1
|
Tian R, Guo S, Chen S, Wu J, Long A, Cheng R, Wang X, Huang L, Li C, Mao W, Xu P, Yu L, Pan H, Liu L. Natural products as Nrf2 modulators for ferroptosis inhibition in renal disease therapy: Recent progress and future prospects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156342. [PMID: 39742572 DOI: 10.1016/j.phymed.2024.156342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/03/2025]
Abstract
BACKGROUND The transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2, NFE2L2) is a pivotal regulator of redox balance, metabolism, protein homeostasis and inflammation. Nrf2 is critically involved in both ferroptosis and renal diseases, and may serve as a significant target for many natural products in the treatment of renal diseases. However, a comprehensive overview on this topic is still lacking. PURPOSE To review the protective or therapeutic effects of natural products regulating Nrf2-related ferroptosis against various renal diseases. METHODS We systematically searched the electronic databases involving PubMed, Web of Science, Google Scholar, China National Knowledge Internet (CNKI), Wanfang Database and VIP Database. To ensure a comprehensive exploration, keywords including Nrf2, ferroptosis, natural products, phytochemicals, renal disease, kidney disease, kidney injury and nephropathy were employed. RESULTS Ferroptosis is deeply implicated in various kinds of renal diseases, notably including cisplatin-induced acute kidney injury, sepsis-associated acute kidney injury, renal ischemia/reperfusion injury, diabetic nephropathy, kidney stones and renal fibrosis. Nrf2 plays a regulatory role on many important genes related to iron metabolism, antioxidant system and lipid metabolism, thereby modulating ferroptosis. More than twenty natural products exert renoprotective effects by inhibiting ferroptosis via the regulation of Nrf2. This review presents a comprehensive overview of recent advancements in elucidating the ferroptosis involvement in renal diseases, the role of Nrf2 in regulating ferroptosis, and summarizes the renoprotective natural products as Nrf2 modulators for ferroptosis inhibition. CONCLUSION Through the comprehensive insights, this review clarifies the protective or therapeutic effects of natural products as Nrf2 modulators for ferroptosis inhibition in renal disease therapy, in the pursuit of providing new research ideas and directions for the treatment of renal diseases. Further drug development aimed at discovering more natural products and optimizing their utilization for disease treatment is necessary.
Collapse
Affiliation(s)
- Ruimin Tian
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Shan Guo
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shudong Chen
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jiaqi Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Aoyang Long
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Ran Cheng
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiaowan Wang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Lihua Huang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Chuang Li
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Wei Mao
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China; Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Guangdong-Macao In-Depth Cooperation Zone in Hengqin, 519000, China
| | - Peng Xu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China; Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Guangdong-Macao In-Depth Cooperation Zone in Hengqin, 519000, China
| | - Lili Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Hudan Pan
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Guangdong-Macao In-Depth Cooperation Zone in Hengqin, 519000, China.
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Guangdong-Macao In-Depth Cooperation Zone in Hengqin, 519000, China.
| |
Collapse
|
2
|
Yan L, Hu H, Feng L, Li Z, Zheng C, Zhang J, Yin X, Li B. ML385 promotes ferroptosis and radiotherapy sensitivity by inhibiting the NRF2-SLC7A11 pathway in esophageal squamous cell carcinoma. Med Oncol 2024; 41:309. [PMID: 39511054 PMCID: PMC11543766 DOI: 10.1007/s12032-024-02483-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/20/2024] [Indexed: 11/15/2024]
Abstract
Radiotherapy is important in treating esophageal squamous cell carcinoma (ESCC) comprehensively. Resistance to radiotherapy is a prominent factor contributing to treatment failure in patients with ESCC. The objective of this study was to investigate the impact of ML385, an inhibitor of nuclear factor erythroid 2-related factor 2 (NRF2), on the radiosensitivity of ESCC and elucidate its underlying mechanism. We treated KYSE150 and KYSE510 cells with ML385 and ionising radiation separately or simultaneously, and observed the proliferation, apoptosis, cell cycle and ferroptosis of different conditions by colony formation assay and flow cytometry. Our findings reveal that NRF2 was activated by radiation and translocated from the cytoplasm to the nucleus after radiation. However, ML385 inhibited the expression and cytoplasm-to-nucleus translocation of NRF2. Compared with radiation, ML385 combined with radiation exhibited a significant inhibition on the clone formation ability of ESCC cells, induced apoptosis and promoted G2/M phase arrest. The treatment of ML385 combined with radiation markedly increased ROS and lipid peroxidation levels and decreased glutathione levels compared with the control, thus promoting the occurrence of ferroptosis. In addition, the expression trend of NRF2 was the same as that of proteins related ferroptosis, such as SLC7A11 and GPX4. After overexpression of SLC7A11, we found that significantly restored glutathione levels and alleviated ML385 combined with radiation-induced lipid peroxidation, indicating that ML385 plays a key role in radiotherapy sensitization by inhibiting the NRF2-SLC7A11 pathway. In vivo, ML385 also promoted the killing effect of radiation on xenografted tumours in nude mice. This study identifies NRF2 inhibitor ML385 as a radiosensitizer of ESCC, which highlights the therapeutic potential of the NRF2-SLC7A11 pathway and provides a deeper understanding of the mechanism of ferroptosis in esophageal squamous cell carcinoma.
Collapse
Affiliation(s)
- Ling Yan
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, 250117, China
| | - Huidong Hu
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, 250117, China
| | - Lei Feng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, 250117, China
| | - Zhe Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, 250117, China
| | - Chunyan Zheng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, 250117, China
| | - Junpeng Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, 250117, China
| | - Xiaoyang Yin
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, 250117, China
| | - Baosheng Li
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China.
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, 250117, China.
| |
Collapse
|
3
|
Zheng J, Fang Y, Zhang M, Gao Q, Li J, Yuan H, Jin W, Lin Z, Lin W. Mechanisms of ferroptosis in hypoxic-ischemic brain damage in neonatal rats. Exp Neurol 2024; 372:114641. [PMID: 38065231 DOI: 10.1016/j.expneurol.2023.114641] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/01/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
This study was to explore the mechanism of ferroptosis and hypoxic-ischemic brain damage in neonatal rats. The neonatal rat hypoxic-ischemic brain damage (HIBD) model was established using the Rice-Vannucci method and treated with the ferroptosis inhibitor liproxstatin-1. Cognitive assessment was performed through absentee field experiments to confirm the successful establishment of the model. Brain tissue damage was evaluated by comparing regional cerebral blood flow and quantifying tissue staining. Neuronal cell morphological changes in the rats' cortical and hippocampal regions were observed using HE and Nissl staining. ELISA was performed to determine GPX4, GSH and ROS expression levels in the rats' brain tissues, and Western blotting to assess the expression levels of 4-HNE, GPX4, GSS, ACSL4, SLC7A11, SLC3A2, TFRC, FHC, FLC, HIF-1α, and Nrf2 proteins in rat brain tissues. Compared to the Sham group, the HIBD group exhibited a significant decrease in cerebral blood perfusion, reduced brain nerve cells, and disordered cell arrangement. The use of the ferroptosis inhibitor effectively improved brain tissue damage and preserved the shape and structure of nerve cells. The oxidative stress products ROS and 4-HNE in the brain tissue of the HIBD group increased significantly, while the expression of antioxidant indicators GPX4, GSH, SLC7A11, and GSS decreased significantly. Furthermore, the expression of iron metabolism-related proteins TFRC, FHC, and FLC increased significantly, whereas the expression of the ferroptosis-related transcription factors HIF-1α and Nrf2 decreased significantly. Treatment with liproxstatin-1 exhibited therapeutic effects on HIBD and downregulated tissue ferroptosis levels. This study shows the involvement of ferroptosis in hypoxic-ischemic brain damage in neonatal rats through the System Xc--GSH-GPX4 functional axis and iron metabolism pathway, with the HIF-1α and Nrf2 transcription factors identified as the regulators of ferroptosis involved in the HIBD process in neonatal rats.
Collapse
Affiliation(s)
- Jinyu Zheng
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China
| | - Yu Fang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China
| | - Min Zhang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China
| | - Qiqi Gao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China
| | - Jianshun Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China
| | - Hao Yuan
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China
| | - Wenwen Jin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China
| | - Zhenlang Lin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China.
| | - Wei Lin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325000, Zhejiang, People's Republic of China.
| |
Collapse
|
4
|
Tempone MH, Borges-Martins VP, César F, Alexandrino-Mattos DP, de Figueiredo CS, Raony Í, dos Santos AA, Duarte-Silva AT, Dias MS, Freitas HR, de Araújo EG, Ribeiro-Resende VT, Cossenza M, P. Silva H, P. de Carvalho R, Ventura ALM, Calaza KC, Silveira MS, Kubrusly RCC, de Melo Reis RA. The Healthy and Diseased Retina Seen through Neuron-Glia Interactions. Int J Mol Sci 2024; 25:1120. [PMID: 38256192 PMCID: PMC10817105 DOI: 10.3390/ijms25021120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The retina is the sensory tissue responsible for the first stages of visual processing, with a conserved anatomy and functional architecture among vertebrates. To date, retinal eye diseases, such as diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa, glaucoma, and others, affect nearly 170 million people worldwide, resulting in vision loss and blindness. To tackle retinal disorders, the developing retina has been explored as a versatile model to study intercellular signaling, as it presents a broad neurochemical repertoire that has been approached in the last decades in terms of signaling and diseases. Retina, dissociated and arranged as typical cultures, as mixed or neuron- and glia-enriched, and/or organized as neurospheres and/or as organoids, are valuable to understand both neuronal and glial compartments, which have contributed to revealing roles and mechanisms between transmitter systems as well as antioxidants, trophic factors, and extracellular matrix proteins. Overall, contributions in understanding neurogenesis, tissue development, differentiation, connectivity, plasticity, and cell death are widely described. A complete access to the genome of several vertebrates, as well as the recent transcriptome at the single cell level at different stages of development, also anticipates future advances in providing cues to target blinding diseases or retinal dysfunctions.
Collapse
Affiliation(s)
- Matheus H. Tempone
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Vladimir P. Borges-Martins
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Felipe César
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Dio Pablo Alexandrino-Mattos
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Camila S. de Figueiredo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Ícaro Raony
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (Í.R.); (H.R.F.)
| | - Aline Araujo dos Santos
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Aline Teixeira Duarte-Silva
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Mariana Santana Dias
- Laboratory of Gene Therapy and Viral Vectors, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.S.D.); (H.P.S.)
| | - Hércules Rezende Freitas
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (Í.R.); (H.R.F.)
| | - Elisabeth G. de Araújo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
- National Institute of Science and Technology on Neuroimmunomodulation—INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
| | - Victor Tulio Ribeiro-Resende
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Marcelo Cossenza
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Hilda P. Silva
- Laboratory of Gene Therapy and Viral Vectors, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.S.D.); (H.P.S.)
| | - Roberto P. de Carvalho
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Ana L. M. Ventura
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Karin C. Calaza
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Mariana S. Silveira
- Laboratory for Investigation in Neuroregeneration and Development, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil;
| | - Regina C. C. Kubrusly
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Ricardo A. de Melo Reis
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| |
Collapse
|
5
|
Lou X, Zhang Y, Guo J, Gao L, Ding Y, Zhuo X, Lei Q, Bian J, Lei R, Gong W, Zhang X, Jiao Q. What is the impact of ferroptosis on diabetic cardiomyopathy: a systematic review. Heart Fail Rev 2024; 29:1-11. [PMID: 37555989 DOI: 10.1007/s10741-023-10336-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 08/10/2023]
Abstract
Iron overload increases the production of harmful reactive oxygen species in the Fenton reaction, which causes oxidative stress in the body and lipid peroxidation in the cell membrane, and eventually leads to ferroptosis. Diabetes is associated with increased intracellular oxidative stress, inflammation, autophagy, microRNA alterations, and advanced glycation end products (AGEs), which cause cardiac remodeling and cardiac diastolic contractile dysfunction, leading to the development of diabetic cardiomyopathy (DCM). While these factors are also closely associated with ferroptosis, more and more studies have shown that iron-mediated ferroptosis is an important causative factor in DCM. In order to gain fresh insights into the functions of ferroptosis in DCM, this review methodically summarizes the traits and mechanisms connected with ferroptosis and DCM.
Collapse
Affiliation(s)
- Xiaokun Lou
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China
| | - Yuanyuan Zhang
- Department of Cardiovascular Ultrasonic Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Junfeng Guo
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China
| | - Lina Gao
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China
| | - Yingying Ding
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China
| | - Xinyu Zhuo
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China
| | - Qingqing Lei
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China
| | - Jing Bian
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China
| | - Rumei Lei
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China
| | - Wenyan Gong
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China.
- Hangzhou Institute of Cardiovascular Disease, Hangzhou, 310000, China.
| | - Xingwei Zhang
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China.
- Hangzhou Institute of Cardiovascular Disease, Hangzhou, 310000, China.
| | - Qibin Jiao
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou, 310000, Zhejiang Province, China.
| |
Collapse
|
6
|
Bao T, Zhang X, Xie W, Wang Y, Li X, Tang C, Yang Y, Sun J, Gao J, Yu T, Zhao L, Tong X. Natural compounds efficacy in complicated diabetes: A new twist impacting ferroptosis. Biomed Pharmacother 2023; 168:115544. [PMID: 37820566 DOI: 10.1016/j.biopha.2023.115544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023] Open
Abstract
Ferroptosis, as a way of cell death, participates in the body's normal physiological and pathological regulation. Recent studies have shown that ferroptosis may damage glucose-stimulated islets β Insulin secretion and programmed cell death of T2DM target organs are involved in the pathogenesis of T2DM and its complications. Targeting suppression of ferroptosis with specific inhibitors may provide new therapeutic opportunities for previously untreated T2DM and its target organs. Current studies suggest that natural bioactive compounds, which are abundantly available in drugs, foods, and medicinal plants for the treatment of T2DM and its target organs, have recently received significant attention for their various biological activities and minimal toxicity, and that many natural compounds appear to have a significant role in the regulation of ferroptosis in T2DM and its target organs. Therefore, this review summarized the potential treatment strategies of natural compounds as ferroptosis inhibitors to treat T2DM and its complications, providing potential lead compounds and natural phytochemical molecular nuclei for future drug research and development to intervene in ferroptosis in T2DM.
Collapse
Affiliation(s)
- Tingting Bao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China; Graduate school, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Xiangyuan Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China; Graduate school, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Weinan Xie
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China; Graduate school, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Ying Wang
- Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Jingyue National High-tech Industrial Development Zone, Changchun 130117, China
| | - Xiuyang Li
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China
| | - Cheng Tang
- Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Jingyue National High-tech Industrial Development Zone, Changchun 130117, China
| | - Yingying Yang
- National Center for Integrated Traditional and Western Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jun Sun
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, No. 1478, Gongnong Road, Chaoyang District, Changchun 130021, China
| | - Jiaqi Gao
- School of Qi-Huang Chinese Medicine, Beijing University of Chinese Medicine, No. 11, North 3rd Ring East Roa, Chaoyang Distric, Beijing 10010, China
| | - Tongyue Yu
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China.
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China.
| |
Collapse
|
7
|
Mu W, Zhou Z, Shao L, Wang Q, Feng W, Tang Y, He Y, Wang Y. Advances in the relationship between ferroptosis and epithelial-mesenchymal transition in cancer. Front Oncol 2023; 13:1257985. [PMID: 38023171 PMCID: PMC10661308 DOI: 10.3389/fonc.2023.1257985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a cellular reprogramming process that converts epithelial cells into mesenchymal-like cells with migratory and invasive capabilities. The initiation and regulation of EMT is closely linked to a range of transcription factors, cell adhesion molecules and signaling pathways, which play a key role in cancer metastasis and drug resistance. The regulation of ferroptosis is intricately linked to various cell death pathways, intracellular iron homeostasis, and the protein network governing iron supply and storage. The ability of ferroptosis to disrupt cancer cells and overcome drug resistance lies in its control of intracellular iron ion levels. EMT process can promote the accumulation of iron ions, providing conditions for ferroptosis. Conversely, ferroptosis may impact the regulatory network of EMT by modulating transcription factors, signaling pathways, and cell adhesion molecules. Thus, ferroptosis related genes and signaling pathways and oxidative homeostasis play important roles in the regulation of EMT. In this paper, we review the role of ferroptosis related genes and their signaling pathways in regulating cancer EMT to better understand the crosstalk mechanism between ferroptosis and EMT, aiming to provide better therapeutic strategies for eradicating cancer cells and overcoming drug resistance.
Collapse
Affiliation(s)
- Wenrong Mu
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu, China
| | - Zubang Zhou
- Department of Ultrasound, Gansu Provincial Hospital, Gansu, China
| | - Liping Shao
- Department of Ultrasound, Gansu Provincial Hospital, Gansu, China
| | - Qi Wang
- Department of Ultrasound, Gansu Provincial Hospital, Gansu, China
| | - Wanxue Feng
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu, China
| | - Yuling Tang
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu, China
| | - Yizong He
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu, China
| | - Yuanlin Wang
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu, China
| |
Collapse
|
8
|
Ding XS, Gao L, Han Z, Eleuteri S, Shi W, Shen Y, Song ZY, Su M, Yang Q, Qu Y, Simon DK, Wang XL, Wang B. Ferroptosis in Parkinson's disease: Molecular mechanisms and therapeutic potential. Ageing Res Rev 2023; 91:102077. [PMID: 37742785 DOI: 10.1016/j.arr.2023.102077] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/26/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Parkinson's Disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra (SN), leading to motor and non-motor symptoms. While the exact mechanisms remain complex and multifaceted, several molecular pathways have been implicated in PD pathology, including accumulation of misfolded proteins, impaired mitochondrial function, oxidative stress, inflammation, elevated iron levels, etc. Overall, PD's molecular mechanisms involve a complex interplay between genetic, environmental, and cellular factors that disrupt cellular homeostasis, and ultimately lead to the degeneration of dopaminergic neurons. Recently, emerging evidence highlights ferroptosis, an iron-dependent non-apoptotic cell death process, as a pivotal player in the advancement of PD. Notably, oligomeric α-synuclein (α-syn) generates reactive oxygen species (ROS) and lipid peroxides within cellular membranes, potentially triggering ferroptosis. The loss of dopamine, a hallmark of PD, could predispose neurons to ferroptotic vulnerability. This unique form of cell demise unveils fresh insights into PD pathogenesis, necessitating an exploration of the molecular intricacies connecting ferroptosis and PD progression. In this review, the molecular and regulatory mechanisms of ferroptosis and their connection with the pathological processes of PD have been systematically summarized. Furthermore, the features of ferroptosis in PD animal models and clinical trials targeting ferroptosis as a therapeutic approach in PD patients' management are scrutinized.
Collapse
Affiliation(s)
- Xv-Shen Ding
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China; Basic Medicine School, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Li Gao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Zheng Han
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Simona Eleuteri
- Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle 628H, Boston, MA 02215, USA
| | - Wei Shi
- Department of Neurosurgery, PLA 960th hospital, JiNan, Shandong Province, 250031, China
| | - Yun Shen
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Zi-Yao Song
- Basic Medicine School, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Mingming Su
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Qian Yang
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| | - David K Simon
- Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle 628H, Boston, MA 02215, USA.
| | - Xue-Lian Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| | - Bao Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| |
Collapse
|
9
|
Zhang J, Zhang T, Zeng S, Zhang X, Zhou F, Gillies MC, Zhu L. The Role of Nrf2/sMAF Signalling in Retina Ageing and Retinal Diseases. Biomedicines 2023; 11:1512. [PMID: 37371607 DOI: 10.3390/biomedicines11061512] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Age-related diseases, such as Parkinson's disease, Alzheimer's disease, cardiovascular diseases, cancers, and age-related macular disease, have become increasingly prominent as the population ages. Oxygen is essential for living organisms, but it may also cause disease when it is transformed into reactive oxygen species via biological processes in cells. Most of the production of ROS occurs in mitochondrial complexes I and III. The accumulation of ROS in cells causes oxidative stress, which plays a crucial role in human ageing and many diseases. Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a key antioxidant transcription factor that plays a central role in many diseases and ageing in general. It regulates many downstream antioxidative enzymes when cells are exposed to oxidative stress. A basic-region leucine zipper (bZIP) transcription factor, MAF, specifically the small MAF subfamily (sMAFs), forms heterodimers with Nrf2, which bind with Maf-recognition elements (MAREs) in response to oxidative stress. The role of this complex in the human retina remains unclear. This review summarises the current knowledge about Nrf2 and its downstream signalling, especially its cofactor-MAF, in ageing and diseases, with a focus on the retina. Since Nrf2 is the master regulator of redox homeostasis in cells, we hypothesise that targeting Nrf2 is a promising therapeutic approach for many age-related diseases.
Collapse
Affiliation(s)
- Jialing Zhang
- Save Sight Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ting Zhang
- Save Sight Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shaoxue Zeng
- Save Sight Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Xinyuan Zhang
- Department of Ocular Fundus Diseases, Beijing Tongren Eye Centre, Tongren Hospital, Capital Medical University, Beijing 100073, China
| | - Fanfan Zhou
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Mark C Gillies
- Save Sight Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ling Zhu
- Save Sight Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
10
|
Lu Z, Xiao B, Chen W, Tang T, Zhuo Q, Chen X. The potential of ferroptosis combined with radiotherapy in cancer treatment. Front Oncol 2023; 13:1085581. [PMID: 37007068 PMCID: PMC10064444 DOI: 10.3389/fonc.2023.1085581] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/10/2023] [Indexed: 03/19/2023] Open
Abstract
Ferroptosis is a new form of regulatory cell death that is closely related to the balance of redox reactions and the occurrence and development of cancer. There is increasing evidence that inducing ferroptosis in cells has great potential in the treatment of cancer. Especially when combined with traditional therapy, it can improve the sensitivity of cancer cells to traditional therapy and overcome the drug resistance of cancer cells. This paper reviews the signaling pathways regulating ferroptosis and the great potential of ferroptosis and radiotherapy (RT) in cancer treatment and emphasizes the unique therapeutic effects of ferroptosis combined with RT on cancer cells, such as synergy, sensitization and reversal of drug resistance, providing a new direction for cancer treatment. Finally, the challenges and research directions for this joint strategy are discussed.
Collapse
Affiliation(s)
- Zekun Lu
- Department of Hepatopancreatobiliary Surgery, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Bingkai Xiao
- Department of Hepatopancreatobiliary Surgery, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Weibo Chen
- Department of Hepatopancreatobiliary Surgery, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Tianyu Tang
- Department of Hepatabiliary Surgery, The Second People’s Hospital of Changshu, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, China
| | - Qifeng Zhuo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xuemin Chen
- Department of Hepatopancreatobiliary Surgery, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- *Correspondence: Xuemin Chen,
| |
Collapse
|
11
|
Costa I, Barbosa DJ, Benfeito S, Silva V, Chavarria D, Borges F, Remião F, Silva R. Molecular mechanisms of ferroptosis and their involvement in brain diseases. Pharmacol Ther 2023; 244:108373. [PMID: 36894028 DOI: 10.1016/j.pharmthera.2023.108373] [Citation(s) in RCA: 152] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Ferroptosis is a type of regulated cell death characterized by intracellular accumulation of iron and reactive oxygen species, inhibition of system Xc-, glutathione depletion, nicotinamide adenine dinucleotide phosphate oxidation and lipid peroxidation. Since its discovery and characterization in 2012, many efforts have been made to reveal the underlying mechanisms, modulating compounds, and its involvement in disease pathways. Ferroptosis inducers include erastin, sorafenib, sulfasalazine and glutamate, which, by inhibiting system Xc-, prevent the import of cysteine into the cells. RSL3, statins, Ml162 and Ml210 induce ferroptosis by inhibiting glutathione peroxidase 4 (GPX4), which is responsible for preventing the formation of lipid peroxides, and FIN56 and withaferin trigger GPX4 degradation. On the other side, ferroptosis inhibitors include ferrostatin-1, liproxstatin-1, α-tocopherol, zileuton, FSP1, CoQ10 and BH4, which interrupt the lipid peroxidation cascade. Additionally, deferoxamine, deferiprone and N-acetylcysteine, by targeting other cellular pathways, have also been classified as ferroptosis inhibitors. Increased evidence has established the involvement of ferroptosis in distinct brain diseases, including Alzheimer's, Parkinson's and Huntington's diseases, amyotrophic lateral sclerosis, multiple sclerosis, and Friedreich's ataxia. Thus, a deep understanding of how ferroptosis contributes to these diseases, and how it can be modulated, can open a new window of opportunities for novel therapeutic strategies and targets. Other studies have shown a sensitivity of cancer cells with mutated RAS to ferroptosis induction and that chemotherapeutic agents and ferroptosis inducers synergize in tumor treatment. Thus, it is tempting to consider that ferroptosis may arise as a target mechanistic pathway for the treatment of brain tumors. Therefore, this work provides an up-to-date review on the molecular and cellular mechanisms of ferroptosis and their involvement in brain diseases. In addition, information on the main ferroptosis inducers and inhibitors and their molecular targets is also provided.
Collapse
Affiliation(s)
- Inês Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Daniel José Barbosa
- TOXRUN - Toxicology Research Unit, Department of Sciences, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Sofia Benfeito
- CIQUP-IMS - Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal.
| | - Vera Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; CIQUP-IMS - Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Daniel Chavarria
- CIQUP-IMS - Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Fernanda Borges
- CIQUP-IMS - Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Fernando Remião
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Renata Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
12
|
Han X, Zhang J, Liu J, Wang H, Du F, Zeng X, Guo C. Targeting ferroptosis: a novel insight against myocardial infarction and ischemia-reperfusion injuries. Apoptosis 2023; 28:108-123. [PMID: 36474078 DOI: 10.1007/s10495-022-01785-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2022] [Indexed: 12/12/2022]
Abstract
Ferroptosis, a newly discovered form of regulated cell death dependent on iron and reactive oxygen species, is mainly characterized by mitochondrial shrinkage, increased density of bilayer membranes and the accumulation of lipid peroxidation, causing membrane lipid peroxidation and eventually cell death. Similar with the most forms of regulated cell death, ferroptosis also participated in the pathological metabolism of myocardial infarction and myocardial ischemia/reperfusion injuries, which are still the leading causes of death worldwide. Given the crucial roles ferroptosis played in cardiovascular diseases, such as myocardial infarction and myocardial ischemia/reperfusion injuries, it is considerable to delve into the molecular mechanisms of ferroptosis contributing to the progress of cardiovascular diseases, which might offer the potential role of ferroptosis as a targeted treatment for a wide range of cardiovascular diseases. This review systematically summarizes the process and regulatory metabolisms of ferroptosis, discusses the relationship between ferroptosis and myocardial infarction as well as myocardial ischemia/reperfusion injuries, which might potentially provide novel insights for the pathological metabolism and original ideas for the prevention as well as treatment targeting ferroptosis of cardiovascular diseases such as myocardial infarction and myocardial ischemia/reperfusion injuries.
Collapse
Affiliation(s)
- Xuejie Han
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomin Lane, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Jie Zhang
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomin Lane, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Jian Liu
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomin Lane, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Hongxia Wang
- Department of Physiology and Pathophysiology, Capital Medical University, No. 10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, People's Republic of China
| | - Fenghe Du
- Department of Geriatrics, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4Th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China
| | - Xiangjun Zeng
- Department of Physiology and Pathophysiology, Capital Medical University, No. 10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, People's Republic of China.
| | - Caixia Guo
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomin Lane, Dongcheng District, Beijing, 100730, People's Republic of China.
| |
Collapse
|
13
|
Ebrahimi M, Sivaprasad S, Thompson P, Perry G. Retinal Neurodegeneration in Euglycemic Hyperinsulinemia, Prediabetes, and Diabetes. Ophthalmic Res 2022; 66:385-397. [PMID: 36463857 DOI: 10.1159/000528503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2023]
Abstract
Diabetic retinopathy (DR) is a challenging public health problem mainly because of its growing prevalence and risk of blindness. In general, our current knowledge and practice have failed to prevent the onset or progression of DR to sight-threatening complications. While there are treatment options for sight-threatening complications of DR, it is crucial to pay more attention to the early stages of DR to decrease its prevalence. Growing evidence suggests many pathologic changes occur before clinical presentations of DR in euglycemic hyperinsulinemia, prediabetes, and diabetes. These pathological changes occur in retinal neurons, glia, and microvasculature. A new focus on these preclinical pathologies - especially on hyperinsulinemia - may provide further insight into disease mechanisms, endpoints for clinical trials, and druggable targets in early disease. Here, we review the current evidence on the pathophysiological changes reported in preclinical DR and appraise preventive and treatment options for DR.
Collapse
Affiliation(s)
- Moein Ebrahimi
- Network of Immunity in Infection, Malignancy, and Autoimmunity, Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sobha Sivaprasad
- NIHR Moorfields Biomedical Research Centre, Moorfields Eye Hospital, London, UK
| | - Paul Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - George Perry
- Department of Biology, University of Texas and San Antonio, San Antonio, Texas, USA
| |
Collapse
|
14
|
Ma J, Zhang H, Chen Y, Liu X, Tian J, Shen W. The Role of Macrophage Iron Overload and Ferroptosis in Atherosclerosis. Biomolecules 2022; 12:1702. [PMID: 36421722 PMCID: PMC9688033 DOI: 10.3390/biom12111702] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 07/21/2023] Open
Abstract
Ferroptosis is a new type of cell death caused by iron-dependent lipid peroxidation. In recent years, it has been found that ferroptosis can promote the progression of atherosclerosis (AS). Macrophages have been proven to play multiple roles in the occurrence and development of AS. Iron is a necessary mineral that participates in different functions of macrophages under physiological conditions. But iron overload and ferroptosis in macrophages may promote the progression of AS. Herein, we summarize the role of iron overload and ferroptosis in macrophages in AS from the perspective of iron metabolism, and iron overload and ferroptosis are significant contributors to AS development.
Collapse
Affiliation(s)
- Jiedong Ma
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Hongqi Zhang
- Department of Anatomy, Histology and Embryology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yufei Chen
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaojin Liu
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jiamin Tian
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wei Shen
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
15
|
Zeng F, Lan Y, Wang N, Huang X, Zhou Q, Wang Y. Ferroptosis: A new therapeutic target for bladder cancer. Front Pharmacol 2022; 13:1043283. [PMID: 36408230 PMCID: PMC9669411 DOI: 10.3389/fphar.2022.1043283] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/17/2022] [Indexed: 12/13/2023] Open
Abstract
Bladder cancer (BC) is the most frequent type of urinary system cancer. The prognosis of BC is poor due to high metastasis rates and multidrug resistance. Hence, development of novel therapies targeting BC cell death is urgently needed. As a novel cell death type with strong antitumor potential, ferroptosis has been investigated by many groups for its potential in BC treatment. As an iron-dependent cell death process, ferroptosis is characterized by excessive oxidative phospholipids. The molecular mechanisms of ferroptosis include iron overload and the system Xc-GSH-GPX4 signaling pathway. A recent study revealed that ferroptosis is involved in the metastasis, treatment, and prognosis of BC. Herein, in this review, we comprehensively summarize the mechanism of ferroptosis, address newly identified targets involved in ferroptosis, and discuss the potential of new clinical therapies targeting ferroptosis in BC.
Collapse
Affiliation(s)
- Fan Zeng
- Department of Critical Care Medicine, Sichuan Academy of Medical Science, Chengdu, China
| | - Yunping Lan
- Department of Critical Care Medicine, Sichuan Academy of Medical Science, Chengdu, China
| | - Ning Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science, Chengdu, China
| | - Xiaobo Huang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science, Chengdu, China
| | - Qiao Zhou
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science, Chengdu, China
| |
Collapse
|
16
|
Sun Y, Xia X, Basnet D, Zheng JC, Huang J, Liu J. Mechanisms of Ferroptosis and Emerging Links to the Pathology of Neurodegenerative Diseases. Front Aging Neurosci 2022; 14:904152. [PMID: 35837484 PMCID: PMC9273851 DOI: 10.3389/fnagi.2022.904152] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/03/2022] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative diseases are a diverse class of diseases attributed to chronic progressive neuronal degeneration and synaptic loss in the brain and/or spinal cord, including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis and multiple sclerosis. The pathogenesis of neurodegenerative diseases is complex and diverse, often involving mitochondrial dysfunction, neuroinflammation, and epigenetic changes. However, the pathogenesis of neurodegenerative diseases has not been fully elucidated. Recently, accumulating evidence revealed that ferroptosis, a newly discovered iron-dependent and lipid peroxidation-driven type of programmed cell death, provides another explanation for the occurrence and progression of neurodegenerative diseases. Here, we provide an overview of the process and regulation mechanisms of ferroptosis, and summarize current research progresses that support the contribution of ferroptosis to the pathogenesis of neurodegenerative diseases. A comprehensive understanding of the emerging roles of ferroptosis in neurodegenerative diseases will shed light on the development of novel therapeutic technologies and strategies for slowing down the progression of these diseases.
Collapse
Affiliation(s)
- Yiyan Sun
- Department of Anesthesiology, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Xiaohuan Xia
- Department of Anesthesiology, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Shanghai, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Diksha Basnet
- Department of Anesthesiology, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Jialin C. Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Shanghai, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
- *Correspondence: Jialin C. Zheng,
| | - Jian Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- Jian Huang,
| | - Jianhui Liu
- Department of Anesthesiology, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Jianhui Liu,
| |
Collapse
|
17
|
Li D, Pi W, Sun Z, Liu X, Jiang J. Ferroptosis and its role in cardiomyopathy. Biomed Pharmacother 2022; 153:113279. [PMID: 35738177 DOI: 10.1016/j.biopha.2022.113279] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 12/09/2022] Open
Abstract
Heart disease is the leading cause of death worldwide. Cardiomyopathy is a disease characterized by the heart muscle damage, resulting heart in a structurally and functionally change, as well as heart failure and sudden cardiac death. The key pathogenic factor of cardiomyopathy is the loss of cardiomyocytes, but the related molecular mechanisms remain unclear. Ferroptosis is a newly discovered regulated form of cell death, characterized by iron accumulation and lipid peroxidation during cell death. Recent studies have shown that ferroptosis plays an important regulatory roles in the occurrence and development of many heart diseases such as myocardial ischemia/reperfusion injury, cardiomyopathy and heart failure. However, the systemic association of ferroptosis and cardiomyopathy remains largely unknown and needs to be elucidated. In this review, we provide an overview of the molecular mechanisms of ferroptosis and its role in individual cardiomyopathies, highlight that targeting ferroptosis maybe a potential therapeutic strategy for cardiomyopathy therapy in the future.
Collapse
Affiliation(s)
- Danlei Li
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Wenhu Pi
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Affiliated Taizhou hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Zhenzhu Sun
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Xiaoman Liu
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Jianjun Jiang
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China.
| |
Collapse
|
18
|
Carpi-Santos R, de Melo Reis RA, Gomes FCA, Calaza KC. Contribution of Müller Cells in the Diabetic Retinopathy Development: Focus on Oxidative Stress and Inflammation. Antioxidants (Basel) 2022; 11:617. [PMID: 35453302 PMCID: PMC9027671 DOI: 10.3390/antiox11040617] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023] Open
Abstract
Diabetic retinopathy is a neurovascular complication of diabetes and the main cause of vision loss in adults. Glial cells have a key role in maintenance of central nervous system homeostasis. In the retina, the predominant element is the Müller cell, a specialized cell with radial morphology that spans all retinal layers and influences the function of the entire retinal circuitry. Müller cells provide metabolic support, regulation of extracellular composition, synaptic activity control, structural organization of the blood-retina barrier, antioxidant activity, and trophic support, among other roles. Therefore, impairments of Müller actions lead to retinal malfunctions. Accordingly, increasing evidence indicates that Müller cells are affected in diabetic retinopathy and may contribute to the severity of the disease. Here, we will survey recently described alterations in Müller cell functions and cellular events that contribute to diabetic retinopathy, especially related to oxidative stress and inflammation. This review sheds light on Müller cells as potential therapeutic targets of this disease.
Collapse
Affiliation(s)
- Raul Carpi-Santos
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (R.C.-S.); (F.C.A.G.)
| | - Ricardo A. de Melo Reis
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Flávia Carvalho Alcantara Gomes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (R.C.-S.); (F.C.A.G.)
| | - Karin C. Calaza
- Instituto de Biologia, Departamento de Neurobiologia, Universidade Federal Fluminense, Niteroi 24210-201, RJ, Brazil
| |
Collapse
|
19
|
Li D, Liu X, Pi W, Zhang Y, Yu L, Xu C, Sun Z, Jiang J. Fisetin Attenuates Doxorubicin-Induced Cardiomyopathy In Vivo and In Vitro by Inhibiting Ferroptosis Through SIRT1/Nrf2 Signaling Pathway Activation. Front Pharmacol 2022; 12:808480. [PMID: 35273493 PMCID: PMC8902236 DOI: 10.3389/fphar.2021.808480] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022] Open
Abstract
Doxorubicin (DOX) is an anthracycline antibiotic that is used extensively for the management of carcinoma; however, its clinical application is limited due to its serious cardiotoxic side effects. Ferroptosis represents iron-dependent and reactive oxygen species (ROS)-related cell death and has been proven to contribute to the progression of DOX-induced cardiomyopathy. Fisetin is a natural flavonoid that is abundantly present in fruits and vegetables. It has been reported to exert cardioprotective effects against DOX-induced cardiotoxicity in experimental rats. However, the underlying mechanisms remain unknown. The present study investigated the cardioprotective role of fisetin and the underlying molecular mechanism through experiments in the DOX-induced cardiomyopathy rat and H9c2 cell models. The results revealed that fisetin treatment could markedly abate DOX-induced cardiotoxicity by alleviating cardiac dysfunction, ameliorating myocardial fibrosis, mitigating cardiac hypertrophy in rats, and attenuating ferroptosis of cardiomyocytes by reversing the decline in the GPX4 level. Mechanistically, fisetin exerted its antioxidant effect by reducing the MDA and lipid ROS levels and increasing the glutathione (GSH) level. Moreover, fisetin exerted its protective effect by increasing the SIRT1 expression and the Nrf2 mRNA and protein levels and its nuclear translocation, which resulted in the activation of its downstream genes such as HO-1 and FTH1. Selective inhibition of SIRT1 attenuated the protective effects of fisetin in the H9c2 cells, which in turn decreased the GSH and GPX4 levels, as well as Nrf2, HO-1, and FTH1 expressions. In conclusion, fisetin exerts its therapeutic effects against DOX-induced cardiomyopathy by inhibiting ferroptosis via SIRT1/Nrf2 signaling pathway activation.
Collapse
Affiliation(s)
- Danlei Li
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Xiaoman Liu
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Wenhu Pi
- Key Laboratory of Radiation Oncology of Taizhou, Department of Radiation Oncology, Radiation Oncology Institute of Enze Medical Health Academy, Affiliated Taizhou Hospital of Wenzhou Medical University, Linhai, China
| | - Yang Zhang
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Lei Yu
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Cheng Xu
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Zhenzhu Sun
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Jianjun Jiang
- Department of Cardiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
20
|
Zhou Y, Lin W, Rao T, Zheng J, Zhang T, Zhang M, Lin Z. Ferroptosis and Its Potential Role in the Nervous System Diseases. J Inflamm Res 2022; 15:1555-1574. [PMID: 35264867 PMCID: PMC8901225 DOI: 10.2147/jir.s351799] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/09/2022] [Indexed: 12/11/2022] Open
Abstract
Ferroptosis is a novel regulated cell death characterized by metabolic disorders and iron-dependent oxidative destruction of the lipid bilayer. It is primarily caused by the imbalance of oxidation and anti-oxidation in the body and is precisely regulated by numerous factors and pathways inside and outside the cell. Recent studies have indicated that ferroptosis plays a vital role in the pathophysiological process of multiple systems of the body including the nervous system. Ferroptosis may be closely linked to the occurrence and development of neurodegenerative diseases, strokes, and brain tumors. It may also be involved in the development, maturation, and aging of the nervous system. Therefore, this study aims to investigate ferroptosis’s occurrence and regulatory mechanism and summarize its research progress in the pathogenesis and treatment of neurological diseases. This would allow for novel ideas for basic and clinical research of neurological diseases.
Collapse
Affiliation(s)
- Yiyang Zhou
- Department of Pediatrics, The Second School of Medicine, Taizhou Women and Children’s Hospital of Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
| | - Wei Lin
- Department of Pediatrics, The Second School of Medicine, Taizhou Women and Children’s Hospital of Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
| | - Tian Rao
- Department of Pediatrics, The Second School of Medicine, Taizhou Women and Children’s Hospital of Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
| | - Jinyu Zheng
- Department of Clinical Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
| | - Tianlei Zhang
- Department of Pediatrics, The Second School of Medicine, Taizhou Women and Children’s Hospital of Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
| | - Min Zhang
- Department of Pediatrics, The Second School of Medicine, Taizhou Women and Children’s Hospital of Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
| | - Zhenlang Lin
- Department of Pediatrics, The Second School of Medicine, Taizhou Women and Children’s Hospital of Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
- Correspondence: Zhenlang Lin, Email
| |
Collapse
|
21
|
Albert-Garay JS, Riesgo-Escovar JR, Salceda R. High glucose concentrations induce oxidative stress by inhibiting Nrf2 expression in rat Müller retinal cells in vitro. Sci Rep 2022; 12:1261. [PMID: 35075205 PMCID: PMC8975969 DOI: 10.1038/s41598-022-05284-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/31/2021] [Indexed: 12/11/2022] Open
Abstract
Diabetic retinopathy (DR) is a complication of diabetes. Several studies have implicated oxidative stress as a fundamental factor in the progression of the disease. The nuclear factor erythroid-2-related factor 2 (Nrf2) is one of the main regulators of redox homeostasis. Glia Müller cells (MC) maintain the structural and functional stability of the retina. The objective of this study was to evaluate the effect of high glucose concentrations on reactive oxygen species (ROS) production and Nrf2 expression levels in rat MC. MC were incubated with normal (NG; 5 mM) or high glucose (HG; 25 mM) for different times. Incubation with HG increased ROS levels from 12 to 48 h but did not affect cell viability. However, exposure to 3 h of HG caused a transient decrease Nrf2 levels. At that time, we also observed a decrease in the mRNA expression of Nrf2 target genes, glutathione levels, and catalase activity, all of which increased significantly beyond initial levels after 48 h of incubation. HG exposure leads to an increase in the p65 subunit of nuclear factor-κB (NF-kB) levels, and its target genes. These results suggest that high glucose concentrations lead to alteration of the redox regulatory capacity of Nrf2 mediated by NF-kB regulation.
Collapse
Affiliation(s)
- Jesús Silvestre Albert-Garay
- Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, CDMX, Mexico.
| | - Juan Rafael Riesgo-Escovar
- Instituto de Neurobiología, Campus UNAM Juriquilla, Universidad Nacional Autónoma de México, 76226, Querétaro, Mexico
| | - Rocío Salceda
- Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, CDMX, Mexico
| |
Collapse
|
22
|
Wang Y, Zhao Y, Ye T, Yang L, Shen Y, Li H. Ferroptosis Signaling and Regulators in Atherosclerosis. Front Cell Dev Biol 2022; 9:809457. [PMID: 34977044 PMCID: PMC8716792 DOI: 10.3389/fcell.2021.809457] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis (AS) is a major cause of cardiovascular diseases such as coronary heart disease, heart failure and stroke. Abnormal lipid metabolism, oxidative stress and inflammation are the main features of AS. Ferroptosis is an iron-driven programmed cell death characterized by lipid peroxidation, which have been proved to participate in the development and progression of AS by different signal pathways. NRF2-Keap1 pathway decreases ferroptosis associated with AS by maintaining cellular iron homeostasis, increasing the production glutathione, GPX4 and NADPH. The p53 plays different roles in ferroptosis at different stages of AS in a transcription-dependent and transcription- independent manner. The Hippo pathway is involved in progression of AS, which has been proved the activation of ferroptosis. Other transcription factors, such as ATF3, ATF4, STAT3, also involved in the occurrence of ferroptosis and AS. Certain proteins or enzymes also have a regulatory role in AS and ferroptosis. In this paper, we review the mechanism of ferroptosis and its important role in AS in an attempt to find a new relationship between ferroptosis and AS and provide new ideas for the future treatment of AS.
Collapse
Affiliation(s)
- Yuqin Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yajie Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Ting Ye
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Liming Yang
- Department of Pathophysiology, Harbin Medical University-Daqing, Daqing, China
| | - Yanna Shen
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Hong Li
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|
23
|
Gut microbiota: A potential therapeutic target for management of diabetic retinopathy? Life Sci 2021; 286:120060. [PMID: 34666038 DOI: 10.1016/j.lfs.2021.120060] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/04/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Diabetic Retinopathy (DR) is one of the main complications of Diabetes Mellitus (DM), drastically impacting individuals of working age over the years, being one of the main causes of blindness in the world. The existing therapies for its treatment consist of measures that aim only to alleviate the existing clinical signs, associated with the microvasculature. These treatments are limited only to the advanced stages and not to the preclinical ones. In response to a treatment with little resolution and limited for many patients with DM, investigations of alternative therapies that make possible the improvement of the glycemic parameters and the quality of life of subjects with DR, become extremely necessary. Recent evidence has shown that deregulation of the microbiota (dysbiosis) can lead to low-grade, local and systemic inflammation, directly impacting the development of DM and its microvascular complications, including DR, in an axis called the intestine-retina. In this regard, the present review seeks to comprehensively describe the biochemical pathways involved in DR as well as the association of the modulation of these mechanisms by the intestinal microbiota, since direct changes in the microbiota can have a drastic impact on various physiological processes. Finally, emphasize the strong potential for modulation of the gut-retina axis, as therapeutic and prophylactic target for the treatment of DR.
Collapse
|
24
|
SLC7A11 regulated by NRF2 modulates esophageal squamous cell carcinoma radiosensitivity by inhibiting ferroptosis. J Transl Med 2021; 19:367. [PMID: 34446045 PMCID: PMC8393811 DOI: 10.1186/s12967-021-03042-7] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/14/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Solute carrier family 7 member 11(SLC7A11) is a component of cysteine/glutamate transporter, which plays a key role in tumor growth; however, its underlying effect on radiosensitivity in esophageal squamous cell carcinoma (ESCC) remains unclear. This study aimed to clarify SLC7A11's expression and correlation with nuclear expression of nuclear factor erythroid-2 (NRF2)-associated radioresistance in ESCC. METHODS We included 127 ESCC patients who received radical chemoradiotherapy. Immunohistochemical staining was used to detect SLC7A11 and NRF2 nuclear expression, and the relationship between clinicopathological characteristics and survival rates or therapy response were evaluated. Western blot, dual-reporter assays and Chromatin immunoprecipitation (ChIP)-sequencing were used to analyze their relationship in vitro. Their roles in radioresistance were then investigated through multiple validation steps. RESULTS NRF2 nuclear expression and SLC7A11 expression were overexpressed in ESCC tissues and were positively correlated with one another. NRF2 nuclear expression was significantly associated with tumor length, lymph node metastasis, and TNM stage, while SLC7A11 expression was associated with lymph node metastasis. Patients with high NRF2 nuclear expression and SLC7A11 expression had significantly shorter overall and progression-free survival, and poor treatment response. The multivariate model showed that NRF2 nuclear expression and SLC7A11 expression, sex and tumor location are independent prognostic factors. In vitro analysis confirmed that hyperactivation of NRF2 induced SLC7A11 expression by directly binding to its promoter region, promoting radioresistance, reducing radiotherapy-induced lipid peroxidation levels, PTGS2 expression, and radiotherapy-related ferroptosis morphologic features. CONCLUSION Our study reveals a connection between high SLC7A11 expression and NRF2 nuclear expression in patients with ESCC that was related to worse survival and poorer therapy outcomes. SLC7A11-mediated ferroptosis inhibition induced NRF2-associated radioresistance, highlighting potential of NRF2/SLC7A11/ferroptosis axis as future therapeutic targets against therapy resistance biomarker.
Collapse
|
25
|
Duan JY, Lin X, Xu F, Shan SK, Guo B, Li FXZ, Wang Y, Zheng MH, Xu QS, Lei LM, Ou-Yang WL, Wu YY, Tang KX, Yuan LQ. Ferroptosis and Its Potential Role in Metabolic Diseases: A Curse or Revitalization? Front Cell Dev Biol 2021; 9:701788. [PMID: 34307381 PMCID: PMC8299754 DOI: 10.3389/fcell.2021.701788] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/04/2021] [Indexed: 12/19/2022] Open
Abstract
Ferroptosis is classified as an iron-dependent form of regulated cell death (RCD) attributed to the accumulation of lipid hydroperoxides and redox imbalance. In recent years, accumulating researches have suggested that ferroptosis may play a vital role in the development of diverse metabolic diseases, for example, diabetes and its complications (e.g., diabetic nephropathy, diabetic cardiomyopathy, diabetic myocardial ischemia/reperfusion injury and atherosclerosis [AS]), metabolic bone disease and adrenal injury. However, the specific physiopathological mechanism and precise therapeutic effect is still not clear. In this review, we summarized recent advances about the development of ferroptosis, focused on its potential character as the therapeutic target in metabolic diseases, and put forward our insights on this topic, largely to offer some help to forecast further directions.
Collapse
Affiliation(s)
- Jia-Yue Duan
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Xu
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bei Guo
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fu-Xing-Zi Li
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Wang
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiu-Shuang Xu
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li-Min Lei
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Lu Ou-Yang
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yun-Yun Wu
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ke-Xin Tang
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
26
|
Luo EF, Li HX, Qin YH, Qiao Y, Yan GL, Yao YY, Li LQ, Hou JT, Tang CC, Wang D. Role of ferroptosis in the process of diabetes-induced endothelial dysfunction. World J Diabetes 2021; 12:124-137. [PMID: 33594332 PMCID: PMC7839168 DOI: 10.4239/wjd.v12.i2.124] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/30/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Endothelial dysfunction, a hallmark of diabetes, is a critical and initiating contributor to the pathogenesis of diabetic cardiovascular complications. However, the underlying mechanisms are still not fully understood. Ferroptosis is a newly defined regulated cell death driven by cellular metabolism and iron-dependent lipid peroxidation. Although the involvement of ferroptosis in disease pathogenesis has been shown in cancers and degenerative diseases, the participation of ferroptosis in the pathogenesis of diabetic endothelial dysfunction remains unclear.
AIM To examine the role of ferroptosis in diabetes-induced endothelial dysfunction and the underlying mechanisms.
METHODS Human umbilical vein endothelial cells (HUVECs) were treated with high glucose (HG), interleukin-1β (IL-1β), and ferroptosis inhibitor, and then the cell viability, reactive oxygen species (ROS), and ferroptosis-related marker protein were tested. To further determine whether the p53-xCT (the substrate-specific subunit of system Xc-)-glutathione (GSH) axis is involved in HG and IL-1β induced ferroptosis, HUVECs were transiently transfected with p53 small interfering ribonucleic acid or NC small interfering ribonucleic acid and then treated with HG and IL-1β. Cell viability, ROS, and ferroptosis-related marker protein were then assessed. In addition, we detected the xCT and p53 expression in the aorta of db/db mice.
RESULTS It was found that HG and IL-1β induced ferroptosis in HUVECs, as evidenced by the protective effect of the ferroptosis inhibitors, Deferoxamine and ferrostatin-1, resulting in increased lipid ROS and decreased cell viability. Mechanistically, activation of the p53-xCT-GSH axis induced by HG and IL-1β enhanced ferroptosis in HUVECs. In addition, a decrease in xCT and the presence of de-endothelialized areas were observed in the aortic endothelium of db/db mice.
CONCLUSION Ferroptosis is involved in endothelial dysfunction and p53-xCT-GSH axis activation plays a crucial role in endothelial cell ferroptosis and endothelial dysfunction.
Collapse
Affiliation(s)
- Er-Fei Luo
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Hong-Xia Li
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Yu-Han Qin
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Yong Qiao
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Gao-Liang Yan
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Yu-Yu Yao
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Lin-Qing Li
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Jian-Tong Hou
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Cheng-Chun Tang
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Dong Wang
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China
| |
Collapse
|
27
|
Identification, Expression, and Roles of the Cystine/Glutamate Antiporter in Ocular Tissues. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4594606. [PMID: 32655769 PMCID: PMC7320271 DOI: 10.1155/2020/4594606] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/21/2020] [Indexed: 01/21/2023]
Abstract
The cystine/glutamate antiporter (system x c -) is composed of a heavy chain subunit 4F2hc linked by a disulphide bond to a light chain xCT, which exchanges extracellular cystine, the disulphide form of the amino acid cysteine, for intracellular glutamate. In vitro research in the brain, kidney, and liver have shown this antiporter to play a role in minimising oxidative stress by providing a source of intracellular cysteine for the synthesis of the antioxidant glutathione. In vivo studies using the xCT knockout mouse revealed that the plasma cystine/cysteine redox couple was tilted to a more oxidative state demonstrating system xc - to also play a role in maintaining extracellular redox balance by driving a cystine/cysteine redox cycle. In addition, through import of cystine, system xc - also serves to export glutamate into the extracellular space which may influence neurotransmission and glutamate signalling in neural tissues. While changes to system xc - function has been linked to cancer and neurodegenerative disease, there is limited research on the roles of system xc - in the different tissues of the eye, and links between the antiporter, aging, and ocular disease. Hence, this review seeks to consolidate research on system xc - in the cornea, lens, retina, and ocular humours conducted across several species to shed light on the in vitro and in vivo roles of xCT in the eye and highlight the utility of the xCT knockout mouse as a tool to investigate the contribution of xCT to age-related ocular diseases.
Collapse
|
28
|
Song X, Long D. Nrf2 and Ferroptosis: A New Research Direction for Neurodegenerative Diseases. Front Neurosci 2020; 14:267. [PMID: 32372896 PMCID: PMC7186402 DOI: 10.3389/fnins.2020.00267] [Citation(s) in RCA: 371] [Impact Index Per Article: 74.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 03/09/2020] [Indexed: 12/19/2022] Open
Abstract
Ferroptosis is a kind of regulated cell death (RCD) caused by the redox state disorder of intracellular microenvironment controlled by glutathione (GSH) peroxidase 4 (GPX4), which is inhibited by iron chelators and lipophilic antioxidants. In addition to classical regulatory mechanisms, new regulatory factors for ferroptosis have been discovered in recent years, such as the P53 pathway, the activating transcription factor (ATF)3/4 pathway, Beclin 1 (BECN1) pathway, and some non-coding RNA. Ferroptosis is closely related to cancer treatment, neurodegenerative diseases, ischemia–reperfusion of organ, neurotoxicity, and others, in particular, in the field of neurodegenerative diseases treatment has aroused people’s interest. The nuclear factor E2 related factor 2 (Nrf2/NFE2L2) has been proved to play a key role in neurodegenerative disease treatment and ferroptosis regulation. Ferroptosis promotes the progression of neurodegenerative diseases, while the expression of Nrf2 and its target genes (Ho-1, Nqo-1, and Trx) has been declined with aging; therefore, there is still insufficient evidence for ferroptosis and Nrf2 regulatory networks in the field of neurodegenerative diseases. In this review, we will provide a brief overview of ferroptosis regulatory mechanisms, as well as an emphasis on the mechanism of Nrf2 regulating ferroptosis. We also highlight the role of ferroptosis and Nrf2 during the process of neurodegenerative diseases and investigate a theoretical basis for further research on the relationship between Nrf2 and ferroptosis in the process of neurodegenerative diseases treatment.
Collapse
Affiliation(s)
- Xiaohua Song
- School of Public Health, University of South China, Hengyang, China
| | - Dingxin Long
- School of Public Health, University of South China, Hengyang, China
| |
Collapse
|
29
|
Mendonça HR, Carpi-Santos R, da Costa Calaza K, Blanco Martinez AM. Neuroinflammation and oxidative stress act in concert to promote neurodegeneration in the diabetic retina and optic nerve: galectin-3 participation. Neural Regen Res 2020; 15:625-635. [PMID: 31638084 PMCID: PMC6975153 DOI: 10.4103/1673-5374.266910] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/01/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023] Open
Abstract
Diabetes is a lifelong disease characterized by glucose metabolic imbalance, in which low insulin levels or impaired insulin signaling lead to hyperglycemic state. Within 20 years of diabetes progression, 95% of patients will have diabetic retinopathy, the leading cause of visual defects in working-age people worldwide. Although diabetes is considered a microvascular disease, recent studies have shown that neurodegeneration precedes vascular changes within the diabetic visual system, albeit its mechanisms are still under investigation. Neuroinflammation and oxidative stress are intrinsically related phenomena, since macrophage/microglia and astrocytes are the main sources of reactive oxygen species during central nervous system chronic degenerative diseases, and both pathological processes are increased in the visual system during diabetes. The present review will focus on recent findings of the contribution of oxidative stress derived from neuroinflammation in the early neurodegenerative aspects of the diabetic visual system and their relationship with galectin-3.
Collapse
Affiliation(s)
- Henrique Rocha Mendonça
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Programa de Pós-graduação em Anatomia Patológica, Faculdade de Medicina, Hospital Universitrio Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Pólo Universitário Macaé, Unidade Integrada de Pesquisa em Produtos Bioativos e Biociências, Federal University of Rio de Janeiro, Macaé, Brazil
- Laboratório Integrado de Morfologia, Instituto de Biodiversidade e Sustentabilidade, Núcleo de Pesquisas Ecológicas de Macaé, Federal University of Rio de Janeiro, Macaé, Brazil
| | - Raul Carpi-Santos
- Laboratório de Neurobiologia Celular, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Karin da Costa Calaza
- Laboratório de Neurobiologia da Retina, Departamento de Neurobiologia, Programa de Pós-Graduação em Neurociências, Fluminense Federal University, Niterói, Brazil
| | - Ana Maria Blanco Martinez
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Programa de Pós-graduação em Anatomia Patológica, Faculdade de Medicina, Hospital Universitrio Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Santos I, Ramos C, Mendes C, Sequeira CO, Tomé CS, Fernandes DGH, Mota P, Pires RF, Urso D, Hipólito A, Antunes AMM, Vicente JB, Pereira SA, Bonifácio VDB, Nunes SC, Serpa J. Targeting Glutathione and Cystathionine β-Synthase in Ovarian Cancer Treatment by Selenium-Chrysin Polyurea Dendrimer Nanoformulation. Nutrients 2019; 11:E2523. [PMID: 31635026 PMCID: PMC6836284 DOI: 10.3390/nu11102523] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 09/30/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer is the main cause of death from gynecological cancer, with its poor prognosis mainly related to late diagnosis and chemoresistance (acquired or intrinsic) to conventional alkylating and reactive oxygen species (ROS)-generating drugs. We and others reported that the availability of cysteine and glutathione (GSH) impacts the mechanisms of resistance to carboplatin in ovarian cancer. Different players in cysteine metabolism can be crucial in chemoresistance, such as the cystine/glutamate antiporter system Xc (xCT) and the H2S-synthesizing enzyme cystathionine β-synthase (CBS) in the pathway of cysteine catabolism. We hypothesized that, by disrupting cysteine metabolic flux, chemoresistance would be reverted. Since the xCT transporter is also able to take up selenium, we used selenium-containing chrysin (SeChry) as a plausible competitive inhibitor of xCT. For that, we tested the effects of SeChry on three different ovarian cancer cell lines (ES2, OVCAR3, and OVCAR8) and in two non-malignant cell lines (HaCaT and HK2). Results showed that, in addition to being highly cytotoxic, SeChry does not affect the uptake of cysteine, although it increases GSH depletion, indicating that SeChry might induce oxidative stress. However, enzymatic assays revealed an inhibitory effect of SeChry toward CBS, thus preventing production of the antioxidant H2S. Notably, our data showed that SeChry and folate-targeted polyurea dendrimer generation four (SeChry@PUREG4-FA) nanoparticles increased the specificity for SeChry delivery to ovarian cancer cells, reducing significantly the toxicity against non-malignant cells. Collectively, our data support SeChry@PUREG4-FA nanoparticles as a targeted strategy to improve ovarian cancer treatment, where GSH depletion and CBS inhibition underlie SeChry cytotoxicity.
Collapse
Affiliation(s)
- Inês Santos
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal.
| | - Cristiano Ramos
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal.
| | - Cindy Mendes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal.
| | - Catarina O Sequeira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal.
| | - Catarina S Tomé
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Avenida da República (EAN), 2780-157 Oeiras, Portugal.
| | - Dalila G H Fernandes
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Avenida da República (EAN), 2780-157 Oeiras, Portugal.
| | - Pedro Mota
- CQFM-IN and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Rita F Pires
- CQFM-IN and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Donato Urso
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal.
| | - Ana Hipólito
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal.
| | - Alexandra M M Antunes
- Centro de Química Estrutural, Instituto Superior Técnico, ULisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - João B Vicente
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Avenida da República (EAN), 2780-157 Oeiras, Portugal.
| | - Sofia A Pereira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal.
| | - Vasco D B Bonifácio
- CQFM-IN and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Sofia C Nunes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal.
| | - Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal.
| |
Collapse
|
31
|
Lack of Galectin-3 attenuates neuroinflammation and protects the retina and optic nerve of diabetic mice. Brain Res 2018; 1700:126-137. [PMID: 30016630 DOI: 10.1016/j.brainres.2018.07.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/17/2022]
Abstract
Diabetic retinopathy is the leading cause of acquired blindness in working-age individuals. Recent work has revealed that neurodegeneration occurs earlier than vascular insult and that distal optic nerve damage precedes retinal degeneration and vascular insult. Since we have shown that optic nerve degeneration is reduced after optic nerve crush in Galectin-3 knockout (Gal-3 -/-) mice, we decided to investigate whether Gal-3 -/- could relieve inflammation and preserve both neurons and the structure of the retina and optic nerve following 8 weeks of diabetes. Diabetes was induced in 2-month-old male C57/bl6 WT or Gal-3 -/- mice by a single injection of streptozotocin (160 mg/kg). Histomorphometric retinal analyses showed no gross difference, except for a reduced number of retinal ganglion cells in WT diabetic mice, correlated to increased apoptosis. In the optic nerve, Gal-3 -/- mice showed reduced neuroinflammation, suggested by the smaller number of Iba1+ cells, particularly the amoeboid profiles in the distal end. Furthermore, iNOS staining was reduced in the optic nerves of Gal-3 -/- mice, as well as GFAP in the distal segment of the optic nerve. Finally, optic nerve histomorphometric analyses revealed that the number of myelinated fibers was higher in the Gal-3 -/- mice and myelin was more rectilinear compared to WT diabetic mice. Therefore, the present study provided evidence that Gal-3 is a central target that stimulates neuroinflammation and impairs neurological outcomes in visual complications of diabetes. Our findings provide support for the clinical use of Gal-3 inhibitors against diabetic visual complications in the near future.
Collapse
|