1
|
Yu W, Wu Z, Li X, Ding M, Xu Y, Zhao P. Ketamine counteracts sevoflurane-induced depressive-like behavior and synaptic plasticity impairments through the adenosine A2A receptor/ERK pathway in rats. Mol Neurobiol 2023; 60:6160-6175. [PMID: 37428405 DOI: 10.1007/s12035-023-03474-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
Ketamine is an ionic glutamic acid N-methyl-d-aspartate receptor (NMDAR) antagonist commonly used in clinical anesthesia, and its rapid and lasting antidepressant effect has stimulated great interest in psychology research. However, the molecular mechanisms underlying its antidepressant action are still undetermined. Sevoflurane exposure early in life might induce developmental neurotoxicity and mood disorders. In this study, we evaluated the effect of ketamine against sevoflurane-induced depressive-like behavior and the underlying molecular mechanisms. Here, we reported that A2AR protein expression was upregulated in rats with depression induced by sevoflurane inhalation, which was reversed by ketamine. Pharmacological experiments showed that A2AR agonists could reverse the antidepressant effect of ketamine, decrease extracellular signal-regulated kinase (ERK) phosphorylation, reduce synaptic plasticity, and induce depressive-like behavior. Our results suggest that ketamine mediates ERK1/2 phosphorylation by downregulating A2AR expression and that p-ERK1/2 increases the production of synaptic-associated proteins, enhancing synaptic plasticity in the hippocampus and thereby ameliorating the depressive-like behavior induced by sevoflurane inhalation in rats. This research provides a framework for reducing anesthesia-induced developmental neurotoxicity and developing new antidepressants.
Collapse
Affiliation(s)
- Weiwei Yu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Ziyi Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Xingyue Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Mengmeng Ding
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Ying Xu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China.
| |
Collapse
|
2
|
Shang S, Sun F, Zhu Y, Yu J, Yu L, Shao W, Wang Z, Yi X. Sevoflurane preconditioning improves neuroinflammation in cerebral ischemia/reperfusion induced rats through ROS-NLRP3 pathway. Neurosci Lett 2023; 801:137164. [PMID: 36868396 DOI: 10.1016/j.neulet.2023.137164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
AIM We aimed to study the influence of sevoflurane on the nucleotide-binding domain and Leucine-rich repeat protein 3 (NLRP3) pathways in rats with cerebral ischemia/reperfusion (I/R) injury. METHODS Sixty Sprague-Dawley rats were equally divided into five groups randomly: sham-operated, cerebral I/R, sevoflurane (Sevo), NLRP3 inhibitor-treated (MCC950), and sevoflurane and NLRP3 inducer-treated groups. Rats' neurological functions were assessed using Longa scoring after 24 h of reperfusion, after which they were sacrificed, and cerebral infarction area was determined by triphenyl tetrazolium chloride staining. Pathological changes in damaged portions were assessed using hematoxylin-eosin and Nissl staining, and cell apoptosis was detected by terminal-deoxynucleotidyl transferase-mediated nick end labeling staining. Interleukin 1 beta (IL-1β), tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), interleukin-18 (IL-18), malondialdehyde (MDA), and superoxide dismutase (SOD) levels in brain tissues were determined using enzyme-linked immunosorbent assay. Reactive oxygen species (ROS) levels were analyzed using a ROS assay kit. Protein levels of NLRP3, caspase-1, and IL-1β were determined by western blot. RESULTS Neurological function scores, cerebral infarction areas, and neuronal apoptosis index were decreased in the Sevo and MCC950 groups than in the I/R group. IL-1β, TNF-α, IL-6, IL-18, NLRP3, caspase-1, and IL-1β levels decreased in the Sevo and MCC950 groups (p < 0.05). ROS and MDA levels increased, but SOD levels increased in the Sevo and MCC950 groups than in the I/R group. NLPR3-inducer nigericin eliminated the protective effects of sevoflurane on cerebral I/R injury in rats. CONCLUSION Sevoflurane could alleviate cerebral I/R-induced brain damage by inhibiting the ROS-NLRP3 pathway.
Collapse
Affiliation(s)
- Shujun Shang
- Department of Anesthesiology, Yantaishan Hospital, Yantai 264000, China
| | - Fengqiang Sun
- Department of Anesthesiology , Feicheng People's Hospital, Feicheng 271600, China
| | - Yulin Zhu
- Department of Anesthesiology, Yantaishan Hospital, Yantai 264000, China
| | - Jingui Yu
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Lingzhi Yu
- Department of Anesthesiology, Central Hospital Affiliated To Shandong First Medical University, Jinan 250013, China
| | - Wei Shao
- Department of Anesthesiology, Yantaishan Hospital, Yantai 264000, China
| | - Zhijuan Wang
- Editorial Department of Chinese Journal of Neuro Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou 510282,China
| | - Xuecai Yi
- Department of Anesthesiology, Jinan Maternity and Child Care Hospital, Jinan 250000, China.
| |
Collapse
|
3
|
Neuroprotection of exercise: P2X4R and P2X7R regulate BDNF actions. Purinergic Signal 2023; 19:297-303. [PMID: 35821455 PMCID: PMC9275535 DOI: 10.1007/s11302-022-09879-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 06/17/2022] [Indexed: 11/09/2022] Open
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF), which acts as a transducer, is responsible for improving cerebral stroke, neuropathic pain, and depression. Exercise can alter extracellular nucleotide levels and purinergic receptors in central nervous system (CNS) structures. This inevitably activates or inhibits the expression of BDNF via purinergic receptors, particularly the P2X receptor (P2XR), to alleviate pathological progression. In addition, the significant involvement of sensitive P2X4R in mediating increased BDNF and p38-MAPK for intracerebral hemorrhage and pain hypersensitivity has been reported. Moreover, archetypal P2X7R blockade induces mouse antidepressant-like behavior and analgesia by BDNF release. This review summarizes BDNF-mediated neural effects via purinergic receptors, speculates that P2X4R and P2X7R could be priming molecules in exercise-mediated changes in BDNF, and provides strategies for the protective mechanism of exercise in neurogenic disease.
Collapse
|
4
|
α-Synuclein Aggregates in the Nigro-Striatal Dopaminergic Pathway Impair Fine Movement: Partial Reversal by the Adenosine A 2A Receptor Antagonist. Int J Mol Sci 2023; 24:ijms24021365. [PMID: 36674880 PMCID: PMC9866360 DOI: 10.3390/ijms24021365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Parkinson's disease (PD) is characterized pathologically by abnormal aggregation of alpha-synuclein (α-Syn) in the brain and clinically by fine movement deficits at the early stage, but the roles of α-Syn and associated neural circuits and neuromodulator bases in the development of fine movement deficits in PD are poorly understood, in part due to the lack of appropriate behavioral testing paradigms and PD models without motor confounding effects. Here, we coupled two unique behavioral paradigms with two PD models to reveal the following: (i) Focally injecting α-Syn fibrils into the dorsolateral striatum (DLS) and the transgenic expression of A53T-α-Syn in the dopaminergic neurons in the substantia nigra (SN, PITX3-IRES2-tTA/tetO-A53T mice) selectively impaired forelimb fine movements induced by the single-pellet reaching task. (ii) Injecting α-Syn fibers into the SN suppressed the coordination of cranial and forelimb fine movements induced by the sunflower seed opening test. (iii) Treatments with the adenosine A2A receptor (A2AR) antagonist KW6002 reversed the impairment of forelimb and cranial fine movements induced by α-Syn aggregates in the SN. These findings established a causal role of α-Syn in the SNc-DLS dopaminergic pathway in the development of forelimb and cranial fine movement deficits and suggest a novel therapeutic strategy to improve fine movements in PD by A2AR antagonists.
Collapse
|
5
|
Rabie MA, Ibrahim HI, Nassar NN, Atef RM. Adenosine A 1 receptor agonist, N6-cyclohexyladenosine, attenuates Huntington's disease via stimulation of TrKB/PI3K/Akt/CREB/BDNF pathway in 3-nitropropionic acid rat model. Chem Biol Interact 2023; 369:110288. [PMID: 36509115 DOI: 10.1016/j.cbi.2022.110288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/08/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022]
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disease characterized by progressive motor, behavioral, and cognitive impairments. Intrastriatal injection of 3- nitropropionic acid (3NP) was used to induce HD-like symptoms by inhibiting succinate dehydrogenase enzyme (SDH) in the mitochondrial complex II. The adenosine A1 receptor has long been known to have a crucial role in neuroprotection, mainly by blocking Ca2+ influx, which causes inhibition of glutamate (Glu) and a decline in its excitatory effects at the postsynaptic level. To this end, this study investigated the possible involvement of TrKB/PI3K/Akt/CREB/BDNF pathway in mediating protection afforded by the central N6-cyclohexyladenosine (CHA), an adenosine A1 receptor agonist. A single intrastriatal CHA injection (6.25 nM/1 μL); 45min after 3-NP injection, attenuated neuronal death, and improved cognitive and motor deficits caused by 3-NP neurotoxin. This effect was shown to parallel an enhanced activation of PI3K/Akt/CREB/BDNF axis as well as boosting pERK1/2 levels. Moreover, CHA attenuated neuroinflammatory and oxidative stress status via reducing NFκB p65, TNFα and iNOS contents and increasing SOD. Furthermore, immunohistochemical data showed a reduction in the glial fibrillary acidic protein (GFAP) immunoreactivity to a marker for astrocyte and microglia activation following CHA treatment. The results of this study suggest that CHA may have protective effect against HD via modulating oxidative stress, excitotoxic and inflammatory pathways.
Collapse
Affiliation(s)
- Mostafa A Rabie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Κasr El-Aini Str., 11562, Cairo, Egypt
| | - Heba I Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Κasr El-Aini Str., 11562, Cairo, Egypt
| | - Noha N Nassar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Κasr El-Aini Str., 11562, Cairo, Egypt
| | - Reham M Atef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Κasr El-Aini Str., 11562, Cairo, Egypt.
| |
Collapse
|
6
|
Cong D, Yu Y, Meng Y, Qi X. Dexmedetomidine (Dex) exerts protective effects on rat neuronal cells injured by cerebral ischemia/reperfusion via regulating the Sphk1/S1P signaling pathway. J Stroke Cerebrovasc Dis 2023; 32:106896. [PMID: 36395661 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106896] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/27/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
Abstract
AIM To investigate the influence of dexmedetomidine (Dex) on cerebral ischemia/reperfusion (I/R)-injured rat neuronal cells by regulating the Sphk1/S1P pathway. METHODS The rats were divided into the following groups, with 18 rats in each group categorized on the basis of random number tables: sham (Sham), I/R (I/R), Dex, Sphk1 inhibitor (PF-543), and Dex together with the Sphk1 agonist phorbol-12-myristate-13-acetate (Dex+PMA). The neurological functions of the rats were assessed by the Longa scoring system at 24 h post reperfusion. The area of brain infarction was inspected using 2,3,5-triphenyltetrazolium chloride staining, and the water content of brain tissue was determined by the dry-wet weight method. The morphology of neurons in the CA1 region of the rat hippocampus was inspected using Nissl staining, while the apoptosis of neurons in this region was detected by terminal-deoxynucleotidyl transferase mediated nick end labeling staining. The Sphk1 and S1P protein levels were determined by immunofluorescence and western blotting, respectively. RESULTS Compared to the I/R group, rats in the Dex, PF-543, and Dex+PMA groups had a significantly lower neurological function score, as well as lower brain water content and a decreased infarction area. Moreover, the apoptotic index of the neurons and the Sphk1 and S1P levels in the hippocampal CA1 region were significantly lower in these groups (p<0.05). PMA, an agonist of Sphk1, was able to reverse the protective effects of Dex on I/R-induced neuronal cell injury. CONCLUSION Dex could protect cerebral I/R-induced neuronal cell injury by suppressing the Sphk1/S1P signaling pathway.
Collapse
Affiliation(s)
- Dawei Cong
- Department of Neurosurgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China
| | - Yunlong Yu
- Department of Neurosurgery, Yantai Harbour Hospital, Yantai 264000, China.
| | - Yan Meng
- Yantai Comprehensive Health Service Center, Yantai 264000, China
| | - Xia Qi
- Yantai Comprehensive Health Service Center, Yantai 264000, China
| |
Collapse
|
7
|
He HY, Shan HZ, Li SQ, Diao RG. Genistein attenuates renal ischemia-reperfusion injury via ADORA2A pathway. Hum Exp Toxicol 2023; 42:9603271231164913. [PMID: 36932924 DOI: 10.1177/09603271231164913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
BACKGROUND Studies have shown oxidative stress and apoptosis are the main pathogenic mechanisms of renal ischemia/reperfusion (IR) injury (IRI). Genistein, a polyphenolic non-steroidal compound, has been extensively explored in oxidative stress, inflammation and apoptosis. Our research aims to reveal the potential role of genistein on renal IRI and its potential molecular mechanism both in vivo and in vitro. METHODS In vivo experiments, mice were pretreated with or without genistein. Renal pathological changes and function, cell proliferation, oxidative stress and apoptosis were measured. In vitro experiments, overexpression of ADORA2A and knockout of ADORA2A cells were constructed. Cells proliferation, oxidative stress and apoptosis were analyzed. RESULTS Our results in vivo showed that the renal damage induced by IR was ameliorated by genistein pretreatment. Moreover, ADORA2A was activated by genistein, along with inhibition of oxidative stress and apoptosis. The results in vitro showed that genistein pretreatment and ADORA2A overexpression reversed the increase of apoptosis and oxidative stress in NRK-52E cells induced by H/R, while the knockdown of ADORA2A partially weakened this reversal from genistein treatment. CONCLUSIONS Our results demonstrated that genistein have a protective effect against renal IRI by inhibiting oxidative stress and apoptosis via activating ADORA2A, presenting its potential use for the treatment of renal IRI.
Collapse
Affiliation(s)
- H Y He
- Nephrology, 519688Yantaishan Hospital, Yantai, Shandong, China
| | - H Z Shan
- Department of Pharmacy, 155177Qingdao Traditional Chinese Medicine Hospital(Qingdao Hiser Hospital)Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao, Shandong, China
| | - S Q Li
- Department of Pharmacy, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - R G Diao
- Department of Pharmacy, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| |
Collapse
|
8
|
Mohammed RA, Sayed RH, El-Sahar AE, Khattab MA, Saad MA. Insights into the role of pERK1/2 signaling in post-cerebral ischemia reperfusion sexual dysfunction in rats. Eur J Pharmacol 2022; 933:175258. [PMID: 36096157 DOI: 10.1016/j.ejphar.2022.175258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/15/2022] [Accepted: 09/05/2022] [Indexed: 11/15/2022]
Abstract
The purpose of the present study was to investigate the effects of ERK1/2 inhibition on both the amygdala and hippocampal structures, and to investigate its role in regulating memory for sexual information. This study utilized a cerebral ischemia reperfusion (IR) model to produce a stressful brain condition that highlights the possible involvement of a hippocampal GC/pERK1/2/BDNF pathway in the resulting sexual consequences of this ailment. Male Wistar rats were divided into four groups: (1) sham; (2) IR: subjected to 45 min of ischemia followed by 48 h of reperfusion; (3) PD98059: received PD98059 at 0.3 mg/kg, i.p.; (4) IR + PD98059. This study provides new evidence for cerebral IR-induced amygdala injury and the sexual impairments that are associated with motor and cognitive deficits in rats. These findings were correlated with histopathological changes that are defined by extensive neuronal loss in both the hippocampus and the amygdala. The current study postulated that the ERK inhibitor PD98059 could reverse IR-induced injury in the amygdala as well as reversing IR-induced sexual impairments. This hypothesis is supported by the ability of PD98059 to: (1) restore luteinizing hormone and testosterone levels; (2) increase sexual arousal and copulatory performance (as evidenced by modulating mount, intromission, ejaculation latencies, and post-ejaculatory intervals); (3) improve the histological profile in the amygdala that is associated with reduced glutamate levels, c-Fos expression, and elevated gamma aminobutyric acid levels. In conclusion, the present findings introduce pERK1/2 inhibition as a possible strategy for enhancing sexual activity in survivors of IR.
Collapse
Affiliation(s)
- Reham A Mohammed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Ayman E El-Sahar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed A Khattab
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Muhammed A Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman, 4184, United Arab Emirates
| |
Collapse
|
9
|
Shalaby HN, Zaki HF, Ain-Shoka AAA, Mohammed RA. Adenosine A 2A Receptor Blockade Ameliorates Mania Like Symptoms in Rats: Signaling to PKC-α and Akt/GSK-3β/β-Catenin. Mol Neurobiol 2022; 59:6397-6410. [PMID: 35943710 PMCID: PMC9463338 DOI: 10.1007/s12035-022-02977-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/26/2022] [Indexed: 12/02/2022]
Abstract
Adenosinergic system dysfunction is implicated in the pathophysiology of multiple neuropsychiatric disorders including mania and bipolar diseases. The established synergistic interaction between A2A and D2 receptors in the prefrontal cortex could highlight the idea of A2A receptor antagonism as a possible anti-manic strategy. Hence, the present study was performed to examine the effect of a selective adenosine A2A receptor blocker (SCH58261) on methylphenidate-induced mania-like behavior while investigating the underlying mechanisms. Rats were injected with methylphenidate (5 mg/kg/day, i.p.) for 3 weeks with or without administration of either SCH58261 (0.01 mg/kg/day, i.p.) or lithium (150 mg/kg/day, i.p.) starting from day 9. In the diseased rats, adenosine A2AR antagonism reduced locomotor hyperactivity and risk-taking behavior along with decreased dopamine and glutamate levels. Meanwhile, SCH58261 restored NMDA receptor function, suppressed PKC-α expression, down-regulated β-Arrestin-2, up-regulated pS473-Akt and pS9-GSK-3β. Further, SCH58261 promoted synaptic plasticity markers through increasing BDNF levels along with down-regulating GAP-43 and SNAP-25. The A2A antagonist also reduced NF-κBp65 and TNF-α together with elevating IL-27 level giving an anti-inflammatory effect. In conclusion, suppression of PKC-α and modulation of Akt/GSK-3β/β-catenin axis through A2AR inhibition, could introduce adenosine A2AR as a possible therapeutic target for treatment of mania-like behavior. This notion is supported by the ability of the A2AR antagonist (SCH58261) to produce comparable results to those observed with the standard anti-manic drug (Lithium).
Collapse
Affiliation(s)
- Heba Nasr Shalaby
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Hala Fahmy Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | - Reham Atef Mohammed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
Pereira-Figueiredo D, Nascimento AA, Cunha-Rodrigues MC, Brito R, Calaza KC. Caffeine and Its Neuroprotective Role in Ischemic Events: A Mechanism Dependent on Adenosine Receptors. Cell Mol Neurobiol 2022; 42:1693-1725. [PMID: 33730305 PMCID: PMC11421760 DOI: 10.1007/s10571-021-01077-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
Ischemia is characterized by a transient, insufficient, or permanent interruption of blood flow to a tissue, which leads to an inadequate glucose and oxygen supply. The nervous tissue is highly active, and it closely depends on glucose and oxygen to satisfy its metabolic demand. Therefore, ischemic conditions promote cell death and lead to a secondary wave of cell damage that progressively spreads to the neighborhood areas, called penumbra. Brain ischemia is one of the main causes of deaths and summed with retinal ischemia comprises one of the principal reasons of disability. Although several studies have been performed to investigate the mechanisms of damage to find protective/preventive interventions, an effective treatment does not exist yet. Adenosine is a well-described neuromodulator in the central nervous system (CNS), and acts through four subtypes of G-protein-coupled receptors. Adenosine receptors, especially A1 and A2A receptors, are the main targets of caffeine in daily consumption doses. Accordingly, caffeine has been greatly studied in the context of CNS pathologies. In fact, adenosine system, as well as caffeine, is involved in neuroprotection effects in different pathological situations. Therefore, the present review focuses on the role of adenosine/caffeine in CNS, brain and retina, ischemic events.
Collapse
Affiliation(s)
- D Pereira-Figueiredo
- Neurobiology of the Retina Laboratory, Biomedical Sciences Program, Biomedical Institute, Fluminense Federal University, Niterói, RJ, Brazil
| | - A A Nascimento
- Neurobiology of the Retina Laboratory, Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil
| | - M C Cunha-Rodrigues
- Neurobiology of the Retina Laboratory, Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil
| | - R Brito
- Laboratory of Neuronal Physiology and Pathology, Cellular and Molecular Biology Department, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil
| | - K C Calaza
- Neurobiology of the Retina Laboratory, Biomedical Sciences Program, Biomedical Institute, Fluminense Federal University, Niterói, RJ, Brazil.
- Neurobiology of the Retina Laboratory, Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil.
- Neurobiology Department, Biology Institute of Fluminense Federal University, Niteroi, RJ, Brazil.
| |
Collapse
|
11
|
Abdel Mageed SS, Ammar RM, Nassar NN, Moawad H, Kamel AS. Role of PI3K/Akt axis in mitigating hippocampal ischemia-reperfusion injury via CB1 receptor stimulation by paracetamol and FAAH inhibitor in rat. Neuropharmacology 2021; 207:108935. [PMID: 34968475 DOI: 10.1016/j.neuropharm.2021.108935] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/03/2021] [Accepted: 12/14/2021] [Indexed: 12/15/2022]
Abstract
AIMS Acetaminophen or paracetamol (PAR), the recommended antipyretic in COVID-19 and clinically used to alleviate stroke-associated hyperthermia interestingly activates cannabinoid receptor (CB1) through its AM404 metabolite, however, to date, no study reports the in vivo activation of PAR/AM404/CB1 axis in stroke. The current study deciphers the neuroprotective effect of PAR in cerebral ischemia/reperfusion (IR) rat model and unmasks its link with AM404/CB1/PI3K/Akt axis. MATERIALS AND METHODS Animals were allocated into 5 groups: (I) sham-operated (SO), (II) IR, (III) IR + PAR (100 mg/kg), (IV) IR + PAR (100 mg/kg) + URB597; anandamide degradation inhibitor (0.3 mg/kg) and (V) IR + PAR (100 mg/kg) + AM4113; CB1 Blocker (5 mg/kg). All drugs were intraperitoneally administered at the inception of the reperfusion period. KEY FINDINGS PAR administration alleviated the cognitive impairment in the Morris Water Maze as well as hippocampal histopathological and immunohistochemical examination of GFAP. The PAR signaling was associated with elevation of anandamide level, CB1 receptor expression and survival proteins as pS473-Akt. P(tyr202/thr204)-ERK1/2 and pS9-GSK3β. Simultaneously, PAR increased hippocampal BDNF and ß-arrestin1 levels and decreased glutamate level. PAR restores the deranged redox milieu induced by IR Injury, by reducing lipid peroxides, myeloperoxidase activity and NF-κB and increasing NPSH, total antioxidant capacity, nitric oxide and Nrf2 levels. The pre-administration of AM4113 reversed PAR effects, while URB597 potentiated them. SIGNIFICANCE PAR poses a significant neuroprotective effect which may be mediated, at least in part, via activation of anandamide/CB1/PI3K/Akt pathway in the IR rat model.
Collapse
Affiliation(s)
- Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo, Egypt.
| | - Ramy M Ammar
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Kafrelsheikh University, Egypt.
| | - Noha N Nassar
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Egypt.
| | - Helmy Moawad
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Egypt.
| | - Ahmed S Kamel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Egypt.
| |
Collapse
|
12
|
Farina M, Vieira LE, Buttari B, Profumo E, Saso L. The Nrf2 Pathway in Ischemic Stroke: A Review. Molecules 2021; 26:5001. [PMID: 34443584 PMCID: PMC8399750 DOI: 10.3390/molecules26165001] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke, characterized by the sudden loss of blood flow in specific area(s) of the brain, is the leading cause of permanent disability and is among the leading causes of death worldwide. The only approved pharmacological treatment for acute ischemic stroke (intravenous thrombolysis with recombinant tissue plasminogen activator) has significant clinical limitations and does not consider the complex set of events taking place after the onset of ischemic stroke (ischemic cascade), which is characterized by significant pro-oxidative events. The transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2), which regulates the expression of a great number of antioxidant and/or defense proteins, has been pointed as a potential pharmacological target involved in the mitigation of deleterious oxidative events taking place at the ischemic cascade. This review summarizes studies concerning the protective role of Nrf2 in experimental models of ischemic stroke, emphasizing molecular events resulting from ischemic stroke that are, in parallel, modulated by Nrf2. Considering the acute nature of ischemic stroke, we discuss the challenges in using a putative pharmacological strategy (Nrf2 activator) that relies upon transcription, translation and metabolically active cells in treating ischemic stroke patients.
Collapse
Affiliation(s)
- Marcelo Farina
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil;
| | - Leonardo Eugênio Vieira
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil;
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Elisabetta Profumo
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
13
|
Mansour NM, Elkalla WS, Ragab YM, Ramadan MA. Inhibition of acetic acid-induced colitis in rats by new Pediococcus acidilactici strains, vitamin producers recovered from human gut microbiota. PLoS One 2021; 16:e0255092. [PMID: 34310635 PMCID: PMC8312973 DOI: 10.1371/journal.pone.0255092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/09/2021] [Indexed: 01/24/2023] Open
Abstract
Our aim was to isolate, identify and characterize probiotic bacteria as vitamin producers in particular B2 and B9. 150 human fecal samples were collected and used for isolation of vitamin producers—probiotics. 49 isolates were chosen for screening their genome by PCR for the presence of riboflavin and folic acid genes. As a result, three isolates were selected and their production of the B2 and B9 were confirmed by HPLC. The three isolates were identified on species level by sequencing their 16S rRNA gene which showed 100% identical to strains of Pediococcus acidilactici. Thus, they were named as P. acidilactici WNYM01, P. acidilactici WNYM02, P. acidilactici WNYM03 and submitted to the Genbank database with accession numbers. They met the probiotic criteria by expressing 90–95% survival rate at pH (2.0–9.0) and bile salt up to 2% for 3 h in addition to their antimicrobial activity against gram positive and negative microorganisms. They also showed no hemolytic activity and common pattern for antibiotic susceptibility. Our three strains were tested individually or in mixture in vivo on rat colitis model compared to ulcerative group. The strains were administrated orally to rats in daily dose containing CFU 109 for 14 days then followed by induction of colitis using acetic acid then the oral administration was continued for more four days. The histology results, the anti-inflammatory and anti-oxidative stress biomarkers showed the protective role of the strains compared to the ulcerative group. As a conclusion, we introduce novel three probiotic candidates for pharmaceutical preparations and health applications.
Collapse
Affiliation(s)
- Nahla M. Mansour
- Gut Microbiology & Immunology Group, Chemistry of Natural and Microbial Products Dept., Pharmaceutical Industries Div., National Research Centre, Cairo, Egypt
- * E-mail:
| | - Wagiha S. Elkalla
- Microbiology and Immunology Department, Faculty of Pharmacy, Badr University in Cairo, Cairo, Egypt
| | - Yasser M. Ragab
- Microbiology and Immunology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed A. Ramadan
- Microbiology and Immunology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
14
|
Franco R, Lillo A, Rivas-Santisteban R, Reyes-Resina I, Navarro G. Microglial Adenosine Receptors: From Preconditioning to Modulating the M1/M2 Balance in Activated Cells. Cells 2021; 10:1124. [PMID: 34066933 PMCID: PMC8148598 DOI: 10.3390/cells10051124] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/19/2021] [Accepted: 05/01/2021] [Indexed: 12/14/2022] Open
Abstract
Neuronal survival depends on the glia, that is, on the astroglial and microglial support. Neurons die and microglia are activated not only in neurodegenerative diseases but also in physiological aging. Activated microglia, once considered harmful, express two main phenotypes: the pro-inflammatory or M1, and the neuroprotective or M2. When neuroinflammation, i.e., microglial activation occurs, it is important to achieve a good M1/M2 balance, i.e., at some point M1 microglia must be skewed into M2 cells to impede chronic inflammation and to afford neuronal survival. G protein-coupled receptors in general and adenosine receptors in particular are potential targets for increasing the number of M2 cells. This article describes the mechanisms underlying microglial activation and analyzes whether these cells exposed to a first damaging event may be ready to be preconditioned to better react to exposure to more damaging events. Adenosine receptors are relevant due to their participation in preconditioning. They can also be overexpressed in activated microglial cells. The potential of adenosine receptors and complexes formed by adenosine receptors and cannabinoids as therapeutic targets to provide microglia-mediated neuroprotection is here discussed.
Collapse
Affiliation(s)
- Rafael Franco
- CiberNed, Network Research Center, Neurodegenerative Diseases, Spanish National Health Institute Carlos III, 28034 Madrid, Spain;
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - Alejandro Lillo
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain;
| | - Rafael Rivas-Santisteban
- CiberNed, Network Research Center, Neurodegenerative Diseases, Spanish National Health Institute Carlos III, 28034 Madrid, Spain;
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - Irene Reyes-Resina
- CiberNed, Network Research Center, Neurodegenerative Diseases, Spanish National Health Institute Carlos III, 28034 Madrid, Spain;
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - Gemma Navarro
- CiberNed, Network Research Center, Neurodegenerative Diseases, Spanish National Health Institute Carlos III, 28034 Madrid, Spain;
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain;
| |
Collapse
|
15
|
Liu Y, Chu S, Hu Y, Yang S, Li X, Zheng Q, Ai Q, Ren S, Wang H, Gong L, Xu X, Chen NH. Exogenous Adenosine Antagonizes Excitatory Amino Acid Toxicity in Primary Astrocytes. Cell Mol Neurobiol 2021; 41:687-704. [PMID: 32632892 PMCID: PMC11448567 DOI: 10.1007/s10571-020-00876-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/12/2020] [Indexed: 12/29/2022]
Abstract
Excitatory toxicity is still a hot topic in the study of ischemic stroke, and related research has focused mainly on neurons. Adenosine is an important neuromodulator that is known as a "biosignature" in the central nervous system (CNS). The protective effect of exogenous adenosine on neurons has been confirmed, but its mechanism remains elusive. In this study, astrocytes were pretreated with adenosine, and the effects of an A2a receptor (A2aR) inhibitor (SCH58261) and A2b receptor (A2bR) inhibitor (PSB1115) on excitatory glutamate were investigated. An oxygen glucose deprivation/reoxygenation (OGD/R) and glutamate model was generated in vitro. Post-model assessment included expression levels of glutamate transporters (glt-1), gap junction protein (Cx43) and glutamate receptor (AMPAR), Na+-K+-ATPase activity, and diffusion distance of dyes. Glutamate and glutamine contents were determined at different time points. The results showed that (1) adenosine could improve the function of Na+-K+-ATPase, upregulate the expression of glt-1, and enhance the synthesis of glutamine in astrocytes. This effect was associated with A2aR activation but not with A2bR activation. (2) Adenosine could inhibit the expression of gap junction protein (Cx43) and reduce glutamate diffusion. Inhibition of A2aR attenuated adenosine inhibition of gap junction intercellular communication (GJIC) in the OGD/R model, while it enhanced adenosine inhibition of GJIC in the glutamate model, depending on the glutamate concentration. (3) Adenosine could cause AMPAR gradually entered the nucleus from the cytoplasm, thereby reducing the expression of AMPAR on the cell membrane. Taken together, the results indicate that adenosine plays a role of anti-excitatory toxicity effect in protection against neuronal death and the functional recovery of ischemic stroke mainly by targeting astrocytes, which are closely related to A2aR. The present study provided a scientific basis for adenosine prevention and ischemic stroke treatment, thereby providing a new approach for alleviating ischemic stroke.
Collapse
Affiliation(s)
- Yingjiao Liu
- College of Pharmacy, Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shifeng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yaomei Hu
- College of Pharmacy, Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, China
| | - Songwei Yang
- College of Pharmacy, Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, China
| | - Xun Li
- College of Pharmacy, Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qinglian Zheng
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Qidi Ai
- College of Pharmacy, Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, China
| | - Siyu Ren
- College of Pharmacy, Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, China
| | - Huiqin Wang
- College of Pharmacy, Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, China
| | - Limin Gong
- College of Pharmacy, Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, China
| | - Xin Xu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Nai-Hong Chen
- College of Pharmacy, Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, China.
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
16
|
Mohammed RA, El-Yamany MF, Abdel-Rahman AA, Nassar NN, Al-Shorbagy MY. Role of pERK1/2-NFκB signaling in the neuroprotective effect of thalidomide against cerebral ischemia reperfusion injury in rats. Eur J Pharmacol 2021; 895:173872. [PMID: 33465355 DOI: 10.1016/j.ejphar.2021.173872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 01/08/2023]
Abstract
In the present investigation, we tested the hypothesis that suppression of the phospho-extracellular signal regulated kinase (pERK1/2)-nuclear factor kappa (NFκ)-B signaling, subsequent to tumor necrosis factor-α (TNF-α) inhibition, underlies thalidomide (TLM) mediated neuroprotection. Male Wistar rats (250-280 g) were divided into five groups: (1) sham; (2) negative control receiving TLM (5μg/1μl/site) and 3 groups of ischemia-reperfusion (IR) injury rats pretreated with: (3) vehicle (DMSO 100%); (4) TLM (5μg/1μl/site) or (5) PD98059 (0.16μg/1μl/site). IR rats were subjected to occlusion of both common carotid arteries for 45 min followed by reperfusion for 24 h. Drugs and/or vehicles were administered by unilateral intrahippocampal injection after removal of the carotid occlusion and at the beginning of the reperfusion period. IR rats exhibited significant infarct size, histopathological damage, memory impairment, motor incoordination and hyperactivity. Unilateral intra-hippocampal TLM ameliorated these behavioral deficits along with the following ex vivo hippocampal effects: (i) abrogation of the IR-evoked elevations in hippocampal TNF-α, pERK1/2, NFκB, BDNF, iNOS contents and (ii) partial restoration of the reduced anti-inflammatory cytokine IL-10 and p-nNOS S852. These neurochemical effects, which were replicated by the pERK1/2 inhibitor PD98059, likely underlie the reductions in c-Fos and caspase-3 levels as well as the anti-apoptotic effect of TLM in the IR model. These results suggest a crucial anti-inflammatory role for pERK1/2 inhibition in the salutary neuronal and behavioral effects of TLM in a model of brain IR injury.
Collapse
Affiliation(s)
- Reham A Mohammed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Mohammed F El-Yamany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Abdel A Abdel-Rahman
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Noha N Nassar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Muhammad Y Al-Shorbagy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt; Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman, 4184, United Arab Emirates
| |
Collapse
|
17
|
Dapagliflozin improves behavioral dysfunction of Huntington's disease in rats via inhibiting apoptosis-related glycolysis. Life Sci 2020; 257:118076. [PMID: 32659371 DOI: 10.1016/j.lfs.2020.118076] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/24/2020] [Accepted: 07/07/2020] [Indexed: 12/31/2022]
Abstract
AIMS Huntington's disease is a rare neurodegenerative disorder which is associated with defected glucose metabolism with consequent behavioral disturbance including memory and locomotion. 3-nitropropionic acid (3-NP) can cause, in high single dose, an acute striatal injury/Huntington's disease. Dapagliflozin, which is one of the longest duration of action of SGLTIs family, may be able to diminish that injury and its resultant behavioral disturbances. MATERIAL AND METHODS Forty rats were divided into four groups (n = 10 in each group): normal control group (CTRL), dapagliflozin (CTRL + DAPA) group, 3-nitropropionic acid (3-NP) group, and dapagliflozin plus 3-nitropropionic acid (DAPA + 3-NP) group. Behavioral tests (beam walking test, hanging wire test, limb withdrawal test, Y-maze spontaneous alteration, elevated plus maze) were performed with evaluating neurological scoring. In striatum, neurotransmitters (glutamate, aspartate, GABA, ACh and AChE activity) were measured. In addition, apoptosis and glycolysis markers (NF-κB, Cyt-c, lactate, HK-II activity, P53, calpain, PEA15 and TIGAR) were determined. Inflammation (IL-1β, IL-6, IL-8 and TNF-α) and autophagy (beclin-1, LC3 and DRAM) indicators were measured. Additionally, histopathological screening was conducted. KEY FINDINGS 3-Nitropropionic acid had the ability to perturb the neurotransmission which was reflected in impaired behavioral outcome. All of glycolysis, apoptosis and inflammation markers were elevated after 3-NP acute intoxication but autophagy parameters, except DRAM, were reduced. However, DAPA markedly reversed the abovementioned parameters. SIGNIFICANCE Dapagliflozin demonstrated anti-glycolytic, anti-apoptotic, anti-inflammatory and autophagic effects on 3-NP-damaged striatal cells and promoted the behavioral outcome.
Collapse
|
18
|
Soares ROS, Losada DM, Jordani MC, Évora P, Castro-E-Silva O. Ischemia/Reperfusion Injury Revisited: An Overview of the Latest Pharmacological Strategies. Int J Mol Sci 2019; 20:ijms20205034. [PMID: 31614478 PMCID: PMC6834141 DOI: 10.3390/ijms20205034] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 02/08/2023] Open
Abstract
Ischemia/reperfusion injury (IRI) permeates a variety of diseases and is a ubiquitous concern in every transplantation proceeding, from whole organs to modest grafts. Given its significance, efforts to evade the damaging effects of both ischemia and reperfusion are abundant in the literature and they consist of several strategies, such as applying pre-ischemic conditioning protocols, improving protection from preservation solutions, thus providing extended cold ischemia time and so on. In this review, we describe many of the latest pharmacological approaches that have been proven effective against IRI, while also revisiting well-established concepts and presenting recent pathophysiological findings in this ever-expanding field. A plethora of promising protocols has emerged in the last few years. They have been showing exciting results regarding protection against IRI by employing drugs that engage several strategies, such as modulating cell-surviving pathways, evading oxidative damage, physically protecting cell membrane integrity, and enhancing cell energetics.
Collapse
Affiliation(s)
| | - Daniele M Losada
- Department of Anatomic Pathology, Faculty of Medical Sciences, University of Campinas, 13083-970 Campinas, Brazil.
| | - Maria C Jordani
- Department of Surgery & Anatomy, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
| | - Paulo Évora
- Department of Surgery & Anatomy, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
- Department of Gastroenterology, São Paulo Medical School, University of São Paulo, 01246-903 São Paulo, Brazil.
| | - Orlando Castro-E-Silva
- Department of Surgery & Anatomy, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
- Department of Gastroenterology, São Paulo Medical School, University of São Paulo, 01246-903 São Paulo, Brazil.
| |
Collapse
|
19
|
Liu YJ, Chen J, Li X, Zhou X, Hu YM, Chu SF, Peng Y, Chen NH. Research progress on adenosine in central nervous system diseases. CNS Neurosci Ther 2019; 25:899-910. [PMID: 31334608 PMCID: PMC6698970 DOI: 10.1111/cns.13190] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 06/06/2019] [Accepted: 06/14/2019] [Indexed: 01/04/2023] Open
Abstract
As an endogenous neuroprotectant agent, adenosine is extensively distributed and is particularly abundant in the central nervous system (CNS). Under physiological conditions, the concentration of adenosine is low intra- and extracellularly, but increases significantly in response to stress. The majority of adenosine functions are receptor-mediated, and primarily include the A1, A2A, A2B, and A3 receptors (A1R, A2AR, A2BR, and A3R). Adenosine is currently widely used in the treatment of diseases of the CNS and the cardiovascular systems, and the mechanisms are related to the disease types, disease locations, and the adenosine receptors distribution in the CNS. For example, the main infarction sites of cerebral ischemia are cortex and striatum, which have high levels of A1 and A2A receptors. Cerebral ischemia is manifested with A1R decrease and A2AR increase, as well as reduction in the A1R-mediated inhibitory processes and enhancement of the A2AR-mediated excitatory process. Adenosine receptor dysfunction is also involved in the pathology of Alzheimer's disease (AD), depression, and epilepsy. Thus, the adenosine receptor balance theory is important for brain disease treatment. The concentration of adenosine can be increased by endogenous or exogenous pathways due to its short half-life and high inactivation properties. Therefore, we will discuss the function of adenosine and its receptors, adenosine formation, and metabolism, and its role for the treatment of CNS diseases (such as cerebral ischemia, AD, depression, Parkinson's disease, epilepsy, and sleep disorders). This article will provide a scientific basis for the development of novel adenosine derivatives through adenosine structure modification, which will lead to experimental applications.
Collapse
Affiliation(s)
- Ying-Jiao Liu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Material Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, China
| | - Jiao Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Material Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xun Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.,Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, China
| | - Xin Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Material Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yao-Mei Hu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.,Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Material Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ye Peng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.,Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, China
| | - Nai-Hong Chen
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Material Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, China
| |
Collapse
|
20
|
Liu L, Locascio LM, Doré S. Critical Role of Nrf2 in Experimental Ischemic Stroke. Front Pharmacol 2019; 10:153. [PMID: 30890934 PMCID: PMC6411824 DOI: 10.3389/fphar.2019.00153] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/08/2019] [Indexed: 12/28/2022] Open
Abstract
Ischemic stroke is one of the leading causes of death and long-term disability worldwide; however, effective clinical approaches are still limited. The transcriptional factor Nrf2 is a master regulator in cellular and organismal defense against endogenous and exogenous stressors by coordinating basal and stress-inducible activation of multiple cytoprotective genes. The Nrf2 network not only tightly controls redox homeostasis but also regulates multiple intermediary metabolic processes. Therefore, targeting Nrf2 has emerged as an attractive therapeutic strategy for the prevention and treatment of CNS diseases including stroke. Here, the current understanding of the Nrf2 regulatory network is critically examined to present evidence for the contribution of Nrf2 pathway in rodent ischemic stroke models. This review outlines the literature for Nrf2 studies in preclinical stroke and focuses on the in vivo evidence for the role of Nrf2 in primary and secondary brain injuries. The dynamic change and functional importance of Nrf2 signaling, as well as Nrf2 targeted intervention, are revealed in permanent, transient, and global cerebral ischemia models. In addition, key considerations, pitfalls, and future potentials for Nrf2 studies in preclinical stroke investigation are discussed.
Collapse
Affiliation(s)
- Lei Liu
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Logan M Locascio
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Sylvain Doré
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Departments of Neurology, Psychiatry, Pharmaceutics, and Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|
21
|
Wu SP, Li D, Wang N, Hou JC, Zhao L. YiQi Tongluo Granule against Cerebral Ischemia/Reperfusion Injury in Rats by Freezing GluN2B and CaMK II through NMDAR/ERK1/2 Signaling. Chem Pharm Bull (Tokyo) 2019; 67:244-252. [DOI: 10.1248/cpb.c18-00806] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Si-peng Wu
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine
- Key Laboratory of Xin’an Medicine, Ministry of Education
| | - Dan Li
- Jing-Jin-Ji Joint Innovation Pharmaceutical (Beijing) Co., Ltd
| | - Ning Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine
- Key Laboratory of Xin’an Medicine, Ministry of Education
| | - Jin-cai Hou
- Key Laboratory of Xin’an Medicine, Ministry of Education
| | - Li Zhao
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine
- Key Laboratory of Xin’an Medicine, Ministry of Education
| |
Collapse
|
22
|
Geldenhuys WJ, Hanif A, Yun J, Nayeem MA. Exploring Adenosine Receptor Ligands: Potential Role in the Treatment of Cardiovascular Diseases. Molecules 2017; 22:molecules22060917. [PMID: 28587166 PMCID: PMC5568125 DOI: 10.3390/molecules22060917] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/08/2017] [Accepted: 05/25/2017] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases remain the number one diseases affecting patients’ morbidity and mortality. The adenosine receptors are G-protein coupled receptors which have been of interest for drugs target for the treatment of multiple diseases ranging from cardiovascular to neurological. Adenosine receptors have been connected to several biological pathways affecting the physiology and pathology of the cardiovascular system. In this review, we will cover the different adenosine receptor ligands that have been identified to interact with adenosine receptors and affect the vascular system. These ligands will be evaluated from clinical as well as medicinal chemistry perspectives with more emphasis on how structural changes in structure translate into ligand potency and efficacy. Adenosine receptors represent a novel therapeutic target for development of treatment options treating a wide variety of diseases, including vascular disease and obesity.
Collapse
Affiliation(s)
- Werner J Geldenhuys
- Department of Pharmaceutical Sciences, West Virginia University, School of Pharmacy, Morgantown, WV 26506, USA.
| | - Ahmad Hanif
- Department of Pharmaceutical Sciences, West Virginia University, School of Pharmacy, Morgantown, WV 26506, USA.
| | - June Yun
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, USA.
| | - Mohammed A Nayeem
- Department of Pharmaceutical Sciences, West Virginia University, School of Pharmacy, Morgantown, WV 26506, USA.
| |
Collapse
|