1
|
Neurons: The Interplay between Cytoskeleton, Ion Channels/Transporters and Mitochondria. Cells 2022; 11:cells11162499. [PMID: 36010576 PMCID: PMC9406945 DOI: 10.3390/cells11162499] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Neurons are permanent cells whose key feature is information transmission via chemical and electrical signals. Therefore, a finely tuned homeostasis is necessary to maintain function and preserve neuronal lifelong survival. The cytoskeleton, and in particular microtubules, are far from being inert actors in the maintenance of this complex cellular equilibrium, and they participate in the mobilization of molecular cargos and organelles, thus influencing neuronal migration, neuritis growth and synaptic transmission. Notably, alterations of cytoskeletal dynamics have been linked to alterations of neuronal excitability. In this review, we discuss the characteristics of the neuronal cytoskeleton and provide insights into alterations of this component leading to human diseases, addressing how these might affect excitability/synaptic activity, as well as neuronal functioning. We also provide an overview of the microscopic approaches to visualize and assess the cytoskeleton, with a specific focus on mitochondrial trafficking.
Collapse
|
2
|
SAPAP3 regulates epileptic seizures involving GluN2A in post-synaptic densities. Cell Death Dis 2022; 13:437. [PMID: 35513389 PMCID: PMC9072407 DOI: 10.1038/s41419-022-04876-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 12/14/2022]
Abstract
Aberrantly synchronized neuronal discharges in the brain lead to epilepsy, a devastating neurological disease whose pathogenesis and mechanism are unclear. SAPAP3, a cytoskeletal protein expressed at high levels in the postsynaptic density (PSD) of excitatory synapses, has been well studied in the striatum, but the role of SAPAP3 in epilepsy remains elusive. In this study, we sought to investigate the molecular, cellular, electrophysiological and behavioral consequences of SAPAP3 perturbations in the mouse hippocampus. We identified a significant increase in the SAPAP3 levels in patients with temporal lobe epilepsy (TLE) and in mouse models of epilepsy. In addition, behavioral studies showed that the downregulation of SAPAP3 by shRNA decreased the seizure severity and that the overexpression of SAPAP3 by recombinant SAPAP3 yielded the opposite effect. Moreover, SAPAP3 affected action potentials (APs), miniature excitatory postsynaptic currents (mEPSCs) and N-methyl-D-aspartate receptor (NMDAR)-mediated currents in the CA1 region, which indicated that SAPAP3 plays an important role in excitatory synaptic transmission. Additionally, the levels of the GluN2A protein, which is involved in synaptic function, were perturbed in the hippocampal PSD, and this perturbation was accompanied by ultrastructural morphological changes. These results revealed a previously unknown function of SAPAP3 in epileptogenesis and showed that SAPAP3 may represent a novel target for the treatment of epilepsy.
Collapse
|
3
|
Peña-Ortega F, Robles-Gómez ÁA, Xolalpa-Cueva L. Microtubules as Regulators of Neural Network Shape and Function: Focus on Excitability, Plasticity and Memory. Cells 2022; 11:cells11060923. [PMID: 35326374 PMCID: PMC8946818 DOI: 10.3390/cells11060923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 12/19/2022] Open
Abstract
Neuronal microtubules (MTs) are complex cytoskeletal protein arrays that undergo activity-dependent changes in their structure and function as a response to physiological demands throughout the lifespan of neurons. Many factors shape the allostatic dynamics of MTs and tubulin dimers in the cytosolic microenvironment, such as protein–protein interactions and activity-dependent shifts in these interactions that are responsible for their plastic capabilities. Recently, several findings have reinforced the role of MTs in behavioral and cognitive processes in normal and pathological conditions. In this review, we summarize the bidirectional relationships between MTs dynamics, neuronal processes, and brain and behavioral states. The outcomes of manipulating the dynamicity of MTs by genetic or pharmacological approaches on neuronal morphology, intrinsic and synaptic excitability, the state of the network, and behaviors are heterogeneous. We discuss the critical position of MTs as responders and adaptative elements of basic neuronal function whose impact on brain function is not fully understood, and we highlight the dilemma of artificially modulating MT dynamics for therapeutic purposes.
Collapse
|
4
|
Abstract
Autism is a common and complex neurologic disorder whose scientific underpinnings have begun to be established in the past decade. The essence of this breakthrough has been a focus on families, where genetic analyses are strongest, versus large-scale, case-control studies. Autism genetics has progressed in parallel with technology, from analyses of copy number variation to whole-exome sequencing (WES) and whole-genome sequencing (WGS). Gene mutations causing complete loss of function account for perhaps one-third of cases, largely detected through WES. This limitation has increased interest in understanding the regulatory variants of genes that contribute in more subtle ways to the disorder. Strategies combining biochemical analysis of gene regulation, WGS analysis of the noncoding genome, and machine learning have begun to succeed. The emerging picture is that careful control of the amounts of transcription, mRNA, and proteins made by key brain genes-stoichiometry-plays a critical role in defining the clinical features of autism.
Collapse
Affiliation(s)
- Robert B Darnell
- Laboratory of Molecular Neuro-Oncology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA;
| |
Collapse
|
5
|
Ghosh A, Singh S. Regulation Of Microtubule: Current Concepts And Relevance To Neurodegenerative Diseases. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:656-679. [PMID: 34323203 DOI: 10.2174/1871527320666210728144043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/05/2021] [Accepted: 02/23/2021] [Indexed: 11/22/2022]
Abstract
Neurodevelopmental disorders (NDDs) are abnormalities linked to neuronal structure and irregularities associated with the proliferation of cells, transportation, and differentiation. NDD also involves synaptic circuitry and neural network alterations known as synaptopathies. Microtubules (MTs) and MTs-associated proteins help to maintain neuronal health as well as their development. The microtubular dynamic structure plays a crucial role in the division of cells and forms mitotic spindles, thus take part in initiating stages of differentiation and polarization for various types of cells. The MTs also take part in the cellular death but MT-based cellular degenerations are not yet well excavated. In the last few years, studies have provided the protagonist activity of MTs in neuronal degeneration. In this review, we largely engrossed our discussion on the change of MT cytoskeleton structure, describing their organization, dynamics, transportation, and their failure causing NDDs. At end of this review, we are targeting the therapeutic neuroprotective strategies on clinical priority and also try to discuss the clues for the development of new MT-based therapy as a new pharmacological intervention. This will be a new potential site to block not only neurodegeneration but also promotes the regeneration of neurons.
Collapse
Affiliation(s)
- Anirban Ghosh
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga-142001 Punjab, India
| | - Shamsher Singh
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga-142001 Punjab, India
| |
Collapse
|
6
|
Dong YY, Xia M, Wang L, Cui S, Li QB, Zhang JC, Meng SS, Zhang YK, Kong QX. Spatiotemporal Expression of SphK1 and S1PR2 in the Hippocampus of Pilocarpine Rat Model and the Epileptic Foci of Temporal Lobe Epilepsy. Front Cell Dev Biol 2020; 8:800. [PMID: 33134289 PMCID: PMC7578367 DOI: 10.3389/fcell.2020.00800] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/28/2020] [Indexed: 01/03/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is a severe chronic neurological disease caused by abnormal discharge of neurons in the brain and seriously affect the long-term life quality of patients. Currently, new insights into the pathogenesis of TLE are urgently needed to provide more personalized and effective therapeutic strategies. Accumulating evidence suggests that sphingosine kinase 1 (SphK1)/sphingosine 1-phosphate receptor 2 (S1PR2) signaling pathway plays a pivotal role in central nervous system (CNS) diseases. However, the precise altered expression of SphK1 and S1PR2 in TLE is remaining obscure. Here, we have confirmed the expression of SphK1 and S1PR2 in the pilocarpine-induced epileptic rat hippocampus and report for the first time the expression of SphK1 and S1PR2 in the temporal cortex of TLE patients. We found an increased expression of SphK1 in the brain from both epileptic rats and TLE patients. Conversely, S1PR2 expression level was markedly decreased. We further investigated the localization of SphK1 and S1PR2 in epileptic brains. Our study showed that both SphK1 and S1PR2 co-localized with activated astrocytes and neurons. Surprisingly, we observed different subcellular localization of SphK1 and S1PR2 in epileptic brain specimens. Taken together, our study suggests that the alteration of the SphK1/S1PR2 signaling axis is closely associated with the course of TLE and provides a new target for the treatment of TLE.
Collapse
Affiliation(s)
- Yuan-Yuan Dong
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Min Xia
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Lin Wang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Shuai Cui
- Department of Surgery, Weifang Medical University, Weifang, China
| | - Qiu-Bo Li
- Department of Pediatrics, Affiliated Hospital of Jining Medical University, Jining, China
| | - Jun-Chen Zhang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Shu-Shu Meng
- Qingdao West Coast New Area Central Hospital, Qingdao, China
| | - Yan-Ke Zhang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Qing-Xia Kong
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| |
Collapse
|
7
|
Luo Z, Wang J, Tang S, Zheng Y, Zhou X, Tian F, Xu Z. Dynamic-related protein 1 inhibitor eases epileptic seizures and can regulate equilibrative nucleoside transporter 1 expression. BMC Neurol 2020; 20:353. [PMID: 32962663 PMCID: PMC7507736 DOI: 10.1186/s12883-020-01921-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 09/08/2020] [Indexed: 01/05/2023] Open
Abstract
Background Dynamic-related protein 1 (Drp1) is a key protein involved in the regulation of mitochondrial fission, and it could affect the dynamic balance of mitochondria and appears to be protective against neuronal injury in epileptic seizures. Equilibrative nucleoside transporter 1 (ENT1) is expressed and functional in the mitochondrial membrane that equilibrates adenosine concentration across membranes. Whether Drp1 participates in the pathogenesis of epileptic seizures via regulating function of ENT1 remains unclear. Methods In the present study, we used pilocarpine to induce status epilepticus (SE) in rats, and we used mitochondrial division inhibitor 1 (Mdivi-1), a selective inhibitor to Drp1, to suppress mitochondrial fission in pilocarpine-induced SE model. Mdivi-1administered by intraperitoneal injection before SE induction, and the latency to firstepileptic seizure and the number of epileptic seizures was thereafter observed. The distribution of Drp1 was detected by immunofluorescence, and the expression patterns of Drp1 and ENT1 were detected by Western blot. Furthermore, the mitochondrial ultrastructure of neurons in the hippocampal CA1 region was observed by transmission electron microscopy. Results We found that Drp1 was expressed mainly in neurons and Drp1 expression was significantly upregulated in the hippocampal and temporal neocortex tissues at 6 h and 24 h after induction of SE. Mitochondrial fission inhibitor 1 attenuated epileptic seizures after induction of SE, reduced mitochondrial damage and ENT1 expression. Conclusions These data indicate that Drp1 is upregulated in hippocampus and temporal neocortex after pilocarpine-induced SE and the inhibition of Drp1 may lead to potential therapeutic target for SE by regulating ENT1 after pilocarpine-induced SE.
Collapse
Affiliation(s)
- Zhong Luo
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563003, Guizhou, China
| | - Jing Wang
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563003, Guizhou, China
| | - Shirong Tang
- Department of Neurology, The Thirteenth People's Hospital of Chongqing, Chongqing, 400053, China
| | - Yongsu Zheng
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563003, Guizhou, China
| | - Xuejiao Zhou
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563003, Guizhou, China
| | - Fei Tian
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Zucai Xu
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563003, Guizhou, China.
| |
Collapse
|
8
|
Lin Z, Gu Y, Zhou R, Wang M, Guo Y, Chen Y, Ma J, Xiao F, Wang X, Tian X. Serum Exosomal Proteins F9 and TSP-1 as Potential Diagnostic Biomarkers for Newly Diagnosed Epilepsy. Front Neurosci 2020; 14:737. [PMID: 32848539 PMCID: PMC7417627 DOI: 10.3389/fnins.2020.00737] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/22/2020] [Indexed: 01/03/2023] Open
Abstract
Epilepsy is one of the most common chronic neurological diseases in the world, with a high incidence, a high risk of sudden unexplained death, and diagnostic challenges. Exosomes are nanosized extracellular vesicles that are released into physical environments and carry a variety of biological information. Moreover, exosomes can also be synthesized and released from brain cells, passing through the blood-brain barrier, and can be detected in peripheral blood or cerebrospinal fluid. Our study using the tandem mass tag (TMT) approach showed that a total of 76 proteins were differentially expressed in serum exosomes between epilepsy patients and healthy controls, with 6 proteins increasing and 70 proteins decreasing. Analysis of large clinical samples and two mouse models of chronic epilepsy indicated that two significantly differentially expressed serum exosomal proteins, coagulation factor IX (F9) and thrombospondin-1 (TSP-1), represent promising biomarkers for the diagnosis of epilepsy, with area under the curve (AUC) values of up to 0.7776 (95% CI, 0.7306–0.8246) and 0.8534 (95% CI, 0.8152–0.8916), respectively. This is the first study of exosomal proteins in epilepsy, and it suggests that exosomes are promising new tools for the diagnosis of epilepsy.
Collapse
Affiliation(s)
- Zijun Lin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Yixue Gu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Ruijiao Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Meiling Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Yi Guo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Yuanyuan Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Junhong Ma
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| | - Fei Xiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xuefeng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| |
Collapse
|
9
|
Gavrilovici C, Jiang Y, Kiroski I, Teskey GC, Rho JM, Nguyen MD. Postnatal Role of the Cytoskeleton in Adult Epileptogenesis. Cereb Cortex Commun 2020; 1:tgaa024. [PMID: 32864616 PMCID: PMC7446231 DOI: 10.1093/texcom/tgaa024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
Mutations in cytoskeletal proteins can cause early infantile and childhood epilepsies by misplacing newly born neurons and altering neuronal connectivity. In the adult epileptic brain, cytoskeletal disruption is often viewed as being secondary to aberrant neuronal activity and/or death, and hence simply represents an epiphenomenon. Here, we review the emerging evidence collected in animal models and human studies implicating the cytoskeleton as a potential causative factor in adult epileptogenesis. Based on the emerging evidence, we propose that cytoskeletal disruption may be an important pathogenic mechanism in the mature epileptic brain.
Collapse
Affiliation(s)
- Cezar Gavrilovici
- Departments of Neurosciences & Pediatrics, University of California San Diego, Rady Children’s Hospital San Diego, San Diego, CA 92123, USA
| | - Yulan Jiang
- Departments of Clinical Neurosciences, Cell Biology & Anatomy, and Biochemistry & Molecular Biology, Hotchkiss Brain Institute, Alberta Children Hospital Research Institute, University of Calgary, Calgary T2N 4N1, Canada
| | - Ivana Kiroski
- Departments of Clinical Neurosciences, Cell Biology & Anatomy, and Biochemistry & Molecular Biology, Hotchkiss Brain Institute, Alberta Children Hospital Research Institute, University of Calgary, Calgary T2N 4N1, Canada
| | - G Campbell Teskey
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute, Alberta Children Hospital Research Institute, University of Calgary, Calgary T2N 4N1, Canada
| | - Jong M Rho
- Departments of Neurosciences & Pediatrics, University of California San Diego, Rady Children’s Hospital San Diego, San Diego, CA 92123, USA
| | - Minh Dang Nguyen
- Departments of Clinical Neurosciences, Cell Biology & Anatomy, and Biochemistry & Molecular Biology, Hotchkiss Brain Institute, Alberta Children Hospital Research Institute, University of Calgary, Calgary T2N 4N1, Canada
| |
Collapse
|
10
|
Peng X, Yan Y, Chen R, Wang X, Xu X. Long-term safety, tolerability, and efficacy of magnesium valproate versus sodium valproate in acute seizures. Curr Med Res Opin 2020; 36:271-276. [PMID: 31775535 DOI: 10.1080/03007995.2019.1699520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objectives: To evaluate the safety, tolerability and efficacy of magnesium valproate and sodium valproate as monotherapies in patients with epilepsy in China.Methods: We recruited patients admitted with seizures over a two-year period. All patients underwent early neurological assessments, electroencephalogram testing, and neuroimaging. The treatments received at baseline and at one year of follow-up were compared.Results: In total, 175 patients were included. The retention rates of the magnesium valproate and sodium valproate treatments were 73.1% and 64.2%, respectively. The main cause of discontinuation was the development of intolerable adverse events. The retention rate and total effective rate in the magnesium valproate group were significantly higher than those in the sodium valproate group (73.1% and 70.2% versus 64.2% and 47.2%, respectively). The safety endpoints included 120 patients (magnesium valproate: n = 67; sodium valproate: n = 53). The incidence of adverse events in the magnesium valproate group was significantly lower than that in the sodium valproate group (30% versus 51%).Conclusions: Magnesium valproate treatment shows favorable safety and tolerability and is associated with markedly improved seizure control. Ideally, future large, prospective, randomized, and double-blind studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Xiaoyan Peng
- Chongqing Key Laboratory of Neurology, Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yin Yan
- Chongqing Key Laboratory of Neurology, Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Chen
- Chongqing Key Laboratory of Neurology, Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuefeng Wang
- Chongqing Key Laboratory of Neurology, Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Xu
- Chongqing Key Laboratory of Neurology, Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Lu X, Yang M, Yang Y, Wang XF. Atlastin-1 modulates seizure activity and neuronal excitability. CNS Neurosci Ther 2019; 26:385-393. [PMID: 31729196 PMCID: PMC7052804 DOI: 10.1111/cns.13258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 01/22/2023] Open
Abstract
Epilepsy is a neurological disease, and the main clinical manifestation is recurrent seizures. The exact etiology of epilepsy and the pathogenesis of the disorder are not yet fully understood. Atlastin‐1, a dynamin‐like GTPase, interacts with microtubules and is responsible for vesicle formation, both of which are highly associated with the development of epilepsy. Here, we reported that the expression level of atlastin‐1 protein was reduced in the temporal neocortex of patients with temporal lobe epilepsy and in the hippocampus and adjacent cortex of a pentylenetetrazol‐kindled epileptic mouse model. Cells expressing atlastin‐1 coexpressed the inhibitory synaptic marker GAD67 in the temporal cortex and hippocampus of patients with epilepsy and an epileptic mouse model. The lentivirus‐mediated overexpression of atlastin‐1 protein in the hippocampus of mice suppressed seizure activity in behavioral experiments. Patch‐clamp recordings in the Mg2+‐free epilepsy cell model showed that atlastin‐1 overexpression inhibited neuronal excitability by suppressing the discharge frequency of spontaneous action potentials rather than by changing the passive and active properties of action potentials. Inhibitory synaptic transmission, but not excitatory synaptic currents, increased after atlastin‐1 overexpression. These findings suggest that atlastin‐1 likely contributes to the occurrence and development of epilepsy through inhibitory synaptic transmission.
Collapse
Affiliation(s)
- Xi Lu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China.,Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Min Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Yong Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xue-Feng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| |
Collapse
|
12
|
Shangguan Y, Xu X, Ganbat B, Li Y, Wang W, Yang Y, Lu X, Du C, Tian X, Wang X. CNTNAP4 Impacts Epilepsy Through GABAA Receptors Regulation: Evidence From Temporal Lobe Epilepsy Patients and Mouse Models. Cereb Cortex 2019; 28:3491-3504. [PMID: 28968899 DOI: 10.1093/cercor/bhx215] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Indexed: 12/11/2022] Open
Abstract
Epilepsy is a serious neurological condition characterized by recurrent unprovoked seizures. The exact etiology of epilepsy is not fully understood. Here, we demonstrated that the expression of contactin-associated protein-like 4 (CNTNAP4) was decreased in the temporal neocortex of epileptic patients and in the hippocampus and cortex of epileptic mice. Lentivirus-mediated knock-down of CNTNAP4 in the hippocampus increased mice susceptibility to epilepsy. Conversely, lentivirus-mediated overexpression of CNTNAP4 decreased epileptic behavior in mice. CNTNAP4 affected neuronal excitability and inhibitory synaptic transmission via postsynaptic receptors in Mg2+-free epilepsy cell model. Down-regulation or overexpression of CNTNAP4 in the hippocampus influenced the expression of gamma-aminobutyric acid A receptor β2/3 (GABAARβ2/3) membrane protein, without affecting total GABAARβ2/3 protein concentration in epileptic mice. Protein interactions between CNTNAP4, GABAARβ2/3 and gamma-aminobutyric acid receptor-associated protein (GABARAP) were observed in the hippocampus of epileptic mice. These findings suggest CNTNAP4 may be involved in the occurrence and development of epilepsy through the regulation of GABAAR function, and may be a promising target for the development of epilepsy treatment.
Collapse
Affiliation(s)
- Yafei Shangguan
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing, China
| | - Xin Xu
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing, China
| | - Baigalimaa Ganbat
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing, China
| | - Yun Li
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing, China
| | - Wei Wang
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing, China
| | - Yong Yang
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing, China
| | - Xi Lu
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing, China
| | - Chao Du
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing, China
| | - Xin Tian
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing, China
| | - Xuefeng Wang
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing, China
| |
Collapse
|
13
|
Zhang W, Wang X, Yu M, Li JA, Meng H. The c-Jun N-terminal kinase signaling pathway in epilepsy: activation, regulation, and therapeutics. J Recept Signal Transduct Res 2019; 38:492-498. [PMID: 31038026 DOI: 10.1080/10799893.2019.1590410] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epilepsy affects approximately 50-70 million people worldwide and 30-40% of patients do not benefit from medication. Therefore, it is necessary to identify novel targets for epileptic treatments. c-Jun N-terminal kinase (JNK) is a member of the mitogen-activated protein kinase (MAPK) family that activates diverse substrates, such as transcriptional factors, adaptor proteins, and signaling proteins, and has a wide variety of functions in both physiological and pathological conditions. The excessive activation of JNK is found not only in the acute phase of epilepsy, but also in the chronic phase, which potentiates it as a promising target in epilepsy control. In this review, we discuss the activation of the JNK pathway in epilepsy and its role in neuronal death, astrocyte activation, and mossy fiber sprouting (MFS) based on recent updates. Finally, we briefly introduce the current agents that target JNK signaling to control epilepsy.
Collapse
Affiliation(s)
- Wuqiong Zhang
- a Department of Neurology and Neuroscience center , The First Hospital of Jilin University , Changchun , P. R. China
| | - Xue Wang
- a Department of Neurology and Neuroscience center , The First Hospital of Jilin University , Changchun , P. R. China
| | - Miaomiao Yu
- a Department of Neurology and Neuroscience center , The First Hospital of Jilin University , Changchun , P. R. China
| | - Jia-Ai Li
- a Department of Neurology and Neuroscience center , The First Hospital of Jilin University , Changchun , P. R. China
| | - Hongmei Meng
- a Department of Neurology and Neuroscience center , The First Hospital of Jilin University , Changchun , P. R. China
| |
Collapse
|
14
|
Tian D, Rizwan K, Liu Y, Kang L, Yang Y, Mao X, Shu L. Biallelic pathogenic variants in TBCD-related neurodevelopment disease with mild clinical features. Neurol Sci 2019; 40:2325-2331. [PMID: 31240573 DOI: 10.1007/s10072-019-03979-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 06/13/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Microtubule dynamics is crucial for neuronal function and survival. The disrupted function of microtubule dynamics would lead to neurodegenerative and neurodevelopmental disorders. Tubulin-specific chaperone D (TBCD) is one of five tubulin co-chaperones acted in assembly and disassembly dynamics of microtubule. The biallelic pathogenic variants of TBCD gene were reported to be associated with severe degenerative encephalopathy accompanied with seizures previously. RESULTS Compound heterozygous variants were identified in three patients from three families. The in silico prediction software and ACMG standards and guidelines proved the pathogenicity of the TBCD pathogenic variants. The clinical features of the three patients presented with mild neurodevelopmental manifestations including autism spectrum disorder (ASD) and occasional generalized tonic-clonic seizures (GTCSs) responding well to antiepileptic drugs. CONCLUSION Our research expanded the clinical spectrum of TBCD-related neurodevelopmental disease which contributed to understanding the genotype-phenotype correlations of the disease.
Collapse
Affiliation(s)
- Di Tian
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, Hunan, China
| | - Khan Rizwan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, Hunan, China
| | - Yi Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Lulu Kang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Yanlin Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Xiao Mao
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan province, Changsha, 410008, China.
| | - Li Shu
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan province, Changsha, 410008, China.
| |
Collapse
|
15
|
Transgenic overexpression of furin increases epileptic susceptibility. Cell Death Dis 2018; 9:1058. [PMID: 30333479 PMCID: PMC6193048 DOI: 10.1038/s41419-018-1076-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 09/01/2018] [Accepted: 09/07/2018] [Indexed: 11/28/2022]
Abstract
The proprotein convertase Furin plays crucial roles in the pathology of many diseases. However, the specific role of furin in epilepsy remains unclear. In our study, furin protein was increased in the temporal neocortex of epileptic patients and in the hippocampus and cortex of epileptic mice. The furin transgenic (TG) mice showed increased susceptibility to epilepsy and heightened epileptic activity compared with wild-type (WT) mice. Conversely, lentivirus-mediated knockdown of furin restrained epileptic activity. Using whole-cell patch clamp, furin knockdown and overexpression influenced neuronal inhibitory by regulating postsynaptic gamma-aminobutyric acid A receptor (GABAAR)-mediated synaptic transmission. Importantly, furin influenced the expression of GABAAR β2/3 membrane and total protein in epileptic mice by changing transcription level of GABAAR β2/3, not the protein degradation. These results reveal that furin may regulate GABAAR-mediated inhibitory synaptic transmission by altering the transcription of GABAAR β2/3 subunits in epilepsy; this finding could provide new insight into epilepsy prevention and treatment.
Collapse
|
16
|
Yang Y, Tian X, Xu D, Zheng F, Lu X, Zhang Y, Ma Y, Li Y, Xu X, Zhu B, Wang X. GPR40 modulates epileptic seizure and NMDA receptor function. SCIENCE ADVANCES 2018; 4:eaau2357. [PMID: 30345361 PMCID: PMC6192686 DOI: 10.1126/sciadv.aau2357] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 09/12/2018] [Indexed: 05/21/2023]
Abstract
Epilepsy is a common neurological disease, and approximately 30% of patients do not respond adequately to antiepileptic drug treatment. Recent studies suggest that G protein-coupled receptor 40 (GPR40) is expressed in the central nervous system and is involved in the regulation of neurological function. However, the impact of GPR40 on epileptic seizures remains unclear. In this study, we first reported that GPR40 expression was increased in epileptic brains. In the kainic acid-induced epilepsy model, GPR40 activation after status epilepticus alleviated epileptic activity, whereas GPR40 inhibition showed the opposite effect. In the pentylenetetrazole-induced kindling model, susceptibility to epilepsy was reduced with GPR40 activation and increased with GPR40 inhibition. Whole-cell patch-clamp recordings demonstrated that GPR40 affected N-methyl-d-aspartate (NMDA) receptor-mediated synaptic transmission. Moreover, GPR40 regulated NR2A and NR2B expression on the surface of neurons. In addition, endocytosis of NMDA receptors and binding of GPR40 with NR2A and NR2B can be regulated by GPR40. Together, our findings indicate that GPR40 modulates epileptic seizures, providing a novel antiepileptic target.
Collapse
Affiliation(s)
- Yong Yang
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Neurology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266003 Shandong, China
| | - Xin Tian
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Demei Xu
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Fangshuo Zheng
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xi Lu
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yanke Zhang
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yuanlin Ma
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yun Li
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xin Xu
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Binglin Zhu
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Corresponding author. (B.Z.); (X.W.)
| | - Xuefeng Wang
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing 100101, China
- Corresponding author. (B.Z.); (X.W.)
| |
Collapse
|
17
|
Navidhamidi M, Ghasemi M, Mehranfard N. Epilepsy-associated alterations in hippocampal excitability. Rev Neurosci 2018; 28:307-334. [PMID: 28099137 DOI: 10.1515/revneuro-2016-0059] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/03/2016] [Indexed: 11/15/2022]
Abstract
The hippocampus exhibits a wide range of epilepsy-related abnormalities and is situated in the mesial temporal lobe, where limbic seizures begin. These abnormalities could affect membrane excitability and lead to overstimulation of neurons. Multiple overlapping processes refer to neural homeostatic responses develop in neurons that work together to restore neuronal firing rates to control levels. Nevertheless, homeostatic mechanisms are unable to restore normal neuronal excitability, and the epileptic hippocampus becomes hyperexcitable or hypoexcitable. Studies show that there is hyperexcitability even before starting recurrent spontaneous seizures, suggesting although hippocampal hyperexcitability may contribute to epileptogenesis, it alone is insufficient to produce epileptic seizures. This supports the concept that the hippocampus is not the only substrate for limbic seizure onset, and a broader hyperexcitable limbic structure may contribute to temporal lobe epilepsy (TLE) seizures. Nevertheless, seizures also occur in conditions where the hippocampus shows a hypoexcitable phenotype. Since TLE seizures most often originate in the hippocampus, it could therefore be assumed that both hippocampal hypoexcitability and hyperexcitability are undesirable states that make the epileptic hippocampal network less stable and may, under certain conditions, trigger seizures.
Collapse
|
18
|
Zheng F, Yang Y, Lu S, Yang Q, Li Y, Xu X, Zhang Y, Liu F, Tian X, Wang X. CD36 Deficiency Suppresses Epileptic Seizures. Neuroscience 2017; 367:110-120. [PMID: 29111364 DOI: 10.1016/j.neuroscience.2017.10.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 01/01/2023]
Abstract
Cluster of differentiation 36 (CD36) belongs to the class B scavenger receptor family. CD36 is a glycoprotein found on the surface of various cell types and has been implicated in the mechanism of numerous central nervous system (CNS) diseases. However, the relationship between CD36 and epilepsy remains unknown. In this study, we aimed to detect the expression of CD36 in two different chronic epileptic mouse models and determine whether CD36 deficiency leads to suppressive neuronal hyperexcitability and decreased susceptibility of epileptic seizures. Here, we found that CD36 was expressed in the neurons and that CD36 expression was significantly elevated in epileptic mice induced by pentylenetetrazol (PTZ) and kainic acid (KA). Behavioral studies revealed that CD36 deletion in mice (CD36-/- mice) resulted in an attenuated progression of chronic epilepsy compared with wild-type (WT) mice. Whole-cell patch-clamp technique exhibited a decreased frequency of action potentials (APs) in the hippocampal slices of CD36-/- mice. In addition, local field potential (LFP) analysis further indicated that CD36 deletion reduced the frequency and duration of epileptiform-like discharges. These results revealed that CD36 deficiency could produce an antiepileptic effect and could provide new insight into antiepileptic treatment.
Collapse
Affiliation(s)
- Fangshuo Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China.
| | - Yong Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China.
| | - Shanshan Lu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China.
| | - Qin Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China.
| | - Yun Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China.
| | - Xin Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China.
| | - Yanke Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China.
| | - Feng Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China.
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China.
| | - Xuefeng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China; Center of Epilepsy, Beijing Institute for Brain Disorders, 10 Xitoutiao, Youanmen, Fengtai District, Beijing 100069, China.
| |
Collapse
|
19
|
Interactions between GHRH and GABAARs in the brains of patients with epilepsy and in animal models of epilepsy. Sci Rep 2017; 7:18110. [PMID: 29273763 PMCID: PMC5741719 DOI: 10.1038/s41598-017-18416-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 12/11/2017] [Indexed: 12/18/2022] Open
Abstract
Growth hormone releasing hormone (GHRH) has recently been shown to increase the level of γ-aminobutyric acid (GABA) and activate GABA receptors (GABARs) in the cerebral cortex. GABA is an inhibitory neurotransmitter that can inhibit seizures. Does GHRH enhance the inhibitory effect of GABA to prevent epilepsy by increasing the GABA level and activating GABARs? In this study, patients with epilepsy and C57/BL6 mice with epilepsy induced by kainic acid (KA) or pentylenetetrazol (PTZ) served as the research subjects. Western blots were used to observe the differences in GHRH expression between the normal group and the epilepsy group, immunofluorescence was performed to explore the localization of GHRH in the brain, and coimmunoprecipitation was used to observe the interaction between GHRH and GABARs. GHRH expression was significantly increased in both patients with temporal lobe epilepsy (TLE) and in two mouse models induced by KA or PTZ compared with that in the normal groups (P < 0.05 or P < 0.01). GHRH was expressed in neurons in both humans and mice. Additionally, GHRH co-localized with presynaptic and postsynaptic sites of inhibitory neurons. Coimmunoprecipitation confirmed that GHRH interacted with GABAAα1 and GABAAβ2 + 3. GHRH may play an important role in inhibiting seizures by activating GABAARs.
Collapse
|
20
|
Potential Role of Microtubule Stabilizing Agents in Neurodevelopmental Disorders. Int J Mol Sci 2017; 18:ijms18081627. [PMID: 28933765 PMCID: PMC5578018 DOI: 10.3390/ijms18081627] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/10/2017] [Accepted: 07/18/2017] [Indexed: 01/05/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) are characterized by neuroanatomical abnormalities indicative of corticogenesis disturbances. At the basis of NDDs cortical abnormalities, the principal developmental processes involved are cellular proliferation, migration and differentiation. NDDs are also considered “synaptic disorders” since accumulating evidence suggests that NDDs are developmental brain misconnection syndromes characterized by altered connectivity in local circuits and between brain regions. Microtubules and microtubule-associated proteins play a fundamental role in the regulation of basic neurodevelopmental processes, such as neuronal polarization and migration, neuronal branching and synaptogenesis. Here, the role of microtubule dynamics will be elucidated in regulating several neurodevelopmental steps. Furthermore, the correlation between abnormalities in microtubule dynamics and some NDDs will be described. Finally, we will discuss the potential use of microtubule stabilizing agents as a new pharmacological intervention for NDDs treatment.
Collapse
|
21
|
Xu X, Shangguan Y, Lu S, Wang W, Du C, Xiao F, Hu Y, Luo J, Wang L, He C, Yang Y, Zhang Y, Lu X, Yang Q, Wang X. Tubulin β-III modulates seizure activity in epilepsy. J Pathol 2017; 242:297-308. [PMID: 28378416 DOI: 10.1002/path.4903] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 03/14/2017] [Accepted: 03/27/2017] [Indexed: 11/09/2022]
Abstract
Tubulin β-III (TUBB3) is the most dynamic β-tubulin isoform expressed in neurons, and is highly expressed in the central nervous system. However, the relationship between TUBB3 and epileptic seizures has not been thoroughly investigated. The aims of this study were to investigate the expression of TUBB3 in patients with temporal lobe epilepsy and two different rat models of chronic epilepsy, and to determine the specific roles of TUBB3 in epilepsy. TUBB3 expression was upregulated in human and rat epileptic tissue. Moreover, TUBB3 expression was associated with inhibitory GABAergic neurons and the inhibitory postsynaptic scaffold protein gephyrin. TUBB3 downregulation attenuated the behavioural phenotypes of epileptic seizures during the pilocarpine-induced chronic phase of epileptic seizures and the pentylenetetrazole kindling process, whereas TUBB3 overexpression had the opposite effect. Whole-cell clamp recordings and western blotting revealed that the amplitude of GABA-A receptor-mediated miniature inhibitory postsynaptic currents and the surface expression of the GABA-A receptor were increased in rats in which TUBB3 expression was downregulated. Importantly, TUBB3 interacted with GABA-A receptor-associated protein, which is known to be involved in GABA-A receptor trafficking. These results indicate that TUBB3 plays a critical role in the regulation of epileptic seizures via GABA-A receptor trafficking, suggesting a molecular mechanism for new therapeutic strategies. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Xin Xu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Yafei Shangguan
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Shanshan Lu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Wei Wang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Chao Du
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Fei Xiao
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Yida Hu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Jing Luo
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Liang Wang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Changlong He
- Institute of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing, PR China
| | - Yong Yang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Yanke Zhang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Xi Lu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Qin Yang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Xuefeng Wang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China.,Centre of Epilepsy, Beijing Institute for Brain Disorders, Beijing, PR China
| |
Collapse
|
22
|
Zhang Y, Gao B, Zheng F, Lu S, Li Y, Xiong Y, Yang Q, Yang Y, Fu P, Xiao F, Wang X. The Phosphodiesterase 10A Inhibitor PF-2545920 Enhances Hippocampal Excitability and Seizure Activity Involving the Upregulation of GluA1 and NR2A in Post-synaptic Densities. Front Mol Neurosci 2017; 10:100. [PMID: 28439226 PMCID: PMC5383654 DOI: 10.3389/fnmol.2017.00100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/23/2017] [Indexed: 12/16/2022] Open
Abstract
Phosphodiesterase regulates the homeostasis of cAMP and cGMP, which increase the strength of excitatory neural circuits and/or decrease inhibitory synaptic plasticity. Abnormally, synchronized synaptic transmission in the brain leads to seizures. A phosphodiesterase 10A (PDE10A) inhibitor PF-2545920 has recently attracted attention as a potential therapy for neurological and psychiatric disorders. We hypothesized that PF-2545920 plays an important role in status epilepticus (SE) and investigated the underlying mechanisms. PDE10A was primarily located in neurons, and PDE10A expression increased significantly in patients with temporal lobe epilepsy. PF-2545920 enhanced the hyperexcitability of pyramidal neurons in rat CA1, as measured by the frequency of action potentials and miniature excitatory post-synaptic current. GluA1 and NR2A expression also increased significantly in post-synaptic densities, with or without SE in rats treated with PF-2545920. The ratio of p-GluA1/GluA1 increased in the presence of PF-2545920 in groups with SE. Our results suggest that PF-2545920 facilitates seizure activity via the intracellular redistribution of GluA1 and NR2A in the hippocampus. The upregulation of p-GluA1 may play an important role in trafficking GluA1 to post-synaptic densities. The data suggest it would be detrimental to use the drug in seizure patients and might cause neuronal hyperexcitability in non-epileptic individuals.
Collapse
Affiliation(s)
- Yanke Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Baobing Gao
- Department of Neurology, Chongqing General HospitalChongqing, China
| | - Fangshuo Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Shanshan Lu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Yun Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Yan Xiong
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Qin Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Yong Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Pengfei Fu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Fei Xiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Xuefeng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China.,Center of Epilepsy, Beijing Institute for Brain DisordersBeijing, China.,Chongqing Key Laboratory of NeurologyChongqing, China
| |
Collapse
|
23
|
Pode-Shakked B, Barash H, Ziv L, Gripp KW, Flex E, Barel O, Carvalho KS, Scavina M, Chillemi G, Niceta M, Eyal E, Kol N, Ben-Zeev B, Bar-Yosef O, Marek-Yagel D, Bertini E, Duker AL, Anikster Y, Tartaglia M, Raas-Rothschild A. Microcephaly, intractable seizures and developmental delay caused by biallelic variants in TBCD: further delineation of a new chaperone-mediated tubulinopathy. Clin Genet 2016; 91:725-738. [PMID: 27807845 DOI: 10.1111/cge.12914] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/26/2016] [Accepted: 10/28/2016] [Indexed: 12/19/2022]
Abstract
Microtubule dynamics play a crucial role in neuronal development and function, and several neurodevelopmental disorders have been linked to mutations in genes encoding tubulins and functionally related proteins. Most recently, variants in the tubulin cofactor D (TBCD) gene, which encodes one of the five co-chaperones required for assembly and disassembly of α/β-tubulin heterodimer, were reported to underlie a recessive neurodevelopmental/neurodegenerative disorder. We report on five patients from three unrelated families, who presented with microcephaly, intellectual disability, intractable seizures, optic nerve pallor/atrophy, and cortical atrophy with delayed myelination and thinned corpus callosum on brain imaging. Exome sequencing allowed the identification of biallelic variants in TBCD segregating with the disease in the three families. TBCD protein level was significantly reduced in cultured fibroblasts from one patient, supporting defective TBCD function as the event underlying the disorder. Such reduced expression was associated with accelerated microtubule re-polymerization. Morpholino-mediated TBCD knockdown in zebrafish recapitulated several key pathological features of the human disease, and TBCD overexpression in the same model confirmed previous studies documenting an obligate dependency on proper TBCD levels during development. Our findings confirm the link between inactivating TBCD variants and this newly described chaperone-associated tubulinopathy, and provide insights into the phenotype of this disorder.
Collapse
Affiliation(s)
- B Pode-Shakked
- The Institute for Rare Diseases, The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel-Hashomer, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,The Dr Pinchas Borenstein Talpiot Medical Leadership Program, Sheba Medical Center, Tel-Hashomer, Israel
| | - H Barash
- The Institute for Rare Diseases, The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel-Hashomer, Israel
| | - L Ziv
- Sheba Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - K W Gripp
- Division of Medical Genetics, A.I. duPont Hospital for Children, Wilmington, DE, USA
| | - E Flex
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - O Barel
- Sheba Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - K S Carvalho
- Section of Pediatric Neurology, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA, USA
| | - M Scavina
- Division of Pediatric Neurology, A.I. duPont Hospital for Children, Wilmington, DE, USA
| | - G Chillemi
- SCAI-Super Computing Applications and Innovation Department, CINECA, Rome, Italy
| | - M Niceta
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - E Eyal
- Sheba Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - N Kol
- Sheba Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - B Ben-Zeev
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Pediatric Neurology Unit, Edmond and Lily Safra Children's Hospital, Tel-Hashomer, Israel
| | - O Bar-Yosef
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Pediatric Neurology Unit, Edmond and Lily Safra Children's Hospital, Tel-Hashomer, Israel
| | - D Marek-Yagel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel
| | - E Bertini
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - A L Duker
- Division of Medical Genetics, A.I. duPont Hospital for Children, Wilmington, DE, USA
| | - Y Anikster
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel
| | - M Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - A Raas-Rothschild
- The Institute for Rare Diseases, The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel-Hashomer, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|