1
|
Baskar D, Vengalil S, Polavarapu K, Preethish-Kumar V, Nashi S, Arunachal G, Srivastava K, Desai V, Thomas PT, Keerthipriya MS, Huddar A, Unnikrishnan G, Anjanappa RM, Nalini A. Titinopathies: Phenotype - genotype heterogeneity in an Indian cohort. J Neuromuscul Dis 2025:22143602241313119. [PMID: 40033712 DOI: 10.1177/22143602241313119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
INTRODUCTION Titinopathies are heterogenous group of disorders affecting the skeletal and cardiac muscles variably and caused by Titin (TTN) gene mutations located in Chromosome 2. The manifestations extend from congenital to adult-onset myopathies. Here we describe the phenotype-genotype heterogeneity of patients with myopathy/muscular dystrophy associated with TTN variants in an Indian cohort. METHODS A retrospective descriptive study of 12 patients diagnosed with primary muscle disease evaluated between 2016 and 2023 harboring rare TTN variants. RESULTS Eight patients were included (M:F ratio - 3:1). The median age at onset of entire cohort is 5 (range: birth- 33 years). The major clinical phenotypes were congenital myopathy [n = 3, 37.5%], juvenile onset myopathy [n = 3, 37.5%] and adult AD - Hereditary myopathy with early respiratory failure (HMERF) phenotype [n = 2, P6, P8; 25%]. Prominent / wide first interdigital space in feet in congenital and juvenile forms (c.38421_38437delinsC, c.106531 + 1G > A) was a novel feature. The variant c.95134T > C previously reported in HMERF in British population, was noted in two patients in our cohort and with GNE myopathy like phenotype in one. Muscle MRI done in congenital myopathy (c.26201-1G > A) showed fatty infiltration of anterior and posterior thigh with sparing of gracilis, adductor magnus and tibialis anterior. CONCLUSION This is the first Indian study with a large cohort demonstrating many novel mutations and clinical heterogeneity expanding the spectrum of titinopathies.
Collapse
Affiliation(s)
- Dipti Baskar
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Seena Vengalil
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Kiran Polavarapu
- Department of Neurology, Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 5B2, Canada
| | | | - Saraswati Nashi
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Gautham Arunachal
- Department of Human Genetics, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Kosha Srivastava
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Vaishnavi Desai
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Priya Treesa Thomas
- Department of Psychiatric Social Work, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Muddasu Suhasini Keerthipriya
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Akshata Huddar
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Gopikrishnan Unnikrishnan
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | | | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| |
Collapse
|
2
|
You N, Liu C, Gu Y, Wang R, Jia H, Zhang T, Jiang S, Shi J, Chen M, Guan MX, Sun S, Pei S, Liu Z, Shen N. SpliceTransformer predicts tissue-specific splicing linked to human diseases. Nat Commun 2024; 15:9129. [PMID: 39443442 PMCID: PMC11500173 DOI: 10.1038/s41467-024-53088-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
We present SpliceTransformer (SpTransformer), a deep-learning framework that predicts tissue-specific RNA splicing alterations linked to human diseases based on genomic sequence. SpTransformer outperforms all previous methods on splicing prediction. Application to approximately 1.3 million genetic variants in the ClinVar database reveals that splicing alterations account for 60% of intronic and synonymous pathogenic mutations, and occur at different frequencies across tissue types. Importantly, tissue-specific splicing alterations match their clinical manifestations independent of gene expression variation. We validate the enrichment in three brain disease datasets involving over 164,000 individuals. Additionally, we identify single nucleotide variations that cause brain-specific splicing alterations, and find disease-associated genes harboring these single nucleotide variations with distinct expression patterns involved in diverse biological processes. Finally, SpTransformer analysis of whole exon sequencing data from blood samples of patients with diabetic nephropathy predicts kidney-specific RNA splicing alterations with 83% accuracy, demonstrating the potential to infer disease-causing tissue-specific splicing events. SpTransformer provides a powerful tool to guide biological and clinical interpretations of human diseases.
Collapse
Affiliation(s)
- Ningyuan You
- Department of Obstetrics and Gynecology of Sir Run Run Shaw Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Chang Liu
- Department of Obstetrics and Gynecology of Sir Run Run Shaw Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuxin Gu
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Rong Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hanying Jia
- Department of Obstetrics and Gynecology of Sir Run Run Shaw Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianyun Zhang
- Department of Obstetrics and Gynecology of Sir Run Run Shaw Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Song Jiang
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Jinsong Shi
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Min-Xin Guan
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Siqi Sun
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China
| | - Shanshan Pei
- Department of Obstetrics and Gynecology of Sir Run Run Shaw Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihong Liu
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.
| | - Ning Shen
- Department of Obstetrics and Gynecology of Sir Run Run Shaw Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
3
|
Töpf A, Cox D, Zaharieva IT, Di Leo V, Sarparanta J, Jonson PH, Sealy IM, Smolnikov A, White RJ, Vihola A, Savarese M, Merteroglu M, Wali N, Laricchia KM, Venturini C, Vroling B, Stenton SL, Cummings BB, Harris E, Marini-Bettolo C, Diaz-Manera J, Henderson M, Barresi R, Duff J, England EM, Patrick J, Al-Husayni S, Biancalana V, Beggs AH, Bodi I, Bommireddipalli S, Bönnemann CG, Cairns A, Chiew MT, Claeys KG, Cooper ST, Davis MR, Donkervoort S, Erasmus CE, Fassad MR, Genetti CA, Grosmann C, Jungbluth H, Kamsteeg EJ, Lornage X, Löscher WN, Malfatti E, Manzur A, Martí P, Mongini TE, Muelas N, Nishikawa A, O'Donnell-Luria A, Ogonuki N, O'Grady GL, O'Heir E, Paquay S, Phadke R, Pletcher BA, Romero NB, Schouten M, Shah S, Smuts I, Sznajer Y, Tasca G, Taylor RW, Tuite A, Van den Bergh P, VanNoy G, Voermans NC, Wanschitz JV, Wraige E, Yoshimura K, Oates EC, Nakagawa O, Nishino I, Laporte J, Vilchez JJ, MacArthur DG, Sarkozy A, Cordell HJ, Udd B, Busch-Nentwich EM, Muntoni F, Straub V. Digenic inheritance involving a muscle-specific protein kinase and the giant titin protein causes a skeletal muscle myopathy. Nat Genet 2024; 56:395-407. [PMID: 38429495 PMCID: PMC10937387 DOI: 10.1038/s41588-023-01651-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 12/19/2023] [Indexed: 03/03/2024]
Abstract
In digenic inheritance, pathogenic variants in two genes must be inherited together to cause disease. Only very few examples of digenic inheritance have been described in the neuromuscular disease field. Here we show that predicted deleterious variants in SRPK3, encoding the X-linked serine/argenine protein kinase 3, lead to a progressive early onset skeletal muscle myopathy only when in combination with heterozygous variants in the TTN gene. The co-occurrence of predicted deleterious SRPK3/TTN variants was not seen among 76,702 healthy male individuals, and statistical modeling strongly supported digenic inheritance as the best-fitting model. Furthermore, double-mutant zebrafish (srpk3-/-; ttn.1+/-) replicated the myopathic phenotype and showed myofibrillar disorganization. Transcriptome data suggest that the interaction of srpk3 and ttn.1 in zebrafish occurs at a post-transcriptional level. We propose that digenic inheritance of deleterious changes impacting both the protein kinase SRPK3 and the giant muscle protein titin causes a skeletal myopathy and might serve as a model for other genetic diseases.
Collapse
Affiliation(s)
- Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| | - Dan Cox
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Irina T Zaharieva
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK
| | - Valeria Di Leo
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Jaakko Sarparanta
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Per Harald Jonson
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Ian M Sealy
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Andrei Smolnikov
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Richard J White
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Anna Vihola
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- Neuromuscular Research Centre, Tampere University and University Hospital, Tampere, Finland
| | - Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Munise Merteroglu
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padua, Padua, Italy
| | - Neha Wali
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Kristen M Laricchia
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Cristina Venturini
- Division of Infection and Immunity, University College London, London, UK
| | | | - Sarah L Stenton
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Beryl B Cummings
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padua, Padua, Italy
| | - Elizabeth Harris
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Northern Genetics Service, Institute of Genetics Medicine, Newcastle upon Tyne, UK
| | - Chiara Marini-Bettolo
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Jordi Diaz-Manera
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Matt Henderson
- Muscle Immunoanalysis Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | | | - Jennifer Duff
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Eleina M England
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jane Patrick
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Sundos Al-Husayni
- The Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Valerie Biancalana
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, Cnrs UMR7104, Université de Strasbourg, Illkirch, France
| | - Alan H Beggs
- The Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Istvan Bodi
- Department of Clinical Neuropathology, King's College Hospital NHS Foundation Trust, London, UK
| | - Shobhana Bommireddipalli
- Kids Neuroscience Centre, the Children's Hospital at Westmead, the University of Sydney and the Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Anita Cairns
- Neurosciences Department, Queensland Children's Hospital, Brisbane, Queensland, Australia
| | - Mei-Ting Chiew
- Department of Diagnostic Genomics, PathWest Laboratory Medicine, Perth, Western Australia, Australia
| | - Kristl G Claeys
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Muscle Diseases and Neuropathies, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Sandra T Cooper
- Kids Neuroscience Centre, the Children's Hospital at Westmead, the University of Sydney and the Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - Mark R Davis
- Department of Diagnostic Genomics, PathWest Laboratory Medicine, Perth, Western Australia, Australia
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Corrie E Erasmus
- Department of Paediatric Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Mahmoud R Fassad
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Casie A Genetti
- The Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Carla Grosmann
- Department of Neurology, Rady Children's Hospital University of California San Diego, San Diego, CA, USA
| | - Heinz Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK
- Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King's College London, London, UK
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Xavière Lornage
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, Cnrs UMR7104, Université de Strasbourg, Illkirch, France
| | - Wolfgang N Löscher
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Edoardo Malfatti
- APHP, Neuromuscular Reference Center Nord-Est-Ile-de-France, Henri Mondor Hospital, Université Paris Est, U955, INSERM, Creteil, France
| | - Adnan Manzur
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK
| | - Pilar Martí
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Neuromuscular Research Group, IIS La Fe, Valencia, Spain
| | - Tiziana E Mongini
- Department of Neurosciences Rita Levi Montalcini, Università degli Studi di Torino, Torino, Italy
| | - Nuria Muelas
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Neuromuscular Research Group, IIS La Fe, Valencia, Spain
- Department of Medicine, Universitat de Valencia, Valencia, Spain
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Valencia, Spain
| | - Atsuko Nishikawa
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Anne O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | | | - Gina L O'Grady
- Starship Children's Health, Auckland District Health Board, Auckland, New Zealand
| | - Emily O'Heir
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stéphanie Paquay
- Cliniques Universitaires St-Luc, Centre de Référence Neuromusculaire, Université de Louvain, Brussels, Belgium
| | - Rahul Phadke
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK
| | - Beth A Pletcher
- Division of Clinical Genetics, Department of Pediatrics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Norma B Romero
- Neuromuscular Morphology Unit, Myology Institute, Sorbonne Université, Centre de Référence de Pathologie Neuromusculaire Nord/Est/Ile-de-France (APHP), GH Pitié-Salpêtrière, Paris, France
| | - Meyke Schouten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Snehal Shah
- Department of Neurology, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Izelle Smuts
- Department of Paediatrics, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Yves Sznajer
- Center for Human Genetic, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium
| | - Giorgio Tasca
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Allysa Tuite
- Division of Clinical Genetics, Department of Pediatrics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Peter Van den Bergh
- Cliniques Universitaires St-Luc, Centre de Référence Neuromusculaire, Université de Louvain, Brussels, Belgium
| | - Grace VanNoy
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Julia V Wanschitz
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Elizabeth Wraige
- Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK
| | | | - Emily C Oates
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Osamu Nakagawa
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, Cnrs UMR7104, Université de Strasbourg, Illkirch, France
| | - Juan J Vilchez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Neuromuscular Research Group, IIS La Fe, Valencia, Spain
| | - Daniel G MacArthur
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Anna Sarkozy
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK
| | - Heather J Cordell
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- Neuromuscular Research Centre, Tampere University and University Hospital, Tampere, Finland
| | - Elisabeth M Busch-Nentwich
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, UCL & Great Ormond Street Hospital Trust, London, UK
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
4
|
Weston TGR, Rees M, Gautel M, Fraternali F. Walking with giants: The challenges of variant impact assessment in the giant sarcomeric protein titin. WIREs Mech Dis 2024; 16:e1638. [PMID: 38155593 DOI: 10.1002/wsbm.1638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
Titin, the so-called "third filament" of the sarcomere, represents a difficult challenge for the determination of damaging genetic variants. A single titin molecule extends across half the length of a sarcomere in striated muscle, fulfilling a variety of vital structural and signaling roles, and has been linked to an equally varied range of myopathies, resulting in a significant burden on individuals and healthcare systems alike. While the consequences of truncating variants of titin are well-documented, the ramifications of the missense variants prevalent in the general population are less so. We here present a compendium of titin missense variants-those that result in a single amino-acid substitution in coding regions-reported to be pathogenic and discuss these in light of the nature of titin and the variant position within the sarcomere and their domain, the structural, pathological, and biophysical characteristics that define them, and the methods used for characterization. Finally, we discuss the current knowledge and integration of the multiple fields that have contributed to our understanding of titin-related pathology and offer suggestions as to how these concurrent methodologies may aid the further development in our understanding of titin and hopefully extend to other, less well-studied giant proteins. This article is categorized under: Cardiovascular Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Timir G R Weston
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | - Martin Rees
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | - Mathias Gautel
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | - Franca Fraternali
- Institute of Structural and Molecular Biology, University College London, London, UK
| |
Collapse
|
5
|
Peddareddygari LR, Oberoi K, Grewal RP. Novel Titin Gene Mutation Causing Autosomal Dominant Limb-Girdle Muscular Dystrophy. Cureus 2022; 14:e30550. [DOI: 10.7759/cureus.30550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
|
6
|
Novel compound heterozygous mutations in the TTN gene: elongation and truncation variants causing limb-girdle muscular dystrophy type 2J in a Han Chinese family. Neurol Sci 2022; 43:3427-3433. [DOI: 10.1007/s10072-022-05979-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/18/2022] [Indexed: 10/18/2022]
|
7
|
Novel MFSD8 Variants in a Chinese Family with Nonsyndromic Macular Dystrophy. J Ophthalmol 2021; 2021:6684045. [PMID: 34457359 PMCID: PMC8387190 DOI: 10.1155/2021/6684045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 11/25/2022] Open
Abstract
Purpose To identify the molecular etiology of a Chinese family with nonsyndromic macular dystrophy. Methods Ophthalmic examinations were performed, and genomic DNA was extracted from available family members. Whole exome sequencing of two members (the proband and her unaffected mother) and Sanger sequencing in available family members were performed to screen potential pathogenic variants. Results Novel compound heterozygous variants, c.1066C>T (p.Pro356Ser) and c.1102+2T>C, in the major facilitator superfamily domain containing 8 gene (MFSD8) were suspected to be involved in this family's macular dystrophy phenotype. The novel c.1066C>T variant in the MFSD8 gene probably resulted in substitution of serine for proline at the 356th residue and was predicted to be “uncertain significance” through in silico analyses. The novel c.1102+2T>C variant in the MFSD8 gene was likely to affect the splicing form and predicted to be “pathogenic.” Conclusion The novel compound heterozygous variants, c.1066C>T (p.Pro356Ser) and c.1102+2T>C, in the MFSD8 gene are likely responsible for the isolated macular dystrophy phenotype in this family. This study enlarged the MFSD8 gene mutant spectrum and might provide more accurate genetic counseling for this family.
Collapse
|
8
|
Li Q, Tian S, Yan B, Liu CM, Lam TW, Li R, Luo R. Building a Chinese pan-genome of 486 individuals. Commun Biol 2021; 4:1016. [PMID: 34462542 PMCID: PMC8405635 DOI: 10.1038/s42003-021-02556-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 08/13/2021] [Indexed: 02/07/2023] Open
Abstract
Pan-genome sequence analysis of human population ancestry is critical for expanding and better defining human genome sequence diversity. However, the amount of genetic variation still missing from current human reference sequences is still unknown. Here, we used 486 deep-sequenced Han Chinese genomes to identify 276 Mbp of DNA sequences that, to our knowledge, are absent in the current human reference. We classified these sequences into individual-specific and common sequences, and propose that the common sequence size is uncapped with a growing population. The 46.646 Mbp common sequences obtained from the 486 individuals improved the accuracy of variant calling and mapping rate when added to the reference genome. We also analyzed the genomic positions of these common sequences and found that they came from genomic regions characterized by high mutation rate and low pathogenicity. Our study authenticates the Chinese pan-genome as representative of DNA sequences specific to the Han Chinese population missing from the GRCh38 reference genome and establishes the newly defined common sequences as candidates to supplement the current human reference.
Collapse
Affiliation(s)
- Qiuhui Li
- Department of Computer Science, The University of Hong Kong, Hong Kong, China
| | - Shilin Tian
- Novogene Bioinformatics Institute, Beijing, China
| | - Bin Yan
- Department of Computer Science, The University of Hong Kong, Hong Kong, China
| | - Chi Man Liu
- Department of Computer Science, The University of Hong Kong, Hong Kong, China
| | - Tak-Wah Lam
- Department of Computer Science, The University of Hong Kong, Hong Kong, China.
| | - Ruiqiang Li
- Novogene Bioinformatics Institute, Beijing, China.
| | - Ruibang Luo
- Department of Computer Science, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
9
|
Xiong Y, Xia H, Yuan L, Deng S, Ding Z, Deng H. Identification of compound heterozygous DNAH11 variants in a Han-Chinese family with primary ciliary dyskinesia. J Cell Mol Med 2021; 25:9028-9037. [PMID: 34405951 PMCID: PMC8435457 DOI: 10.1111/jcmm.16866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 07/24/2021] [Accepted: 08/04/2021] [Indexed: 12/13/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a group of genetically and clinically heterogeneous disorders with motile cilia dysfunction. It is clinically characterized by oto‐sino‐pulmonary diseases and subfertility, and half of the patients have situs inversus (Kartagener syndrome). To identify the genetic cause in a Han‐Chinese pedigree, whole‐exome sequencing was conducted in the 37‐year‐old proband, and then, Sanger sequencing was performed on available family members. Minigene splicing assay was applied to verify the impact of the splice‐site variant. Compound heterozygous variants including a splice‐site variant (c.1974‐1G>C, rs1359107415) and a missense variant (c.7787G>A, p.(Arg2596Gln), rs780492669), in the dynein axonemal heavy chain 11 gene (DNAH11) were identified and confirmed as the disease‐associated variants of this lineage. The minigene expression in vitro revealed that the c.1974‐1G>C variant could cause skipping over exon 12, predicted to result in a truncated protein. This discovery may enlarge the DNAH11 variant spectrum of PCD, promote accurate genetic counselling and contribute to PCD diagnosis.
Collapse
Affiliation(s)
- Ying Xiong
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hong Xia
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lamei Yuan
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Disease Genome Research Center, Central South University, Changsha, China
| | - Sheng Deng
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Zerui Ding
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Deng
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Disease Genome Research Center, Central South University, Changsha, China.,Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
The Sarcomeric Spring Protein Titin: Biophysical Properties, Molecular Mechanisms, and Genetic Mutations Associated with Heart Failure and Cardiomyopathy. Curr Cardiol Rep 2021; 23:121. [PMID: 34269900 DOI: 10.1007/s11886-021-01550-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/07/2021] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW The giant protein titin forms the "elastic" filament of the sarcomere, essential for the mechanical compliance of the heart muscle. Titin serves a biological spring, and therefore structural modifications of titin affect function of the myocardium and are associated with heart failure and cardiomyopathy. RECENT FINDINGS In this review, we discuss the current understanding of titin's biophysical properties and how modifications contribute to cardiac function and heart failure. In addition, we review the most recent data on the clinical impact and phenotype heterogeneity of TTN truncating variants, including diseases involving striated muscles, and prospects for future therapies. Because of the giant structure of the titin protein and the complexity of its function, titin's role in health and disease is not yet completely understood. Future research efforts need to focus on novel therapeutic approaches able to modulate titin transcriptional and post-translational modification.
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW The last few years have confirmed previous assumptions of an enormous impact of the titin gene (TTN) on the occurrence of muscle disease, cardiomyopathy, or both together. The reason for this rather late understanding of its importance is because of the huge size which prevented sequencing of the whole gene by the previous Sanger technique in the individual cases. An update of the advances in diagnosing titinopathies is the main focus of this review. RECENT FINDINGS High throughput methods are now widely available for TTN sequencing and a corresponding explosion of different types of identified titinopathies is observed and published in the literature, although final confirmation is lacking in many cases with recessive missense variants. SUMMARY The implications of these findings for clinical practice are easy to understand: patients with previously undiagnosed muscle disease can now have a correct diagnosis and subsequently receive a likely prognosis, can have accurate genetic counseling for the whole family and early treatment for predictable complications from the heart and respiratory muscles. In addition not to forget, they can avoid wrong diagnoses leading to wrong treatments.
Collapse
|
12
|
Chen Q, Zheng W, Xu H, Yang Y, Song Z, Yuan L, Deng H. Digenic Variants in the TTN and TRAPPC11 Genes Co-segregating With a Limb-Girdle Muscular Dystrophy in a Han Chinese Family. Front Neurosci 2021; 15:601757. [PMID: 33746696 PMCID: PMC7969792 DOI: 10.3389/fnins.2021.601757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/10/2021] [Indexed: 11/22/2022] Open
Abstract
Limb-girdle muscular dystrophies (LGMD) are hereditary genetic disorders characterized by progressive muscle impairment which predominantly include proximal muscle weaknesses in the pelvic and shoulder girdles. This article describes an attempt to identify genetic cause(s) for a LGMD pedigree via a combination of whole exome sequencing and Sanger sequencing. Digenic variants, the titin gene (TTN) c.19481T>G (p.Leu6494Arg) and the trafficking protein particle complex 11 gene (TRAPPC11) c.3092C>G (p.Pro1031Arg), co-segregated with the disease phenotype in the family, suggesting their possible pathogenicity.
Collapse
Affiliation(s)
- Qian Chen
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wen Zheng
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongbo Xu
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yan Yang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Song
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lamei Yuan
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Disease Genome Research Center, Central South University, Changsha, China
| | - Hao Deng
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China.,Disease Genome Research Center, Central South University, Changsha, China
| |
Collapse
|
13
|
How wide is the application of genetic big data in biomedicine. Biomed Pharmacother 2020; 133:111074. [PMID: 33378973 DOI: 10.1016/j.biopha.2020.111074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/16/2020] [Accepted: 11/27/2020] [Indexed: 12/17/2022] Open
Abstract
In the era of big data, massive genetic data, as a new industry, has quickly swept almost all industries, especially the pharmaceutical industry. As countries around the world start to build their own gene banks, scientists study the data to explore the origins and migration of humans. Moreover, big data encourage the development of cancer therapy and bring good news to cancer patients. Big datum has been involved in the study of many diseases, and it has been found that analyzing diseases at the gene level can lead to more beneficial treatment options than ordinary treatments. This review will introduce the development of extensive data in medical research from the perspective of big data and tumor, neurological and psychiatric diseases, cardiovascular diseases, other applications and the development direction of big data in medicine.
Collapse
|
14
|
Luo YB, Peng Y, Lu Y, Li Q, Duan H, Bi F, Yang H. Expanding the Clinico-Genetic Spectrum of Myofibrillar Myopathy: Experience From a Chinese Neuromuscular Center. Front Neurol 2020; 11:1014. [PMID: 33041974 PMCID: PMC7522348 DOI: 10.3389/fneur.2020.01014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Myofibrillar myopathy is a group of hereditary neuromuscular disorders characterized by dissolution of myofibrils and abnormal intracellular accumulation of Z disc-related proteins. We aimed to characterize the clinical, physiological, pathohistological, and genetic features of Chinese myofibrillar myopathy patients from a single neuromuscular center. Methods: A total of 18 patients were enrolled. Demographic and clinical data were collected. Laboratory investigations, electromyography, and cardiac evaluation was performed. Routine and immunohistochemistry stainings against desmin, αB-crystallin, and BAG3 of muscle specimen were carried out. Finally, next-generation sequencing panel array for genes associated with hereditary neuromuscular disorders were performed. Results: Twelve pathogenic variants in DES, BAG3, FLNC, FHL1, and TTN were identified, of which seven were novel mutations. The novel DES c.1256C>T substitution is a high frequency mutation. The combined recessively/dominantly transmitted c.19993G>T and c.107545delG mutations in TTN gene cause a limb girdle muscular dystrophy phenotype with the classical myofibrillar myopathy histological changes. Conclusions: We report for the first time that hereditary myopathy with early respiratory failure patient can have peripheral nerve and severe spine involvement. The mutation in Ig-like domain 16 of FLNC is associated with the limb girdle type of filaminopathy, and the mutation in Ig-like domain 18 with distal myopathy type. These findings expand the phenotypic and genotypic correlation spectrum of myofibrillar myopathy.
Collapse
Affiliation(s)
- Yue-Bei Luo
- Department of Neurology, Xiangya Hospital, Central South Hospital, Changsha, China
| | - Yuyao Peng
- Department of Neurology, Xiangya Hospital, Central South Hospital, Changsha, China
| | - Yuling Lu
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qiuxiang Li
- Department of Neurology, Xiangya Hospital, Central South Hospital, Changsha, China
| | - Huiqian Duan
- Department of Neurology, Xiangya Hospital, Central South Hospital, Changsha, China
| | - Fangfang Bi
- Department of Neurology, Xiangya Hospital, Central South Hospital, Changsha, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South Hospital, Changsha, China
| |
Collapse
|
15
|
Abstract
Muscle stiffness, muscle elasticity and explosive strength are the main components of athletes' performance and they show a sex-based as well as ethnicity variation. Muscle stiffness is thought to be one of the risk factors associated with sports injuries and is less common in females than in males. These observations may be explained by circulating levels of sex hormones and their specific receptors. It has been shown that higher levels of estrogen are associated with lower muscle stiffness responsible for suppression of collagen synthesis. It is thought that these properties, at least in part, depend on genetic factors. Particularly, the gene encoding estrogen receptor 1 (ESR1) is one of the candidates that may be associated with muscle stiffness. Muscle elasticity increases with aging and there is evidence suggesting that titin (encoded by the TTN gene), a protein that is expressed in cardiac and skeletal muscles, is one of the factors responsible for elastic properties of the muscles. Mutations in the TTN gene result in some types of muscular dystrophy or cardiomyopathy. In this context, TTN may be regarded as a promising candidate for studying the elastic properties of muscles in athletes. The physiological background of explosive strength depends not only on the muscle architecture and muscle fiber composition, but also on the central nervous system and functionality of neuromuscular units. These properties are, at least partly, genetically determined. In this context, the ACTN3 gene code for α-actinin 3 has been widely researched.
Collapse
|
16
|
Chen X, Yuan L, Xu H, Hu P, Yang Y, Guo Y, Guo Z, Deng H. Novel GLI3 Mutations in Chinese Patients with Non-syndromic Post-axial Polydactyly. Curr Mol Med 2020; 19:228-235. [PMID: 30848202 DOI: 10.2174/1566524019666190308110122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Polydactyly, characterized by supernumerary digits in the upper or lower extremities, is the most common congenital digital abnormalities. It derives from the defective patterning of anteroposterior axis of the developing limb, with various etiology and clinical heterogeneity. The patients with post-axial polydactyly type A (PAPA) have the typical symptom of a well-formed supernumerary digit outside the fifth digit. OBJECTIVE The aim of present study was to identify the causative mutations of two unrelated Han Chinese patients with non-syndromic PAPA. METHODS Two unrelated Han Chinese patients and 100 ethnicity-matched, unrelated normal controls were recruited for this study. BGISEQ-500 exome sequencing was performed in the two patients, followed by validation in the patients and 100 controls by using Sanger sequencing. RESULTS Two mutations in the GLI family zinc finger 3 gene (GLI3), including a frameshift mutation c.3437_3453delTCGAGCAGCCCTGCCCC (p.L1146RfsX95) and a nonsense mutation c.3997C>T (p.Q1333X), were identified in two patients but were absent in the 100 healthy controls. CONCLUSION The two GLI3 mutations, p.L1146RfsX95 and p.Q1333X, may account for non-syndromic PAPA in the two patients, respectively. The findings of this study may expand the mutational spectrum of GLI3-PAPA and provide novel insights into the genetic basis of polydactyly.
Collapse
Affiliation(s)
- X Chen
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - L Yuan
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - H Xu
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - P Hu
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Y Yang
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Y Guo
- Department of Medical Information, Information Security and Big Data Research Institute, Central South University, Changsha, China
| | - Z Guo
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - H Deng
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China.,Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
17
|
Chatziefthimiou SD, Hornburg P, Sauer F, Mueller S, Ugurlar D, Xu ER, Wilmanns M. Structural diversity in the atomic resolution 3D fingerprint of the titin M-band segment. PLoS One 2019; 14:e0226693. [PMID: 31856237 PMCID: PMC6922384 DOI: 10.1371/journal.pone.0226693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/02/2019] [Indexed: 11/18/2022] Open
Abstract
In striated muscles, molecular filaments are largely composed of long protein chains with extensive arrays of identically folded domains, referred to as “beads-on-a-string”. It remains a largely unresolved question how these domains have developed a unique molecular profile such that each carries out a distinct function without false-positive readout. This study focuses on the M-band segment of the sarcomeric protein titin, which comprises ten identically folded immunoglobulin domains. Comparative analysis of high-resolution structures of six of these domains ‒ M1, M3, M4, M5, M7, and M10 ‒ reveals considerable structural diversity within three distinct loops and a non-conserved pattern of exposed cysteines. Our data allow to structurally interpreting distinct pathological readouts that result from titinopathy-associated variants. Our findings support general principles that could be used to identify individual structural/functional profiles of hundreds of identically folded protein domains within the sarcomere and other densely crowded cellular environments.
Collapse
Affiliation(s)
| | - Philipp Hornburg
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Florian Sauer
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Simone Mueller
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Deniz Ugurlar
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Emma-Ruoqi Xu
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
- University Hamburg Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| |
Collapse
|
18
|
Heterozygous RHO p.R135W missense mutation in a large Han-Chinese family with retinitis pigmentosa and different refractive errors. Biosci Rep 2019; 39:BSR20182198. [PMID: 31239368 PMCID: PMC6629948 DOI: 10.1042/bsr20182198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/28/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022] Open
Abstract
Retinitis pigmentosa (RP), the most common type of inherited retinal degeneration causing blindness, initially manifests as severely impaired rod function followed by deteriorating cone function. Mutations in the rhodopsin gene (RHO) are the most common cause of autosomal dominant RP (adRP). The present study aims to identify the disease-causing mutation in a numerous, four-generation Han-Chinese family with adRP detected by whole exome sequencing and Sanger sequencing. Afflicted family members present classic adRP along with heterogeneous clinical phenotypes including differing refractive errors, cataracts, astigmatism and epiretinal membranes. A missense mutation, c.403C>T (p.R135W), in the RHO gene was identified in nine subjects and it co-segregated with family members. The mutation is predicted to be disease-causing and results in rhodopsin protein abnormalities. The present study extends the genotype-phenotype relationship between RHO gene mutations and adRP clinical findings. The results have implications for familial genetic counseling, clinical management and developing RP target gene therapy strategies.
Collapse
|
19
|
Algahtani H, Shirah B, Algahtani R, Al-Qahtani MH, Abdulkareem AA, Naseer MI. A novel mutation in TTN gene in a Saudi patient with bilateral facial weakness and scapular winging. Intractable Rare Dis Res 2019; 8:142-145. [PMID: 31218166 PMCID: PMC6557229 DOI: 10.5582/irdr.2019.01052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Titin (TTN) is a large gene with 363 exons that encodes a large abundant protein (longest known polypeptide in nature) that is expressed in cardiac and skeletal muscles. TTN has an important role in the sarcomere organization, assembly of muscles, transmission of the force at the Z-line, passive myocyte stiffness, and resting tension maintenance in the I-band region. Mutation in extreme C terminus of TTN, situated at the end of M-band of the TTN in chromosome 2q31, results in tibial muscular dystrophy (TMD), also called Udd Distal Myopathy, which is an autosomal dominant distal myopathy. In this article, we report a novel mutation in TTN gene in a Saudi patient with bilateral facial weakness and scapular winging. This report adds to the literature a heterozygous missense variant c.85652C>G, p.(Pro28551Arg) in TTN gene, which may be related to genes that cause the disease, but more case validation is needed. The novel mutation described in the present study widened the genetic spectrum of TTN-associated diseases, which may benefit studies addressing this disease in the future.
Collapse
Affiliation(s)
- Hussein Algahtani
- King Abdulaziz Medical City / King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- Address correspondence to:Dr. Hussein Algahtani, King Abdulaziz Medical City/King Saud bin Abdulaziz University for Health Sciences, P.O. Box: 12723, Jeddah 21483, Saudi Arabia. Contact No.: 00966556633130. E-mail:
| | - Bader Shirah
- King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Raghad Algahtani
- King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Mohammad H. Al-Qahtani
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
20
|
Misaka T, Yoshihisa A, Takeishi Y. Titin in muscular dystrophy and cardiomyopathy: Urinary titin as a novel marker. Clin Chim Acta 2019; 495:123-128. [PMID: 30959043 DOI: 10.1016/j.cca.2019.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 01/12/2023]
Abstract
Titin, encoded by the gene TTN, is the largest human protein, and plays central roles in sarcomeric structures and functions in skeletal and cardiac muscles. Mutations of TTN are causally related to specific types of muscular dystrophies and cardiomyopathies. A developed methodology of next generation sequencing has recently led to the identification of novel TTN mutations in such diseases. The clinical significance of titin is now emerging as a target for genetic strategies. Titin-related muscular dystrophies include tibial muscular dystrophy, limb-girdle muscular dystrophy, Emery-Dreifuss muscular dystrophy, hereditary myopathy with early respiratory failure, central core myopathy, centronuclear myopathies, and Salih myopathy. Truncation mutations of TTN have been identified as the most frequent genetic cause of dilated cardiomyopathy. In this review article, we highlight the role of titin and impact of TTN mutations in the pathogenesis of muscular dystrophies and cardiomyopathies. Recently, a novel sensitive sandwich enzyme-linked immunosorbent assay (ELISA) for the detection of the urinary titin N-terminal fragments (U-TN) has been established. We discuss the clinical significance of U-TN in the diagnosis of muscular dystrophies and differential diagnosis of cardiomyopathies, as well as risk stratification in dilated cardiomyopathy.
Collapse
Affiliation(s)
- Tomofumi Misaka
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan.; Department of Advanced Cardiac Therapeutics, Fukushima Medical University, Fukushima, Japan
| | - Akiomi Yoshihisa
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan.; Department of Advanced Cardiac Therapeutics, Fukushima Medical University, Fukushima, Japan..
| | - Yasuchika Takeishi
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
21
|
Identification of a Heterozygous Mutation in the TGFBI Gene in a Hui-Chinese Family with Corneal Dystrophy. J Ophthalmol 2019; 2019:2824179. [PMID: 30915236 PMCID: PMC6399521 DOI: 10.1155/2019/2824179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/16/2019] [Accepted: 01/30/2019] [Indexed: 11/18/2022] Open
Abstract
Background/Aims Corneal dystrophies (CDs) belong to a group of hereditary heterogeneous corneal diseases which result in visual impairment due to the progressive accumulation of deposits in different corneal layers. So far, mutations in several genes have been responsible for various CDs. The purpose of this study is to identify gene mutations in a three-generation Hui-Chinese family associated with granular corneal dystrophy type I (GCD1). Methods A three-generation Hui-Chinese pedigree with GCD1 was recruited for this study. Slit-lamp biomicroscopy, optical coherence tomography, and confocal microscopy were performed to determine the clinical features of available members. Whole exome sequencing was performed on two patients to screen for potential disease-causing variants in the family. Sanger sequencing was used to test the variant in the family members. Results Clinical examinations demonstrated bilaterally abundant multiple grayish-white opacities in the basal epithelial and superficial stroma layers of corneas of the two patients. Whole exome sequencing revealed that a heterozygous missense mutation (c.1663C > T, p.Arg555Trp) in the transforming growth factor beta-induced gene (TGFBI) was shared by the two patients, and it cosegregated with this disease in the family confirmed by Sanger sequencing. Conclusions The results suggested that the heterozygous TGFBI c.1663C > T (p.Arg555Trp) mutation was responsible for GCD1 in the Hui-Chinese family, which should be of great help in genetic counseling for this family.
Collapse
|
22
|
Taghizadeh E, Rezaee M, Barreto GE, Sahebkar A. Prevalence, pathological mechanisms, and genetic basis of limb-girdle muscular dystrophies: A review. J Cell Physiol 2018; 234:7874-7884. [PMID: 30536378 DOI: 10.1002/jcp.27907] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/23/2018] [Indexed: 12/17/2022]
Abstract
Limb-girdle muscular dystrophies (LGMDs) are a highly heterogeneous group of neuromuscular disorders that are associated with weakness and wasting of muscles in legs and arms. Signs and symptoms may begin at any age and usually worsen by time. LGMDs are autosomal disorders with different types and their prevalence is not the same in different areas. New technologies such as next-generation sequencing can accelerate their diagnosis. Several important pathological mechanisms that are involved in the pathology of the LGMD include abnormalities in dystrophin-glycoprotein complex, the sarcomere, glycosylation of dystroglycan, vesicle and molecular trafficking, signal transduction pathways, and nuclear functions. Here, we provide a comprehensive review that integrates LGMD clinical manifestations, prevalence, and some pathological mechanisms involved in LGMDs.
Collapse
Affiliation(s)
- Eskandar Taghizadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.,Department of Medical Genetics, Faculity of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Mehdi Rezaee
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Science, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Science, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
| |
Collapse
|
23
|
Savarese M, Sarparanta J, Vihola A, Udd B, Hackman P. Increasing Role of Titin Mutations in Neuromuscular Disorders. J Neuromuscul Dis 2018; 3:293-308. [PMID: 27854229 PMCID: PMC5123623 DOI: 10.3233/jnd-160158] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The TTN gene with 363 coding exons encodes titin, a giant muscle protein spanning from the Z-disk to the M-band within the sarcomere. Mutations in the TTN gene have been associated with different genetic disorders, including hypertrophic and dilated cardiomyopathy and several skeletal muscle diseases. Before the introduction of next generation sequencing (NGS) methods, the molecular analysis of TTN has been laborious, expensive and not widely used, resulting in a limited number of mutations identified. Recent studies however, based on the use of NGS strategies, give evidence of an increasing number of rare and unique TTN variants. The interpretation of these rare variants of uncertain significance (VOUS) represents a challenge for clinicians and researchers. The main aim of this review is to describe the wide spectrum of muscle diseases caused by TTN mutations so far determined, summarizing the molecular findings as well as the clinical data, and to highlight the importance of joint efforts to respond to the challenges arising from the use of NGS. An international collaboration through a clinical and research consortium and the development of a single accessible database listing variants in the TTN gene, identified by high throughput approaches, may be the key to a better assessment of titinopathies and to systematic genotype– phenotype correlation studies.
Collapse
Affiliation(s)
- Marco Savarese
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Jaakko Sarparanta
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland.,Albert Einstein College of Medicine, Departments of Medicine- Endocrinology and Molecular Pharmacology, Bronx, NY, USA
| | - Anna Vihola
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Bjarne Udd
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland.,Neuromuscular Research Center, University of Tampere and Tampere University Hospital, Tampere, Finland.,Department of Neurology, Vaasa Central Hospital, Vaasa, Finland
| | - Peter Hackman
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| |
Collapse
|
24
|
Yuan L, Zheng W, Yang Z, Deng X, Song Z, Deng H. Association of the AADAC gene and Tourette syndrome in a Han Chinese cohort. Neurosci Lett 2017; 666:24-27. [PMID: 29253601 DOI: 10.1016/j.neulet.2017.12.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 08/16/2017] [Accepted: 12/14/2017] [Indexed: 02/03/2023]
Abstract
Tourette syndrome (TS) is a complex neuropsychiatric disorder with chronic motor and vocal tics. Though the etiology is elusive, strong evidence for a genetic contribution to TS has been established. To date, various chromosomal or genetic alterations have been implicated in its pathogenesis. Recently, the deletion in the arylacetamide deacetylase gene (AADAC) was reported to be associated with TS. To investigate the association between the AADAC gene variants and TS, we conducted genetic analysis of the AADAC gene in 200 Han Chinese patients and 300 ethnicity-matched normal controls. Two variants, including a heterozygous splice-site variant, c.361 + 1G > A (rs762169706), and a missense variant, c.744A > T (p.R248S, rs186388618), were identified in two unrelated patients. The c.361 + 1G > A variant, absent in 300 ethnicity-matched controls, led to the deletion of exon 2 in AADAC mRNA, probably associated with development of TS. The c.744A > T variant, predicted to be damaging, was identified in two normal controls. The findings indicate that the AADAC gene c.361 + 1G > A variant may be a potential candidate factor for TS development, though further investigations are warranted.
Collapse
Affiliation(s)
- Lamei Yuan
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China; Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wen Zheng
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zuocheng Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiong Deng
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Song
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Deng
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China; Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
25
|
Hu P, Wu S, Yuan L, Lin Q, Zheng W, Xia H, Xu H, Guan L, Deng H. Compound heterozygous POMT1 mutations in a Chinese family with autosomal recessive muscular dystrophy-dystroglycanopathy C1. J Cell Mol Med 2017; 21:1388-1393. [PMID: 28157257 PMCID: PMC5487925 DOI: 10.1111/jcmm.13068] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/24/2016] [Indexed: 11/29/2022] Open
Abstract
Muscular dystrophy-dystroglycanopathy (MDDG) is a genetically and clinically heterogeneous group of muscular disorders, characterized by congenital muscular dystrophy or later-onset limb-girdle muscular dystrophy accompanied by brain and ocular abnormalities, resulting from aberrant alpha-dystroglycan glycosylation. Exome sequencing and Sanger sequencing were performed on a six-generation consanguineous Han Chinese family, members of which had autosomal recessive MDDG. Compound heterozygous mutations, c.1338+1G>A (p.H415Kfs*3) and c.1457G>C (p.W486S, rs746849558), in the protein O-mannosyltransferase 1 gene (POMT1), were identified as the genetic cause. Patients that exhibited milder MDDG manifested as later-onset progressive proximal pelvic, shoulder girdle and limb muscle weakness, joint contractures, mental retardation and elevated creatine kinase, without structural brain or ocular abnormalities, were further genetically diagnosed as MDDGC1. The POMT1 gene splice-site mutation (c.1338+1G>A) which leads to exon 13 skipping and results in a truncated protein may contribute to a severe phenotype, while the allelic missense mutation (p.W486S) may reduce MDDG severity. These findings may expand phenotype and mutation spectrum of the POMT1 gene. Clinical diagnosis supplemented with molecular screening may result in more accurate diagnoses of, prognoses for, and improved genetic counselling for this disease.
Collapse
Affiliation(s)
- Pengzhi Hu
- Center for Experimental Medicine and Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Song Wu
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lamei Yuan
- Center for Experimental Medicine and Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | | | - Wen Zheng
- Center for Experimental Medicine and Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hong Xia
- Center for Experimental Medicine and Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongbo Xu
- Center for Experimental Medicine and Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | | | - Hao Deng
- Center for Experimental Medicine and Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
26
|
Lu Q, Yuan L, Xu H, Huang X, Yang Z, Yi J, Ni B, Chen Y, Deng H. Identification of a missense mutation in the tyrosinase gene in a Chinese family with oculocutaneous albinism type 1. Mol Med Rep 2017; 15:1426-1430. [PMID: 28112372 DOI: 10.3892/mmr.2017.6137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 12/07/2016] [Indexed: 11/05/2022] Open
|
27
|
A customized high-resolution array-comparative genomic hybridization to explore copy number variations in Parkinson's disease. Neurogenetics 2016; 17:233-244. [PMID: 27637465 PMCID: PMC5566182 DOI: 10.1007/s10048-016-0494-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/07/2016] [Indexed: 12/13/2022]
Abstract
Parkinson’s disease (PD), the second most common progressive neurodegenerative disorder, was long believed to be a non-genetic sporadic syndrome. Today, only a small percentage of PD cases with genetic inheritance patterns are known, often complicated by reduced penetrance and variable expressivity. The few well-characterized Mendelian genes, together with a number of risk factors, contribute to the major sporadic forms of the disease, thus delineating an intricate genetic profile at the basis of this debilitating and incurable condition. Along with single nucleotide changes, gene-dosage abnormalities and copy number variations (CNVs) have emerged as significant disease-causing mutations in PD. However, due to their size variability and to the quantitative nature of the assay, CNV genotyping is particularly challenging. For this reason, innovative high-throughput platforms and bioinformatics algorithms are increasingly replacing classical CNV detection methods. Here, we report the design strategy, development, validation and implementation of NeuroArray, a customized exon-centric high-resolution array-based comparative genomic hybridization (aCGH) tailored to detect single/multi-exon deletions and duplications in a large panel of PD-related genes. This targeted design allows for a focused evaluation of structural imbalances in clinically relevant PD genes, combining exon-level resolution with genome-wide coverage. The NeuroArray platform may offer new insights in elucidating inherited potential or de novo structural alterations in PD patients and investigating new candidate genes.
Collapse
|
28
|
Wu Y, Hu P, Xu H, Yuan J, Yuan L, Xiong W, Deng X, Deng H. A novel heterozygous COL4A4 missense mutation in a Chinese family with focal segmental glomerulosclerosis. J Cell Mol Med 2016; 20:2328-2332. [PMID: 27469977 PMCID: PMC5134383 DOI: 10.1111/jcmm.12924] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/12/2016] [Indexed: 01/15/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is the most common glomerular histological lesion associated with high-grade proteinuria and end-stage renal disease. Histologically, FSGS is characterized by focal segmental sclerosis with foot process effacement. The aim of this study was to identify the disease-causing mutation in a four-generation Chinese family with FSGS. A novel missense mutation, c.1856G>A (p.Gly619Asp), in the collagen type IV alpha-4 gene (COL4A4) was identified in six patients and it co-segregated with the disease in this family. The variant is predicted to be disease-causing and results in collagen IV abnormalities. Our finding broadens mutation spectrum of the COL4A4 gene and extends the phenotypic spectrum of collagen IV nephropathies. Our study suggests that exome sequencing is a cost-effective and efficient approach for identification of disease-causing mutations in phenotypically complex or equivocal disorders. Timely screening for COL4A3/COL4A4 mutations in patients with familial FSGS may help both accurately diagnose and treat these patients.
Collapse
Affiliation(s)
- Yuan Wu
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Clinical Laboratory, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Pengzhi Hu
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongbo Xu
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jinzhong Yuan
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lamei Yuan
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wei Xiong
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiong Deng
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Deng
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|