1
|
Zhang C, Xie S, Malek M. SNAP-25: A biomarker of synaptic loss in neurodegeneration. Clin Chim Acta 2025; 571:120236. [PMID: 40058720 DOI: 10.1016/j.cca.2025.120236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/18/2025]
Abstract
Synaptic dysfunction is one of the most important markers of neurodegenerative diseases, which contribute to cognitive decline and the loss of neurons. Synaptosomal-associated protein 25 (SNAP-25) is a member of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, which plays a significant role in the exocytosis of synaptic vesicles and the release of neurotransmitters. Recent studies have shown that expression levels of SNAP-25 are altered in various neurodegenerative disorders, including Alzheimer's disease (AD), Huntington's disease (HD), and Creutzfeldt-Jakob disease (CJD). These investigations led to the consideration of SNAP-25 as a potential biomarker of synaptic degeneration. Understanding the role of SNAP-25 in neurodegeneration will aid in early diagnosis, disease monitoring, and therapeutic development, and will also provide new insights into synaptic dysfunction as a main feature of neurodegenerative diseases. Therefore, this paper explores the physiological role of SNAP-25, its involvement in synaptic pathology, and the implications of its dysregulation in neurodegenerative conditions, such as AD, HD, and CJD. Literature regarding cerebrospinal fluid (CSF) SNAP-25 levels as a diagnostic marker were reviewed and its applications in detecting the progression of the disease have been discussed. Additionally, the limitations of SNAP-25 as a biomarker, including variability across studies and the need for further validation have been addressed.
Collapse
Affiliation(s)
- Chaoqun Zhang
- Department of Neurology, Tiantai People's Hospital of Zhejiang Province, Tiantai Branch of Zhejiang Provincial People's Hospital, Hangzhou Medical College, Taizhou, Zhejiang 317200, China.
| | - Shanshan Xie
- Xinjiang Key Laboratory of Mental Development and Learning Science, Xinjiang Normal University, Urumqi, Xinjiang 830000, China
| | - Melika Malek
- Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Chantachotikul P, Liu S, Furukawa K, Deguchi S. AP2A1 modulates cell states between senescence and rejuvenation. Cell Signal 2025; 127:111616. [PMID: 39848456 DOI: 10.1016/j.cellsig.2025.111616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/31/2024] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
Aging proceeds with the accumulation of senescent cells in multiple organs. These cells exhibit increased size compared to young cells, which promotes further senescence and age-related diseases. Currently, the molecular mechanism behind the maintenance of such huge cell architecture undergoing senescence remains poorly understood. Here we focus on the reorganization of actin stress fibers induced upon replicative senescence in human fibroblasts, widely used as a senescent cell model. We identified, together with our previous proteomic study, that AP2A1 (alpha 1 adaptin subunit of the adaptor protein 2) is upregulated in senescent cells along the length of enlarged stress fibers. Knockdown of AP2A1 reversed senescence-associated phenotypes, exhibiting features of cellular rejuvenation, while its overexpression in young cells advanced senescence phenotypes. Similar functions of AP2A1 were identified in UV- or drug-induced senescence and were observed in epithelial cells as well. Furthermore, we found that AP2A1 is colocalized with integrin β1, and both proteins move linearly along stress fibers. With the observations that focal adhesions are enlarged in senescent cells and that this coincides with strengthened cell adhesion to the substrate, these results suggest that senescent cells maintain their large size by reinforcing their effective anchorage through integrin β1 translocation along stress fibers. This mechanism may work efficiently in senescent cells, compared with a case relying on random diffusion of integrin β1, given the enlarged cell size and resulting increase in travel time and distance for endocytosed vesicle transportation.
Collapse
Affiliation(s)
- Pirawan Chantachotikul
- Division of Bioengineering, Graduate School of Engineering Science, The University of Osaka, Japan
| | - Shiyou Liu
- Division of Bioengineering, Graduate School of Engineering Science, The University of Osaka, Japan
| | - Kana Furukawa
- Division of Bioengineering, Graduate School of Engineering Science, The University of Osaka, Japan; R(3) Institute for Newly-Emerging Science Design, The University of Osaka, Japan
| | - Shinji Deguchi
- Division of Bioengineering, Graduate School of Engineering Science, The University of Osaka, Japan; R(3) Institute for Newly-Emerging Science Design, The University of Osaka, Japan; Global Center for Medical Engineering and Informatics, The University of Osaka, Japan.
| |
Collapse
|
3
|
Sharma J, Sharma M, Kumar S, Kaushik H, Pandey H, Lal D, Jain V, Dhua AK, Yadav DK, Agarwala S, Goel P. Genetic Markers of Spina Bifida: Enrichment of Pathogenic Variants and Variants of Uncertain Significance. J Indian Assoc Pediatr Surg 2025; 30:163-169. [PMID: 40191489 PMCID: PMC11968040 DOI: 10.4103/jiaps.jiaps_193_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 04/09/2025] Open
Abstract
Introduction The genetic diversity of the population in India, shaped by its unique history of migrations and varied ethnic landscape, suggests the possibility of genetic profiles distinct from the western populations. Objective The objective is to investigate the genetic basis of spina bifida in the Indian cohort through whole-exome sequencing and pathway enrichment. Methods The variants of uncertain significance (VUS) of spina bifida were identified through whole-exome sequencing in the study cohort (n = 3). The pathogenic, likely pathogenic, and VUS were analyzed for protein-protein interactions and functional associations with genes implicated in spina bifida using tools such as STRING and KEGG pathways, which were validated through a literature review. The study was focused on the Wnt/planar cell polarity signaling pathway, which is crucial for neural tube closure. Results The study-cohort was collectively represented through 40 common VUS, including eight deleterious SNPs related to genes AP3D1, NLRP9, PCDHGA11, PRSS3, MTSS2, ENDOV, C9, and NSD3. These genes were functionally linked to neural development, immune response, and cellular processes critical for neural tube closure. Notably, interactions were observed between four genes (NLGN2, PKD1, PRSS3, and PLK1) and CTNNB1 (Wnt signaling pathway) crucial for embryonic neural tube formation. Conclusions This study has identified novel genetic variants and pathways potentially contributing to the etiopathogenesis of spina bifida in the Indian population. Future research with larger cohorts and functional studies is necessary to validate these findings and explore their potential for clinical applications in spina bifida.
Collapse
Affiliation(s)
- Jyoti Sharma
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Mahima Sharma
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Sourabh Kumar
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Himani Kaushik
- Co-founder Director, Compute Genomics Private Limited, New Delhi, India
| | - Himani Pandey
- Laboratory Head Genomics, Redcliffe Laboratories Private Limited, New Delhi, India
| | - Devi Lal
- Department of Zoology, Ramjas College, University of Delhi, New Delhi, India
| | - Vishesh Jain
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Anjan Kumar Dhua
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Devendra Kumar Yadav
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Sandeep Agarwala
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Prabudh Goel
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
4
|
Jurcau MC, Jurcau A, Diaconu RG, Hogea VO, Nunkoo VS. A Systematic Review of Sporadic Creutzfeldt-Jakob Disease: Pathogenesis, Diagnosis, and Therapeutic Attempts. Neurol Int 2024; 16:1039-1065. [PMID: 39311352 PMCID: PMC11417857 DOI: 10.3390/neurolint16050079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/09/2024] [Accepted: 09/14/2024] [Indexed: 09/26/2024] Open
Abstract
Creutzfeldt-Jakob disease is a rare neurodegenerative and invariably fatal disease with a fulminant course once the first clinical symptoms emerge. Its incidence appears to be rising, although the increasing figures may be related to the improved diagnostic tools. Due to the highly variable clinical picture at onset, many specialty physicians should be aware of this disease and refer the patient to a neurologist for complete evaluation. The diagnostic criteria have been changed based on the considerable progress made in research on the pathogenesis and on the identification of reliable biomarkers. Moreover, accumulated knowledge on pathogenesis led to the identification of a series of possible therapeutic targets, although, given the low incidence and very rapid course, the evaluation of safety and efficacy of these therapeutic strategies is challenging.
Collapse
Affiliation(s)
- Maria Carolina Jurcau
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania; (M.C.J.)
| | - Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, 410087 Oradea, Romania
| | - Razvan Gabriel Diaconu
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania; (M.C.J.)
| | - Vlad Octavian Hogea
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania; (M.C.J.)
| | - Vharoon Sharma Nunkoo
- Neurorehabilitation Ward, Clinical Emergency County Hospital Bihor, 410169 Oradea, Romania
| |
Collapse
|
5
|
Ding S, Aziz T, Meng A, Jia S. Aagab is required for zebrafish larval development by regulating neural activity. J Genet Genomics 2024; 51:630-641. [PMID: 38253235 DOI: 10.1016/j.jgg.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
Clathrin-mediated endocytosis has been implicated in various physiological processes, including nutrient uptake, signal transduction, synaptic vesicle recycling, maintenance of cell polarity, and antigen presentation. Despite prior knowledge of its importance as a key regulator in promoting clathrin-mediated endocytosis, the physiological function of α- and γ-adaptin binding protein (aagab) remains elusive. In this study, we investigate the biological function of aagab during zebrafish development. We establish a loss-of-function mutant of aagab in zebrafish, revealing impaired swimming and early larval mortality. Given the high expression level of aagab in the brain, we probe into its physiological role in the nervous system. aagab mutants display subdued calcium responses and local field potential in the optic tectal neurons, aligning with reduced neurotransmitter release (e.g., norepinephrine) in the tectal neuropil of aagab mutants. Overexpressing aagab mRNA or nervous stimulant treatment in mutants restores neurotransmitter release, calcium responses, swimming ability, and survival. Furthermore, our observations show delayed release of FM 1-43 in AAGAB knockdown differentiated neuroblastoma cells, pointing towards a probable link to defective clathrin-mediated synaptic vesicle recycling. In conclusion, our study underscores the significance of Aagab in neurobiology and suggests its potential impacts on neurological disorders.
Collapse
Affiliation(s)
- Shihui Ding
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tursunjan Aziz
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Anming Meng
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Guangzhou Laboratory, Guangzhou, Guangdong 510320, China
| | - Shunji Jia
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
6
|
Bentivenga GM, Baiardi S, Mastrangelo A, Zenesini C, Mammana A, Polischi B, Capellari S, Parchi P. Diagnostic and prognostic value of cerebrospinal fluid SNAP-25 and neurogranin in Creutzfeldt-Jakob disease in a clinical setting cohort of rapidly progressive dementias. Alzheimers Res Ther 2023; 15:150. [PMID: 37684653 PMCID: PMC10485978 DOI: 10.1186/s13195-023-01300-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND The levels of synaptic markers synaptosomal-associated protein 25 (SNAP-25) and neurogranin (Ng) have been shown to increase early in the cerebrospinal fluid (CSF) of patients with Creutzfeldt-Jakob disease (CJD) and to have prognostic potential. However, no validation studies assessed these biomarkers' diagnostic and prognostic value in a large clinical setting cohort of rapidly progressive dementia. METHODS In this retrospective study, using commercially available immunoassays, we measured the levels of SNAP-25, Ng, 14-3-3, total-tau (t-tau), neurofilament light chain (NfL), and phospho-tau181 (p-tau) in CSF samples from consecutive patients with CJD (n = 220) or non-prion rapidly progressive dementia (np-RPD) (n = 213). We evaluated and compared the diagnostic accuracy of each CSF biomarker and biomarker combination by receiver operating characteristics curve (ROC) analyses, studied SNAP-25 and Ng CSF concentrations distribution across CJD subtypes, and estimated their association with survival using multivariable Cox regression analyses. RESULTS CSF SNAP-25 and Ng levels were higher in CJD than in np-RPD (SNAP-25: 582, 95% CI 240-1250 vs. 115, 95% CI 78-157 pg/ml, p < 0.0001; Ng: 841, 95% CI 411-1473 vs. 390, 95% CI 260-766 pg/ml, p < 0.001). SNAP-25 diagnostic accuracy (AUC 0.902, 95% CI 0.873-0.931) exceeded that of 14-3-3 (AUC 0.853, 95% CI 0.816-0.889), t-tau (AUC 0.878, 95% CI 0.845-0.901), and the t-tau/p-tau ratio (AUC 0.884, 95% CI 0.851-0.916). In contrast, Ng performed worse (AUC 0.697, 95% CI 0.626-0.767) than all other surrogate biomarkers, except for NfL (AUC 0.649, 95% CI 0.593-0.705). SNAP-25 maintained a relatively high diagnostic value even for atypical CJD subtypes (AUC 0.792, 95% CI 0.729-0.854). In Cox regression analyses, SNAP-25 levels were significantly associated with survival in CJD (hazard ratio [HR] 1.71 95% CI 1.40-2.09). Conversely, Ng was associated with survival only in the most rapidly progressive CJD subtypes (sCJD MM(V)1 and gCJD M1) (HR 1.81 95% CI 1.21-2.93). CONCLUSIONS In the clinical setting, CSF SNAP-25 is a viable alternative to t-tau, 14-3-3, and the t-tau/p-tau ratio in discriminating the CJD subtypes from other RPDs. Additionally, SNAP-25 and, to a lesser extent, Ng predict survival in CJD, showing prognostic power in the range of CSF t-tau/14-3-3 and NfL, respectively.
Collapse
Affiliation(s)
| | - Simone Baiardi
- Department of Biomedical and Neuromotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
| | - Andrea Mastrangelo
- Department of Biomedical and Neuromotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
| | - Corrado Zenesini
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Programma Neuropatologia delle Malattie Neurodegenerative, Bologna, Italy
| | - Angela Mammana
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Programma Neuropatologia delle Malattie Neurodegenerative, Bologna, Italy
| | - Barbara Polischi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Programma Neuropatologia delle Malattie Neurodegenerative, Bologna, Italy
| | - Sabina Capellari
- Department of Biomedical and Neuromotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Programma Neuropatologia delle Malattie Neurodegenerative, Bologna, Italy
| | - Piero Parchi
- Department of Biomedical and Neuromotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy.
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Programma Neuropatologia delle Malattie Neurodegenerative, Bologna, Italy.
| |
Collapse
|
7
|
Ma W, Su Y, Zhang P, Wan G, Cheng X, Lu C, Gu X. Identification of mitochondrial-related genes as potential biomarkers for the subtyping and prediction of Alzheimer's disease. Front Mol Neurosci 2023; 16:1205541. [PMID: 37470054 PMCID: PMC10352499 DOI: 10.3389/fnmol.2023.1205541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction Alzheimer's disease (AD) is a progressive and debilitating neurodegenerative disorder prevalent among older adults. Although AD symptoms can be managed through certain treatments, advancing the understanding of underlying disease mechanisms and developing effective therapies is critical. Methods In this study, we systematically analyzed transcriptome data from temporal lobes of healthy individuals and patients with AD to investigate the relationship between AD and mitochondrial autophagy. Machine learning algorithms were used to identify six genes-FUNDC1, MAP1LC3A, CSNK2A1, VDAC1, CSNK2B, and ATG5-for the construction of an AD prediction model. Furthermore, AD was categorized into three subtypes through consensus clustering analysis. Results The identified genes are closely linked to the onset and progression of AD and can serve as reliable biomarkers. The differences in gene expression, clinical features, immune infiltration, and pathway enrichment were examined among the three AD subtypes. Potential drugs for the treatment of each subtype were also identified. Discussion The findings observed in the present study can help to deepen the understanding of the underlying disease mechanisms of AD and enable the development of precision medicine and personalized treatment approaches.
Collapse
Affiliation(s)
- Wenhao Ma
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yuelin Su
- Department of Ultrasound Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Peng Zhang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Guoqing Wan
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xiaoqin Cheng
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Changlian Lu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xuefeng Gu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
8
|
Halbgebauer S, Steinacker P, Hengge S, Oeckl P, Abu Rumeileh S, Anderl-Straub S, Lombardi J, Von Arnim CAF, Giese A, Ludolph AC, Otto M. CSF levels of SNAP-25 are increased early in Creutzfeldt-Jakob and Alzheimer's disease. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2021-328646. [PMID: 35995553 DOI: 10.1136/jnnp-2021-328646] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/22/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND Synaptosomal-associated protein 25 (SNAP-25) in cerebrospinal fluid (CSF) is an emerging synaptic biomarker for the early diagnosis of Alzheimer's disease (AD). However, comprehensive studies investigating the marker in Creutzfeldt-Jakob disease (CJD) and in the differential diagnosis of neurodegenerative diseases are still lacking. METHODS We developed a novel, sensitive ELISA for the measurement of SNAP-25 in CSF. In total, we analysed 316 patients from 6 diagnostic groups comprising patients with AD (n=96), CJD (n=55), Parkinson's disease spectrum (n=41), frontotemporal lobar degeneration (n=25) and amyotrophic lateral sclerosis (n=24) and non-neurodegenerative control patients (n=75). Using receiver operating characteristic curve analysis, we analysed the differential diagnostic potential and compared the results with core AD biomarkers. RESULTS SNAP-25 CSF concentrations were elevated in AD and CJD (p<0.0001) but not in the other neurodegenerative diseases. Increased levels were observed already at early AD and CJD stages (p<0.0001). In CJD, SNAP-25 levels correlated negatively with survival time (r=-0.33 (95% CI -0.57 to -0.04, p=0.02). For the discrimination of AD from all other diseases except CJD, we observed a good diagnostic performance for CSF SNAP-25 (area under the curve (AUC) 0.85) which was further improved by applying the ratio with CSF amyloid-β 1-42 (AUC 0.95). For CJD, we could demonstrate a strong differential diagnostic potential against all other groups including AD (AUC 0.97). CONCLUSION Using the novel established CSF SNAP-25 ELISA, we here demonstrate the applicability of SNAP-25 as an early synaptic biomarker for both AD and CJD with a possible prognostic value in patients with CJD.
Collapse
Affiliation(s)
| | - Petra Steinacker
- Department of Neurology, University of Ulm, Ulm, Germany
- Neurology, Martin-Luther-Universitat Halle-Wittenberg, Halle, Germany
| | - Sophie Hengge
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Patrick Oeckl
- Department of Neurology, University of Ulm, Ulm, Germany
- German Center for Neurodegenerative Diseases, Ulm, Germany
| | - Samir Abu Rumeileh
- Department of Neurology, University of Ulm, Ulm, Germany
- Neurology, Martin-Luther-Universitat Halle-Wittenberg, Halle, Germany
| | | | | | - Christine A F Von Arnim
- Department of Neurology, University of Ulm, Ulm, Germany
- Department of Geriatrics, University Medical Center Göttingen, Goettingen, Germany
| | - Armin Giese
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Munich, Germany
| | - Albert C Ludolph
- Department of Neurology, University of Ulm, Ulm, Germany
- German Center for Neurodegenerative Diseases, Ulm, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
- Neurology, Martin-Luther-Universitat Halle-Wittenberg, Halle, Germany
| |
Collapse
|
9
|
Nilsson J, Ashton NJ, Benedet AL, Montoliu-Gaya L, Gobom J, Pascoal TA, Chamoun M, Portelius E, Jeromin A, Mendes M, Zetterberg H, Rosa-Neto P, Brinkmalm A, Blennow K. Quantification of SNAP-25 with mass spectrometry and Simoa: a method comparison in Alzheimer's disease. Alzheimers Res Ther 2022; 14:78. [PMID: 35659284 PMCID: PMC9166380 DOI: 10.1186/s13195-022-01021-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Synaptic dysfunction and degeneration are central to Alzheimer's disease (AD) and have been found to correlate strongly with cognitive decline. Thus, studying cerebrospinal fluid (CSF) biomarkers reflecting synaptic degeneration, such as the presynaptic protein synaptosomal-associated protein 25 (SNAP-25), is of importance to better understand the AD pathophysiology. METHODS We compared a newly developed Single molecule array (Simoa) immunoassay for SNAP-25 with an in-house immunoprecipitation mass spectrometry (IP-MS) method in a well-characterized clinical cohort (n = 70) consisting of cognitively unimpaired (CU) and cognitively impaired (CI) individuals with and without Aβ pathology (Aβ+ and Aβ-). RESULTS A strong correlation (Spearman's rank correlation coefficient (rs) > 0.88; p < 0.0001) was found between the Simoa and IP-MS methods, and no statistically significant difference was found for their clinical performance to identify AD pathophysiology in the form of Aβ pathology. Increased CSF SNAP-25 levels in CI Aβ+ compared with CU Aβ- (Simoa, p ≤ 0.01; IP-MS, p ≤ 0.05) and CI Aβ- (Simoa, p ≤ 0.01; IP-MS, p ≤ 0.05) were observed. In independent blood samples (n = 32), the Simoa SNAP-25 assay was found to lack analytical sensitivity for quantification of SNAP-25 in plasma. CONCLUSIONS These results indicate that the Simoa SNAP-25 method can be used interchangeably with the IP-MS method for the quantification of SNAP-25 in CSF. Additionally, these results confirm that CSF SNAP-25 is increased in relation to amyloid pathology in the AD continuum.
Collapse
Affiliation(s)
- Johanna Nilsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, SE-43180 Mölndal, Gothenburg, Sweden.
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, SE-43180 Mölndal, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Andrea L Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, SE-43180 Mölndal, Gothenburg, Sweden
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, Canada
- Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Laia Montoliu-Gaya
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, SE-43180 Mölndal, Gothenburg, Sweden
| | - Johan Gobom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, SE-43180 Mölndal, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, SE-43180, Mölndal, Sweden
| | - Tharick A Pascoal
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, Canada
- Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Mira Chamoun
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, Canada
- Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Erik Portelius
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, SE-43180, Mölndal, Sweden
| | | | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, SE-43180 Mölndal, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, SE-43180, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, Canada
- Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montréal, Canada
- Montreal Neurological Institute, Montréal, QC, Canada
| | - Ann Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, SE-43180 Mölndal, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, SE-43180, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, SE-43180 Mölndal, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, SE-43180, Mölndal, Sweden
| |
Collapse
|
10
|
Khadka A, Spiers JG, Cheng L, Hill AF. Extracellular vesicles with diagnostic and therapeutic potential for prion diseases. Cell Tissue Res 2022; 392:247-267. [PMID: 35394216 PMCID: PMC10113352 DOI: 10.1007/s00441-022-03621-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/25/2022] [Indexed: 12/14/2022]
Abstract
Prion diseases (PrD) or transmissible spongiform encephalopathies (TSE) are invariably fatal and pathogenic neurodegenerative disorders caused by the self-propagated misfolding of cellular prion protein (PrPC) to the neurotoxic pathogenic form (PrPTSE) via a yet undefined but profoundly complex mechanism. Despite several decades of research on PrD, the basic understanding of where and how PrPC is transformed to the misfolded, aggregation-prone and pathogenic PrPTSE remains elusive. The primary clinical hallmarks of PrD include vacuolation-associated spongiform changes and PrPTSE accumulation in neural tissue together with astrogliosis. The difficulty in unravelling the disease mechanisms has been related to the rare occurrence and long incubation period (over decades) followed by a very short clinical phase (few months). Additional challenge in unravelling the disease is implicated to the unique nature of the agent, its complexity and strain diversity, resulting in the heterogeneity of the clinical manifestations and potentially diverse disease mechanisms. Recent advances in tissue isolation and processing techniques have identified novel means of intercellular communication through extracellular vesicles (EVs) that contribute to PrPTSE transmission in PrD. This review will comprehensively discuss PrPTSE transmission and neurotoxicity, focusing on the role of EVs in disease progression, biomarker discovery and potential therapeutic agents for the treatment of PrD.
Collapse
Affiliation(s)
- Arun Khadka
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Jereme G Spiers
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Lesley Cheng
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Andrew F Hill
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia. .,Institute for Health and Sport, Victoria University, Footscray, VIC, Australia.
| |
Collapse
|
11
|
Martín-de-Saavedra MD, Santos MD, Penzes P. Intercellular signaling by ectodomain shedding at the synapse. Trends Neurosci 2022; 45:483-498. [DOI: 10.1016/j.tins.2022.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/21/2022] [Accepted: 03/11/2022] [Indexed: 12/21/2022]
|
12
|
Shin J, Nile A, Oh JW. Role of adaptin protein complexes in intracellular trafficking and their impact on diseases. Bioengineered 2021; 12:8259-8278. [PMID: 34565296 PMCID: PMC8806629 DOI: 10.1080/21655979.2021.1982846] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023] Open
Abstract
Adaptin proteins (APs) play a crucial role in intracellular cell trafficking. The 'classical' role of APs is carried out by AP1‒3, which bind to clathrin, cargo, and accessory proteins. Accordingly, AP1-3 are crucial for both vesicle formation and sorting. All APs consist of four subunits that are indispensable for their functions. In fact, based on studies using cells, model organism knockdown/knock-out, and human variants, each subunit plays crucial roles and contributes to the specificity of each AP. These studies also revealed that the sorting and intracellular trafficking function of AP can exert varying effects on pathology by controlling features such as cell development, signal transduction related to the apoptosis and proliferation pathways in cancer cells, organelle integrity, receptor presentation, and viral infection. Although the roles and functions of AP1‒3 are relatively well studied, the functions of the less abundant and more recently identified APs, AP4 and AP5, are still to be investigated. Further studies on these APs may enable a better understanding and targeting of specific diseases.APs known or suggested locations and functions.
Collapse
Affiliation(s)
- Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology and Animal Resources Research Center, Konkuk University, Seoul, Republic of Korea
| | - Arti Nile
- Department of Stem Cell and Regenerative Biotechnology and Animal Resources Research Center, Konkuk University, Seoul, Republic of Korea
| | - Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology and Animal Resources Research Center, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Camporesi E, Nilsson J, Brinkmalm A, Becker B, Ashton NJ, Blennow K, Zetterberg H. Fluid Biomarkers for Synaptic Dysfunction and Loss. Biomark Insights 2020; 15:1177271920950319. [PMID: 32913390 PMCID: PMC7444114 DOI: 10.1177/1177271920950319] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
Synapses are the site for brain communication where information is transmitted between neurons and stored for memory formation. Synaptic degeneration is a global and early pathogenic event in neurodegenerative disorders with reduced levels of pre- and postsynaptic proteins being recognized as a core feature of Alzheimer's disease (AD) pathophysiology. Together with AD, other neurodegenerative and neurodevelopmental disorders show altered synaptic homeostasis as an important pathogenic event, and due to that, they are commonly referred to as synaptopathies. The exact mechanisms of synapse dysfunction in the different diseases are not well understood and their study would help understanding the pathogenic role of synaptic degeneration, as well as differences and commonalities among them and highlight candidate synaptic biomarkers for specific disorders. The assessment of synaptic proteins in cerebrospinal fluid (CSF), which can reflect synaptic dysfunction in patients with cognitive disorders, is a keen area of interest. Substantial research efforts are now directed toward the investigation of CSF synaptic pathology to improve the diagnosis of neurodegenerative disorders at an early stage as well as to monitor clinical progression. In this review, we will first summarize the pathological events that lead to synapse loss and then discuss the available data on established (eg, neurogranin, SNAP-25, synaptotagmin-1, GAP-43, and α-syn) and emerging (eg, synaptic vesicle glycoprotein 2A and neuronal pentraxins) CSF biomarkers for synapse dysfunction, while highlighting possible utilities, disease specificity, and technical challenges for their detection.
Collapse
Affiliation(s)
- Elena Camporesi
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johanna Nilsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ann Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bruno Becker
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- King’s College London, Institute of Psychiatry, Psychology & Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
- Wallenberg Centre for Molecular and Translational Medicine, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| |
Collapse
|
14
|
Sai N, Shi X, Zhang Y, Jiang QQ, Ji F, Yuan SL, Sun W, Guo WW, Yang SM, Han WJ. Involvement of Cholesterol Metabolic Pathways in Recovery from Noise-Induced Hearing Loss. Neural Plast 2020; 2020:6235948. [PMID: 32617095 PMCID: PMC7306080 DOI: 10.1155/2020/6235948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/08/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
The objective of this study was to explore the molecular mechanisms of acute noise-induced hearing loss and recovery of steady-state noise-induced hearing loss using miniature pigs. We used miniature pigs exposed to white noise at 120 dB (A) as a model. Auditory brainstem response (ABR) measurements were made before noise exposure, 1 day and 7 days after noise exposure. Proteomic Isobaric Tags for Relative and Absolute Quantification (iTRAQ) was used to observe changes in proteins of the miniature pig inner ear following noise exposure. Western blot and immunofluorescence were performed for further quantitative and qualitative analysis of proteomic changes. The average ABR-click threshold of miniature pigs before noise exposure, 1 day and 7 days after noise exposure, were 39.4 dB SPL, 67.1 dB SPL, and 50.8 dB SPL, respectively. In total, 2,158 proteins were identified using iTRAQ. Both gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) database analyses showed that immune and metabolic pathways were prominently involved during the impairment stage of acute hearing loss. During the recovery stage of acute hearing loss, most differentially expressed proteins were related to cholesterol metabolism. Western blot and immunofluorescence showed accumulation of reactive oxygen species and nuclear translocation of NF-κB (p65) in the hair cells of miniature pig inner ears during the acute hearing loss stage after noise exposure. Nuclear translocation of NF-κB (p65) may be associated with overexpression of downstream inflammatory factors. Apolipoprotein (Apo) A1 and Apo E were significantly upregulated during the recovery stage of hearing loss and may be related to activation of cholesterol metabolic pathways. This is the first study to use proteomics analysis to analyze the molecular mechanisms of acute noise-induced hearing loss and its recovery in a large animal model (miniature pigs). Our results showed that activation of metabolic, inflammatory, and innate immunity pathways may be involved in acute noise-induced hearing loss, while cholesterol metabolic pathways may play an important role in recovery of hearing ability following noise-induced hearing loss.
Collapse
Affiliation(s)
- Na Sai
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Lab of Hearing Science, Ministry of Education, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Xi Shi
- Clinical Hearing Center of Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Yan Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Qing-qing Jiang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Lab of Hearing Science, Ministry of Education, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Fei Ji
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Lab of Hearing Science, Ministry of Education, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Shuo-long Yuan
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Lab of Hearing Science, Ministry of Education, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Wei Sun
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Wei-Wei Guo
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Lab of Hearing Science, Ministry of Education, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Shi-Ming Yang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Lab of Hearing Science, Ministry of Education, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Wei-Ju Han
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Lab of Hearing Science, Ministry of Education, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| |
Collapse
|
15
|
Liang H, Li W, Yang H, Cao Y, Ge L, Shi R, Fan Z, Dong R, Zhang C. FAM96B inhibits the senescence of dental pulp stem cells. Cell Biol Int 2020; 44:1193-1203. [DOI: 10.1002/cbin.11319] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/02/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Hanbing Liang
- Department of EndodonticsCapital Medical University School of Stomatology Beijing 100050 China
| | - Wenzhi Li
- Department of EndodonticsCapital Medical University School of Stomatology Beijing 100050 China
| | - Haoqing Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function ReconstructionCapital Medical University School of Stomatology Beijing 100050 China
| | - Yangyang Cao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function ReconstructionCapital Medical University School of Stomatology Beijing 100050 China
| | - Lihua Ge
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function ReconstructionCapital Medical University School of Stomatology Beijing 100050 China
| | - Ruitang Shi
- Department of EndodonticsCapital Medical University School of Stomatology Beijing 100050 China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function ReconstructionCapital Medical University School of Stomatology Beijing 100050 China
| | - Rui Dong
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function ReconstructionCapital Medical University School of Stomatology Beijing 100050 China
| | - Chen Zhang
- Department of EndodonticsCapital Medical University School of Stomatology Beijing 100050 China
| |
Collapse
|
16
|
Alexander CJ, Wagner W, Copeland NG, Jenkins NA, Hammer JA. Creation of a myosin Va-TAP-tagged mouse and identification of potential myosin Va-interacting proteins in the cerebellum. Cytoskeleton (Hoboken) 2019; 75:395-409. [PMID: 29979496 DOI: 10.1002/cm.21474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/19/2018] [Accepted: 06/27/2018] [Indexed: 12/29/2022]
Abstract
The actin-based motor myosin Va transports numerous cargos, including the smooth endoplasmic reticulum (SER) in cerebellar Purkinje neurons (PNs) and melanosomes in melanocytes. Identifying proteins that interact with this myosin is key to understanding its cellular functions. Toward that end, we used recombineering to insert via homologous recombination a tandem affinity purification (TAP) tag composed of the immunoglobulin G-binding domain of protein A, a tobacco etch virus cleavage site, and a FLAG tag into the mouse MYO5A locus immediately after the initiation codon. Importantly, we provide evidence that the TAP-tagged version of myosin Va (TAP-MyoVa) functions normally in terms of SER transport in PNs and melanosome positioning in melanocytes. Given this and other evidence that TAP-MyoVa is fully functional, we purified it together with associated proteins directly from juvenile mouse cerebella and subjected the samples to mass spectroscopic analyses. As expected, known myosin Va-binding partners like dynein light chain were identified. Importantly, numerous novel interacting proteins were also tentatively identified, including guanine nucleotide-binding protein G(o) subunit alpha (Gnao1), a biomarker for schizophrenia. Consistently, an antibody to Gnao1 immunoprecipitates myosin Va, and Gnao1's localization to PN dendritic spines depends on myosin Va. The mouse model created here should facilitate the identification of novel myosin Va-binding partners, which in turn should advance our understanding of the roles played by this important myosin in vivo.
Collapse
Affiliation(s)
- Christopher J Alexander
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Wolfgang Wagner
- Center for Molecular Neurobiology (ZMNH), Department of Molecular Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Neal G Copeland
- The University of Texas MD Anderson, Department of Genetics, Cancer Center, Houston, Texas
| | - Nancy A Jenkins
- The University of Texas MD Anderson, Department of Genetics, Cancer Center, Houston, Texas
| | - John A Hammer
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
17
|
Wang X, Zhang J, Zhou L, Xu B, Ren X, He K, Nie L, Li X, Liu J, Yang X, Yuan J. Long-term iron exposure causes widespread molecular alterations associated with memory impairment in mice. Food Chem Toxicol 2019; 130:242-252. [PMID: 31136779 DOI: 10.1016/j.fct.2019.05.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/09/2019] [Accepted: 05/24/2019] [Indexed: 12/14/2022]
Abstract
Limited literature available indicates the neurotoxic effects of excessive iron, however, a deep understanding of iron neurotoxicity needs to be developed. In this study, we evaluated the toxic effects of excessive iron on learning and cognitive function in long-term iron exposure (oral, 10 mg/L, 6 months) of mice by behavioral tests including novel object recognition test, step-down passive avoidance test and Morris water maze test, and further analyzed differential expression of hippocampal proteins. The behavioral tests consistently showed that iron treatment caused cognitive defects of the mice. Proteomic analysis revealed 66 differentially expressed hippocampal proteins (30 increased and 36 decreased) in iron-treated mice as compared with the control ones. Bioinformatics analysis showed that the dysregulated proteins mainly included: synapse-associated proteins (i.e. synaptosomal-associated protein 25 (SNAP25), complexin-1 (CPLX1), vesicle-associated membrane protein 2 (VAMP2), neurochondrin (NCDN)); mitochondria-related proteins (i.e. ADP/ATP translocase 1 (SLC25A4), 14-3-3 protein zeta/delta (YWHAZ)); cytoskeleton proteins (i.e. neurofilament light polypeptide (NEFL), tubulin beta-2B chain (TUBB2B), tubulin alpha-4A chain (TUBA4A)). The findings suggest that the dysregulations of synaptic, mitochondrial, and cytoskeletal proteins may be involved in iron-triggered memory impairment. This study provides new insights into the molecular mechanisms of iron neurotoxicity.
Collapse
Affiliation(s)
- Xian Wang
- Department of Occupational and Environmental Health and Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, PR China; Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, PR China
| | - Jiafei Zhang
- Department of Occupational and Environmental Health and Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, PR China; Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, PR China
| | - Li Zhou
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, PR China
| | - Benhong Xu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, PR China
| | - Xiaohu Ren
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, PR China
| | - Kaiwu He
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, PR China
| | - Lulin Nie
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, PR China
| | - Xiao Li
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, PR China
| | - Jianjun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, PR China.
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, PR China.
| | - Jing Yuan
- Department of Occupational and Environmental Health and Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, PR China.
| |
Collapse
|
18
|
Lachén-Montes M, González-Morales A, Fernández-Irigoyen J, Santamaría E. Determination of Cerebrospinal Fluid Proteome Variations by Isobaric Labeling Coupled with Strong Cation-Exchange Chromatography and Tandem Mass Spectrometry. Methods Mol Biol 2019; 2044:155-168. [PMID: 31432412 DOI: 10.1007/978-1-4939-9706-0_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cerebrospinal fluid (CSF) is in direct contact with the brain and represents a valuable source of mediators that reflect metabolic processes occurring in the central nervous system (CNS). In this sense, mass spectrometry (MS) methods have proven to be sensitive in quantifying the proteomic profiles of CSF, therefore being able to detect biomarker candidates for neurological disorders. In particular, a key development has been the use of multiplexing technologies to easily identify and quantify complex protein mixtures. This chapter describes a workflow suitable for the analysis of CSF proteome using isobaric labeling coupled to strong cation-exchange chromatography fractionation for its potential use as a biomarker discovery platform. In this case, the isobaric tags for relative and absolute quantitation (iTRAQ) label all proteins in a sample via free amines at the N-terminus and on the side chain of lysine residues. Then, the labeled samples are pooled and chromatographically fractionated. These fractions with the pooled samples are afterward analyzed by tandem mass spectrometry (MS/MS), and proteins are quantified by the relative intensities of the reporter ions in the MS/MS spectra, simultaneously obtaining the amino acid sequence. This method complements the neuroproteomic toolbox to identify new protein biomarkers not only for the early clinical diagnosis and disease staging of CNS-related disorders but also to elucidate the molecular mechanisms related to the pathophysiology of these symptoms.
Collapse
Affiliation(s)
- Mercedes Lachén-Montes
- Proteomics Unit, Clinical Neuroproteomics Laboratory, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Proteored-ISCIII, Pamplona, Spain
| | - Andrea González-Morales
- Proteomics Unit, Clinical Neuroproteomics Laboratory, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Proteored-ISCIII, Pamplona, Spain
| | - Joaquín Fernández-Irigoyen
- Proteomics Unit, Clinical Neuroproteomics Laboratory, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Proteored-ISCIII, Pamplona, Spain
| | - Enrique Santamaría
- Proteomics Unit, Clinical Neuroproteomics Laboratory, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Proteored-ISCIII, Pamplona, Spain.
| |
Collapse
|
19
|
Proteomic analysis of protein homeostasis and aggregation. J Proteomics 2018; 198:98-112. [PMID: 30529741 DOI: 10.1016/j.jprot.2018.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/24/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022]
Abstract
Protein homeostasis (proteostasis) refers to the ability of cells to preserve the correct balance between protein synthesis, folding and degradation. Proteostasis is essential for optimal cell growth and survival under stressful conditions. Various extracellular and intracellular stresses including heat shock, oxidative stress, proteasome malfunction, mutations and aging-related modifications can result in disturbed proteostasis manifested by enhanced misfolding and aggregation of proteins. To limit protein misfolding and aggregation cells have evolved various strategies including molecular chaperones, proteasome system and autophagy. Molecular chaperones assist folding of proteins, protect them from denaturation and facilitate renaturation of the misfolded polypeptides, whereas proteasomes and autophagosomes remove the irreversibly damaged proteins. The impairment of proteostasis results in protein aggregation that is a major pathological hallmark of numerous age-related disorders, such as cataract, Alzheimer's, Parkinson's, Huntington's, and prion diseases. To discover protein markers and speed up diagnosis of neurodegenerative diseases accompanied by protein aggregation, proteomic tools have increasingly been used in recent years. Systematic and exhaustive analysis of the changes that occur in the proteomes of affected tissues and biofluids in humans or in model organisms is one of the most promising approaches to reveal mechanisms underlying protein aggregation diseases, improve their diagnosis and develop therapeutic strategies. Significance: In this review we outline the elements responsible for maintaining cellular proteostasis and present the overview of proteomic studies focused on protein-aggregation diseases. These studies provide insights into the mechanisms responsible for age-related disorders and reveal new potential biomarkers for Alzheimer's, Parkinson's, Huntigton's and prion diseases.
Collapse
|
20
|
Cagnone M, Bardoni A, Iadarola P, Viglio S. Could Proteomics Become a Future Useful Tool to Shed Light on the Mechanisms of Rare Neurodegenerative Disorders? High Throughput 2018; 7:ht7010002. [PMID: 29485613 PMCID: PMC5876528 DOI: 10.3390/ht7010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/19/2017] [Accepted: 01/05/2018] [Indexed: 12/20/2022] Open
Abstract
Very often the clinical features of rare neurodegenerative disorders overlap with those of other, more common clinical disturbances. As a consequence, not only the true incidence of these disorders is underestimated, but many patients also experience a significant delay before a definitive diagnosis. Under this scenario, it appears clear that any accurate tool producing information about the pathological mechanisms of these disorders would offer a novel context for their precise identification by strongly enhancing the interpretation of symptoms. With the advent of proteomics, detection and identification of proteins in different organs/tissues, aimed at understanding whether they represent an attractive tool for monitoring alterations in these districts, has become an area of increasing interest. The aim of this report is to provide an overview of the most recent applications of proteomics as a new strategy for identifying biomarkers with a clinical utility for the investigation of rare neurodegenerative disorders.
Collapse
Affiliation(s)
- Maddalena Cagnone
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy.
| | - Anna Bardoni
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy.
| | - Paolo Iadarola
- Department of Biology and Biotechnologies "L. Spallanzani", Biochemistry Unit, University of Pavia, 27100 Pavia, Italy.
| | - Simona Viglio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|