntington's disease mice synchronous to symptoms. Bioinformatics 2020; 36:186-196. [PMID: 31228193 PMCID: PMC6956776 DOI: 10.1093/bioinformatics/btz514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023] Open
Abstract
Motivation Huntington’s disease (HD) may evolve through gene deregulation. However, the impact of gene deregulation on the dynamics of genetic cooperativity in HD remains poorly understood. Here, we built a multi-layer network model of temporal dynamics of genetic cooperativity in the brain of HD knock-in mice (allelic series of Hdh mice). To enhance biological precision and gene prioritization, we integrated three complementary families of source networks, all inferred from the same RNA-seq time series data in Hdh mice, into weighted-edge networks where an edge recapitulates path-length variation across source-networks and age-points. Results Weighted edge networks identify two consecutive waves of tight genetic cooperativity enriched in deregulated genes (critical phases), pre-symptomatically in the cortex, implicating neurotransmission, and symptomatically in the striatum, implicating cell survival (e.g. Hipk4) intertwined with cell proliferation (e.g. Scn4b) and cellular senescence (e.g. Cdkn2a products) responses. Top striatal weighted edges are enriched in modulators of defective behavior in invertebrate models of HD pathogenesis, validating their relevance to neuronal dysfunction in vivo. Collectively, these findings reveal highly dynamic temporal features of genetic cooperativity in the brain of Hdh mice where a 2-step logic highlights the importance of cellular maintenance and senescence in the striatum of symptomatic mice, providing highly prioritized targets. Availability and implementation Weighted edge network analysis (WENA) data and source codes for performing spectral decomposition of the signal (SDS) and WENA analysis, both written using Python, are available at http://www.broca.inserm.fr/HD-WENA/. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Erwan Bigan
- Sorbonnes Université, Centre National de la Recherche Scientifique, Research Unit Biology of Adaptation and Aging (B2A), Team Compensation in Neurodegenerative Diseases and Aging (Brain-C), Paris F-75252, France
| | - Satish Sasidharan Nair
- Sorbonnes Université, Centre National de la Recherche Scientifique, Research Unit Biology of Adaptation and Aging (B2A), Team Compensation in Neurodegenerative Diseases and Aging (Brain-C), Paris F-75252, France
| | - François-Xavier Lejeune
- Sorbonnes Université, Centre National de la Recherche Scientifique, Research Unit Biology of Adaptation and Aging (B2A), Team Compensation in Neurodegenerative Diseases and Aging (Brain-C), Paris F-75252, France
| | - Hélissande Fragnaud
- Sorbonnes Université, Centre National de la Recherche Scientifique, Research Unit Biology of Adaptation and Aging (B2A), Team Compensation in Neurodegenerative Diseases and Aging (Brain-C), Paris F-75252, France
| | - Frédéric Parmentier
- Sorbonnes Université, Centre National de la Recherche Scientifique, Research Unit Biology of Adaptation and Aging (B2A), Team Compensation in Neurodegenerative Diseases and Aging (Brain-C), Paris F-75252, France
| | - Lucile Mégret
- Sorbonnes Université, Centre National de la Recherche Scientifique, Research Unit Biology of Adaptation and Aging (B2A), Team Compensation in Neurodegenerative Diseases and Aging (Brain-C), Paris F-75252, France
| | - Marc Verny
- Sorbonnes Université, Centre National de la Recherche Scientifique, Research Unit Biology of Adaptation and Aging (B2A), Team Compensation in Neurodegenerative Diseases and Aging (Brain-C), Paris F-75252, France
| | | | | | - Christian Neri
- Sorbonnes Université, Centre National de la Recherche Scientifique, Research Unit Biology of Adaptation and Aging (B2A), Team Compensation in Neurodegenerative Diseases and Aging (Brain-C), Paris F-75252, France
| |
Collapse
|
8
|
Cui K, Wang Y, Zhu Y, Tao T, Yin F, Guo Y, Liu H, Li F, Wang P, Chen Y, Qin J. Neurodevelopmental impairment induced by prenatal valproic acid exposure shown with the human cortical organoid-on-a-chip model. MICROSYSTEMS & NANOENGINEERING 2020; 6:49. [PMID: 34567661 PMCID: PMC8433196 DOI: 10.1038/s41378-020-0165-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 05/05/2023]
Abstract
Prenatal exposure to environmental insults can increase the risk of developing neurodevelopmental disorders. Administration of the antiepileptic drug valproic acid (VPA) during pregnancy is tightly associated with a high risk of neurological disorders in offspring. However, the lack of an ideal human model hinders our comprehensive understanding of the impact of VPA exposure on fetal brain development, especially in early gestation. Herein, we present the first report indicating the effects of VPA on brain development at early stages using engineered cortical organoids from human induced pluripotent stem cells (hiPSCs). Cortical organoids were generated on micropillar arrays in a controlled manner, recapitulating the critical features of human brain development during early gestation. With VPA exposure, cortical organoids exhibited neurodevelopmental dysfunction characterized by increased neuron progenitors, inhibited neuronal differentiation and altered forebrain regionalization. Transcriptome analysis showed new markedly altered genes (e.g., KLHL1, LHX9, and MGARP) and a large number of differential expression genes (DEGs), some of which are related to autism. In particular, comparison of transcriptome data via GSEA and correlation analysis revealed the high similarity between VPA-exposed organoids with the postmortem ASD brain and autism patient-derived organoids, implying the high risk of autism with prenatal VPA exposure, even in early gestation. These new findings facilitate a better understanding of the cellular and molecular mechanisms underlying postnatal brain disorders (such as autism) with prenatal VPA exposure. This established cortical organoid-on-a-chip platform is valuable for probing neurodevelopmental disorders under environmental exposure and can be extended to applications in the study of diseases and drug testing.
Collapse
Affiliation(s)
- Kangli Cui
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yaqing Wang
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yujuan Zhu
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Tingting Tao
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Fangchao Yin
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yaqiong Guo
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Haitao Liu
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Fei Li
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Peng Wang
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
| | - Yuejun Chen
- University of Chinese Academy of Sciences, Beijing, 100049 China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Jianhua Qin
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031 China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Zhang S. MGARP is ultrastructurally located in the inner faces of mitochondrial membranes. Biochem Biophys Res Commun 2019; 516:138-143. [PMID: 31202457 DOI: 10.1016/j.bbrc.2019.06.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/06/2019] [Indexed: 12/22/2022]
Abstract
Mitochondria, the centers of energy production, are highly organized with inner membranes, cristae and outer membranes. The mitochondrial architecture determines their functions in all cellular processes. Changes in the mitochondrial ultrastructure are tightly related to a wide variety of diseases. MGARP, a mitochondria-localized protein, was predicted by bioinformatics and confirmed by cellular and biochemical methods to be located in mitochondria, but there is no direct and clear evidence for its precise location. This report demonstrates the precise ultrastructural location of MGARP within mitochondria by the ascorbate peroxidase 2 (APEX2) system in combination with electron microscopy (EM). EM revealed that more MGARP is located in the inner/cristae membranes, with its C-terminus at the inner faces of the intramembrane spaces, than in the outer membranes. MGARP overexpression caused both mitochondrial remodeling and cristae shaping, leading to the collapse of the mitochondrial network. The mitochondrial morphologies in MGARP-overexpressing cells were diverse; the cells became round or short, and their cristae were deformed and became discontinuous or circular. An engineered MGARP mutant deficient in its transmembrane domain no longer localized to the mitochondria and lost its effects on mitochondrial structure, confirming that the localization of MGARP in the mitochondria depends on its structural integrity. Collectively, our findings define the location of MGARP within the mitochondria, which is associated with its functional implications for the architecture and organization of mitochondria.
Collapse
Affiliation(s)
- Shuping Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
10
|
Thomas LW, Ashcroft M. Exploring the molecular interface between hypoxia-inducible factor signalling and mitochondria. Cell Mol Life Sci 2019; 76:1759-1777. [PMID: 30767037 PMCID: PMC6453877 DOI: 10.1007/s00018-019-03039-y] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/09/2019] [Accepted: 02/01/2019] [Indexed: 12/19/2022]
Abstract
Oxygen is required for the survival of the majority of eukaryotic organisms, as it is important for many cellular processes. Eukaryotic cells utilize oxygen for the production of biochemical energy in the form of adenosine triphosphate (ATP) generated from the catabolism of carbon-rich fuels such as glucose, lipids and glutamine. The intracellular sites of oxygen consumption-coupled ATP production are the mitochondria, double-membraned organelles that provide a dynamic and multifaceted role in cell signalling and metabolism. Highly evolutionarily conserved molecular mechanisms exist to sense and respond to changes in cellular oxygen levels. The primary transcriptional regulators of the response to decreased oxygen levels (hypoxia) are the hypoxia-inducible factors (HIFs), which play important roles in both physiological and pathophysiological contexts. In this review we explore the relationship between HIF-regulated signalling pathways and the mitochondria, including the regulation of mitochondrial metabolism, biogenesis and distribution.
Collapse
Affiliation(s)
- Luke W Thomas
- University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AH, UK
| | - Margaret Ashcroft
- University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AH, UK.
| |
Collapse
|
11
|
Del Valle I, Buonocore F, Duncan AJ, Lin L, Barenco M, Parnaik R, Shah S, Hubank M, Gerrelli D, Achermann JC. A genomic atlas of human adrenal and gonad development. Wellcome Open Res 2017. [PMID: 28459107 DOI: 10.12688/wellcomeopenres.11253.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND In humans, the adrenal glands and gonads undergo distinct biological events between 6-10 weeks post conception (wpc), such as testis determination, the onset of steroidogenesis and primordial germ cell development. However, relatively little is currently known about the genetic mechanisms underlying these processes. We therefore aimed to generate a detailed genomic atlas of adrenal and gonad development across these critical stages of human embryonic and fetal development. METHODS RNA was extracted from 53 tissue samples between 6-10 wpc (adrenal, testis, ovary and control). Affymetrix array analysis was performed and differential gene expression was analysed using Bioconductor. A mathematical model was constructed to investigate time-series changes across the dataset. Pathway analysis was performed using ClueGo and cellular localisation of novel factors confirmed using immunohistochemistry. RESULTS Using this approach, we have identified novel components of adrenal development (e.g. ASB4, NPR3) and confirmed the role of SRY as the main human testis-determining gene. By mathematical modelling time-series data we have found new genes up-regulated with SOX9 in the testis (e.g. CITED1), which may represent components of the testis development pathway. We have shown that testicular steroidogenesis has a distinct onset at around 8 wpc and identified potential novel components in adrenal and testicular steroidogenesis (e.g. MGARP, FOXO4, MAP3K15, GRAMD1B, RMND2), as well as testis biomarkers (e.g. SCUBE1). We have also shown that the developing human ovary expresses distinct subsets of genes (e.g. OR10G9, OR4D5), but enrichment for established biological pathways is limited. CONCLUSION This genomic atlas is revealing important novel aspects of human development and new candidate genes for adrenal and reproductive disorders.
Collapse
Affiliation(s)
- Ignacio Del Valle
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Federica Buonocore
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Andrew J Duncan
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Lin Lin
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Martino Barenco
- Developmental Biology and Cancer, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Rahul Parnaik
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Sonia Shah
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia.,Institute of Cardiovascular Science, University College London, London, UK
| | - Mike Hubank
- The Centre for Molecular Pathology, Royal Marsden Hospital, Sutton, UK
| | - Dianne Gerrelli
- Developmental Biology and Cancer, UCL Great Ormond Street Institute of Child Health, London, UK
| | - John C Achermann
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
12
|
Del Valle I, Buonocore F, Duncan AJ, Lin L, Barenco M, Parnaik R, Shah S, Hubank M, Gerrelli D, Achermann JC. A genomic atlas of human adrenal and gonad development. Wellcome Open Res 2017; 2:25. [PMID: 28459107 PMCID: PMC5407452 DOI: 10.12688/wellcomeopenres.11253.2] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background: In humans, the adrenal glands and gonads undergo distinct biological events between 6-10 weeks post conception (wpc), such as testis determination, the onset of steroidogenesis and primordial germ cell development. However, relatively little is currently known about the genetic mechanisms underlying these processes. We therefore aimed to generate a detailed genomic atlas of adrenal and gonad development across these critical stages of human embryonic and fetal development. Methods: RNA was extracted from 53 tissue samples between 6-10 wpc (adrenal, testis, ovary and control). Affymetrix array analysis was performed and differential gene expression was analysed using Bioconductor. A mathematical model was constructed to investigate time-series changes across the dataset. Pathway analysis was performed using ClueGo and cellular localisation of novel factors confirmed using immunohistochemistry. Results: Using this approach, we have identified novel components of adrenal development (e.g.
ASB4,
NPR3) and confirmed the role of
SRY as the main human testis-determining gene. By mathematical modelling time-series data we have found new genes up-regulated with
SOX9 in the testis (e.g.
CITED1), which may represent components of the testis development pathway. We have shown that testicular steroidogenesis has a distinct onset at around 8 wpc and identified potential novel components in adrenal and testicular steroidogenesis (e.g.
MGARP,
FOXO4,
MAP3K15,
GRAMD1B,
RMND2), as well as testis biomarkers (e.g.
SCUBE1). We have also shown that the developing human ovary expresses distinct subsets of genes (e.g.
OR10G9,
OR4D5), but enrichment for established biological pathways is limited. Conclusion: This genomic atlas is revealing important novel aspects of human development and new candidate genes for adrenal and reproductive disorders.
Collapse
Affiliation(s)
- Ignacio Del Valle
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Federica Buonocore
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Andrew J Duncan
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Lin Lin
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Martino Barenco
- Developmental Biology and Cancer, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Rahul Parnaik
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Sonia Shah
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia.,Institute of Cardiovascular Science, University College London, London, UK
| | - Mike Hubank
- The Centre for Molecular Pathology, Royal Marsden Hospital, Sutton, UK
| | - Dianne Gerrelli
- Developmental Biology and Cancer, UCL Great Ormond Street Institute of Child Health, London, UK
| | - John C Achermann
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
13
|
NOK/STYK1 promotes the genesis and remodeling of blood and lymphatic vessels during tumor progression. Biochem Biophys Res Commun 2016; 478:254-259. [PMID: 27444381 DOI: 10.1016/j.bbrc.2016.07.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 07/12/2016] [Indexed: 12/15/2022]
Abstract
Previous studies have indicated that the overexpression of NOK, also named STYK1, led to tumorigenesis and metastasis. Here, we provide evidence that increased expression of NOK/STYK1 caused marked alterations in the overall and inner structures of tumors and substantially facilitates the genesis and remodeling of the blood and lymphatic vessels during tumor progression. In particular, NOK-expressed HeLa stable cells (HeLa-K) significantly enhanced tumor growth and metastasis in xenografted nude mice. Hematoxylin and eosin (HE) staining demonstrated that the tumor tissues generated by HeLa-K cells were much more ichorous and had more interspaces than those generated by control HeLa cells (HeLa-C). The fluorescent areas stained with cluster of differentiation 31 (CD31), a marker protein for blood vessels, appeared to be in different patterns. The total blood vessels, especially the ring patterns, within the tumors of the HeLa-K group were highly enriched compared with those in the HeLa-C group. NOK-HA was demonstrated to be well colocalized with CD31 in the wall of the tubular structures within tumor tissues. Interestingly, antibody staining of the lymphatic vessel endothelial hyaluronan receptor (LYVE-1) further revealed the increase in ring (oratretic strip-like) lymphatic vessels in either the peritumoral or intratumoral areas in the HeLa-K group compared with the HeLa-C group. Consistently, the analysis of human cancerous tissue also showed that NOK was highly expressed in the walls of tubular structures. Thus, our results reveal a novel tumorigenic function of NOK to mediate the genesis and remodeling of blood and lymphatic vessels during tumor progression.
Collapse
|