1
|
Dadkhah M, Afshari S, Samizadegan T, Shirmard LR, Barin S. Pegylated chitosan nanoparticles of fluoxetine enhance cognitive performance and hippocampal brain derived neurotrophic factor levels in a rat model of local demyelination. Exp Gerontol 2024; 195:112533. [PMID: 39134215 DOI: 10.1016/j.exger.2024.112533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024]
Abstract
Cognitive impairment is a common feature in neurodegenerative diseases such as multiple sclerosis (MS). This study aims to explore the potential of enhancing the beneficial effects of fluoxetine (FLX), a neuroprotective agent known for its ability to increase neural plasticity by utilizing nanoparticles. The study specifically focuses on the synthesis and evaluation of PEGylated chitosan nanoparticles of FLX and its effect on demyelination and the subsequent cognitive impairment (CI) in the hippocampus of rats induced by local injection of lysophosphatidylcholine (LPC). Chitosan/polyethylene glycol nanoparticles were synthesized, and their properties were analyzed. Demyelination was induced in rats via hippocampal injections of lysolecithin. Behavioral assessments included open field maze, elevated plus maze, and novel object recognition memory (NORM) tests. Hippocampal levels of insulin-like growth factor (IGF-1) and brain-derived neurotrophic factor (BDNF) were measured using enzyme-linked immunoassay (ELISA). The extent of remyelination was quantified using Luxol fast blue staining. Nanoparticle size measured 240.2 nm with 53 % encapsulation efficacy. Drug release exhibited a slow pattern, with 76 % released within 4 h. Nanoparticle-treated rats displayed reduced anxiety-like behavior, improved memory, increased BDNF levels, and a reduced extent of demyelination, with no change in IGF- levels. In addition, FLX -loaded chitosan nanoparticles had better effect on cognitive improvement, BDNF levels in the hippocampus that FLX. Altering pharmacokinetics and possibly pharmacodynamics. These findings highlight the potential of innovative drug delivery systems, encouraging further research in this direction.
Collapse
Affiliation(s)
- Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Salva Afshari
- Student Research Committee, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran; Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Tara Samizadegan
- Student Research Committee, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Leila Rezaie Shirmard
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Sajjad Barin
- Department of Pathology, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
2
|
Liu RX, Song DK, Zhang YY, Gong HX, Jin YC, Wang XS, Jiang YL, Yan YX, Lu BN, Wu YM, Wang M, Li XB, Zhang K, Liu SB. L-Cysteine: A promising nutritional supplement for alleviating anxiety disorders. Neuroscience 2024; 555:213-221. [PMID: 39089569 DOI: 10.1016/j.neuroscience.2024.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Anxiety disorders are prevalent chronic psychological disease with complex pathogenic mechanisms. Current anxiolytics have limited efficacy and numerous side effects in many anxiety patients, highlighting the urgent need for new therapies. Recent research has been focusing on nutritional supplements, particularly amino acids, as potential therapies for anxiety disorders. Among these, L-Cysteine plays a crucial role in various biological processes. L-Cysteine exhibits antioxidant properties that can enhance the antioxidant functions of the central nervous system (CNS). Furthermore, metabolites of L-cysteine, such as glutathione and hydrogen sulfide have been shown to alleviate anxiety through distinct molecular mechanisms. Long-term administration of L-Cysteine has anxiolytic, antidepressant, and memory-improving effects. L-Cysteine depletion can lead to increased oxidative stress in the brain. This review delves into the potential mechanisms of L-Cysteine and its main products, glutathione (GSH) and hydrogen sulfide (H2S) in the management of anxiety and related diseases.
Collapse
Affiliation(s)
- Rui-Xia Liu
- College of Life Sciences, Northwest University, Xi'an 710069, China; Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Da-Ke Song
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Ying-Ying Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Heng-Xin Gong
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Yu-Chen Jin
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Xin-Shang Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Yong-Li Jiang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xinsi Road 1, Shaanxi, Xi'an 710038, China
| | - Yu-Xuan Yan
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Bei-Ning Lu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Yu-Mei Wu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Min Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Xu-Bo Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Shui-Bing Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
3
|
Ma LH, Li S, Jiao XH, Li ZY, Zhou Y, Zhou CR, Zhou CH, Zheng H, Wu YQ. BLA-involved circuits in neuropsychiatric disorders. Ageing Res Rev 2024; 99:102363. [PMID: 38838785 DOI: 10.1016/j.arr.2024.102363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/04/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
The basolateral amygdala (BLA) is the subregion of the amygdala located in the medial of the temporal lobe, which is connected with a wide range of brain regions to achieve diverse functions. Recently, an increasing number of studies have focused on the participation of the BLA in many neuropsychiatric disorders from the neural circuit perspective, aided by the rapid development of viral tracing methods and increasingly specific neural modulation technologies. However, how to translate this circuit-level preclinical intervention into clinical treatment using noninvasive or minor invasive manipulations to benefit patients struggling with neuropsychiatric disorders is still an inevitable question to be considered. In this review, we summarized the role of BLA-involved circuits in neuropsychiatric disorders including Alzheimer's disease, perioperative neurocognitive disorders, schizophrenia, anxiety disorders, depressive disorders, posttraumatic stress disorders, autism spectrum disorders, and pain-associative affective states and cognitive dysfunctions. Additionally, we provide insights into future directions and challenges for clinical translation.
Collapse
Affiliation(s)
- Lin-Hui Ma
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuai Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xin-Hao Jiao
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Zi-Yi Li
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Yue Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Chen-Rui Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Cheng-Hua Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Yu-Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
4
|
Bekci E, Gokmen RC, Kanit L, Gozen O, Balkan B, Koylu EO, Keser A. Enhanced Novel Object Recognition and Spatial Memory in Rats Selectively Bred for High Nicotine Preference. Brain Sci 2024; 14:427. [PMID: 38790406 PMCID: PMC11118842 DOI: 10.3390/brainsci14050427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
This study examined the influence of genetic background on cognitive performance in a selectively bred high nicotine-preferring (NP) rat line. Using the novel object recognition (NOR), novel location recognition (NLR), and Morris water maze (MWM) tests, we evaluated object memory, spatial memory, and spatial navigation in nicotine-naive NP rats compared to controls. Our results demonstrate that in the NOR test, both male and female NP rats spent more time exploring the novel object (higher discrimination index) compared to sex-matched controls. In the NLR, the discrimination index differed significantly from zero chance (no preference) in both NP males and females but not in controls, indicating enhanced spatial memory in the NP line. During MWM acquisition, the NP groups and control males took a shorter path to reach the platform compared to control females. On the probe trial, the distance traveled in the target quadrant was longer for NP males and females compared to their respective controls, suggesting enhanced spatial navigation and learning in the NP rats. The interesting preference for novel objects and locations displayed by NP rats may indicate a potential novelty-seeking phenotype in this line. These results highlight the complex interplay between genetic factors, cognitive function, and nicotine preference.
Collapse
Affiliation(s)
- Eren Bekci
- Neuroscience Department, Institute of Health Sciences, Ege University, Izmir 35100, Turkey
| | - Ramazan Can Gokmen
- Department of Physiology, School of Medicine, Ege University, Izmir 35100, Turkey
| | - Lutfiye Kanit
- Neuroscience Department, Institute of Health Sciences, Ege University, Izmir 35100, Turkey
- Department of Physiology, School of Medicine, Ege University, Izmir 35100, Turkey
| | - Oguz Gozen
- Neuroscience Department, Institute of Health Sciences, Ege University, Izmir 35100, Turkey
- Department of Physiology, School of Medicine, Ege University, Izmir 35100, Turkey
| | - Burcu Balkan
- Neuroscience Department, Institute of Health Sciences, Ege University, Izmir 35100, Turkey
- Department of Physiology, School of Medicine, Ege University, Izmir 35100, Turkey
| | - Ersin O. Koylu
- Neuroscience Department, Institute of Health Sciences, Ege University, Izmir 35100, Turkey
- Department of Physiology, School of Medicine, Ege University, Izmir 35100, Turkey
| | - Aysegul Keser
- Neuroscience Department, Institute of Health Sciences, Ege University, Izmir 35100, Turkey
- Department of Physiology, School of Medicine, Ege University, Izmir 35100, Turkey
| |
Collapse
|
5
|
Delcourte S, Bouloufa A, Rovera R, Bétry C, Abrial E, Dkhissi-Benyahya O, Heinrich C, Marcy G, Raineteau O, Haddjeri N, Lucas G, Etiévant A. Chemogenetic activation of prefrontal astroglia enhances recognition memory performance in rat. Biomed Pharmacother 2023; 166:115384. [PMID: 37657260 DOI: 10.1016/j.biopha.2023.115384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023] Open
Abstract
Prefrontal cortex (PFC) inputs to the hippocampus are supposed to be critical in memory processes. Astrocytes are involved in several brain functions, such as homeostasis, neurotransmission, synaptogenesis. However, their role in PFC-mediated modulation of memory has yet to be studied. The present study aims at uncovering the role of PFC astroglia in memory performance and synaptic plasticity in the hippocampus. Using chemogenetic and lesions approaches of infralimbic PFC (IL-PFC) astrocytes, we evaluated memory performance in the novel object recognition task (NOR) and dorsal hippocampus synaptic plasticity. We uncovered a surprising role of PFC astroglia in modulating object recognition memory. In opposition to the astroglia PFC lesion, we show that chemogenetic activation of IL-PFC astrocytes increased memory performance in the novel object recognition task and facilitated in vivo dorsal hippocampus synaptic metaplasticity. These results redefine the involvement of PFC in recognition mnemonic processing, uncovering an important role of PFC astroglia.
Collapse
Affiliation(s)
- Sarah Delcourte
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Amel Bouloufa
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Renaud Rovera
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Cécile Bétry
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Erika Abrial
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Ouria Dkhissi-Benyahya
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Christophe Heinrich
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Guillaume Marcy
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Olivier Raineteau
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Nasser Haddjeri
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France.
| | - Guillaume Lucas
- Université de Bordeaux, CNRS UMR 5287, INCIA, P3TN, Bordeaux F-33000, France
| | - Adeline Etiévant
- Integrative and Clinical Neurosciences EA481, University of Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
6
|
Fessel J. Supplementary Pharmacotherapy for the Behavioral Abnormalities Caused by Stressors in Humans, Focused on Post-Traumatic Stress Disorder (PTSD). J Clin Med 2023; 12:1680. [PMID: 36836215 PMCID: PMC9967886 DOI: 10.3390/jcm12041680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Used as a supplement to psychotherapy, pharmacotherapy that addresses all of the known metabolic and genetic contributions to the pathogenesis of psychiatric conditions caused by stressors would require an inordinate number of drugs. Far simpler is to address the abnormalities caused by those metabolic and genetic changes in the cell types of the brain that mediate the behavioral abnormality. Relevant data regarding the changed brain cell types are described in this article and are derived from subjects with the paradigmatic behavioral abnormality of PTSD and from subjects with traumatic brain injury or chronic traumatic encephalopathy. If this analysis is correct, then therapy is required that benefits all of the affected brain cell types; those are astrocytes, oligodendrocytes, synapses and neurons, endothelial cells, and microglia (the pro-inflammatory (M1) subtype requires switching to the anti-inflammatory (M2) subtype). Combinations are advocated using several drugs, erythropoietin, fluoxetine, lithium, and pioglitazone, that benefit all of the five cell types, and that should be used to form a two-drug combination, suggested as pioglitazone with either fluoxetine or lithium. Clemastine, fingolimod, and memantine benefit four of the cell types, and one chosen from those could be added to the two-drug combination to form a three-drug combination. Using low doses of chosen drugs will limit both toxicity and drug-drug interactions. A clinical trial is required to validate both the advocated concept and the choice of drugs.
Collapse
Affiliation(s)
- Jeffrey Fessel
- Department of Medicine, University of California, 2069 Filbert Street, San Francisco, CA 94123, USA
| |
Collapse
|
7
|
McCaffrey D, Lawther AJ, Weickert CS, Walker AK. Cancer activates microglia to the same extent as chronic stress throughout stress neurocircuitry in a mouse model of breast cancer. Psychoneuroendocrinology 2022; 146:105938. [PMID: 36174451 DOI: 10.1016/j.psyneuen.2022.105938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022]
Abstract
The prevalence of stress-related comorbidities is increased approximately 3-fold in cancer patients compared to the general population. There is a scarcity of research focusing on the biological brain changes caused by the cancer due to the assumption that psychological symptoms are solely caused by the stress of a cancer diagnosis. Recent clinical evidence indicates that declines in cognition and increases in mood symptoms occur prior to an individual receiving a cancer diagnosis, suggesting that the cancer itself may play a role in mediating biological brain change. Furthermore, the presence of a tumour may change the brain response to environmental stressors unrelated to a cancer diagnosis. Using a syngeneic, orthotopic mouse model of breast cancer, we compared the impact of mammary tumours and chronic restraint stress on microglial and astrocytic activation throughout stress-relevant neurocircuitry. We also examined whether changes in microglial and astrocytic activation overlapped with changes in chronic neuronal activity. We show that cancer and chronic restraint stress activates microglia to the same magnitude in the same subcortical brain regions, and that this activation correlates with stress coping behaviours. The findings suggest that in some cancer patients, microglia may be activated in brain regions involved in interpreting and responding to psychological distress before they are aware of their diagnosis. In contrast, cancer reduced astrocyte reactivity in two cortical brain regions where there were no clear changes in response to chronic restraint stress. Taken together, it is likely that interventions that aim to improve anxiety and stress in cancer patients by targeting glial responses to cancer would need to be cell-specific; reducing microglial activation and/or stimulating astrocytic activation.
Collapse
Affiliation(s)
- Delyse McCaffrey
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, New South Wales, Australia; Discipline of Psychiatry and Mental Health, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Adam J Lawther
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, New South Wales, Australia
| | - Cynthia Shannon Weickert
- Discipline of Psychiatry and Mental Health, Faculty of Medicine, University of New South Wales, Sydney, Australia; Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, New South Wales, Australia; Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Adam K Walker
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, New South Wales, Australia; Discipline of Psychiatry and Mental Health, Faculty of Medicine, University of New South Wales, Sydney, Australia; Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia.
| |
Collapse
|
8
|
Liu L, Dai L, Xu D, Wang Y, Bai L, Chen X, Li M, Yang S, Tang Y. Astrocyte secretes IL-6 to modulate PSD-95 palmitoylation in basolateral amygdala and depression-like behaviors induced by peripheral nerve injury. Brain Behav Immun 2022; 104:139-154. [PMID: 35636613 DOI: 10.1016/j.bbi.2022.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/26/2022] [Accepted: 05/25/2022] [Indexed: 02/05/2023] Open
Abstract
Dysfunction of glutamatergic synaptic plasticity in basolateral amygdala (BLA) constitutes a critical pathogenic mechanism underlying the depression-like behaviors induced by chronic pain. Astrocytes serve as an important supporting cell modulating glutamatergic synaptic transmission. Here, we found that peripheral spared nerve injury (SNI) induced astrocyte activation to release IL-6 in BLA. Inhibition of astrocyte activity attenuated SNI-induced IL-6 overexpression and depression-like behaviors. Moreover, SNI enhanced the abundance of DHHC2 in synaptosome and DHHC3 in Golgi apparatus, promoted PSD-95 palmitoylation, and increased the recruitment of GluR1 and NR2B at synapses. Suppression of IL-6 or PSD-95 palmitoylation attenuated the synaptic accumulation of GluR1 and NR2B in BLA and improved depression-like behaviors induced by SNI. Furthermore, IL-6 downstream PI3K increased the expression of DHHC3 in Golgi apparatus and facilitated the interaction of palmitoylated PSD-95 with GluR1 and NR2B at synapses. These findings collectively suggested that SNI activated astrocyte to release IL-6 in BLA, which promoted PSD-95 palmitoylation and enhanced the synaptic trafficking of GluR1 and NR2B, and subsequently mediated the depression-like behaviors induced by nerve injury.
Collapse
Affiliation(s)
- Lian Liu
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, and Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China; Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, and Department of Respiratory Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610093, China
| | - Luqi Dai
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, and Department of Respiratory Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610093, China
| | - Dan Xu
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, and Department of Respiratory Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610093, China
| | - Yinchan Wang
- Core Facility of West China Hospital, Sichuan University, Chengdu 610093, China
| | - Lin Bai
- Core Facility of West China Hospital, Sichuan University, Chengdu 610093, China
| | - Xiaoting Chen
- Animal Experimental Center of West China Hospital, Sichuan University, Chengdu 610093, China
| | - Mengzhou Li
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, and Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China; West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Shuai Yang
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, and Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China; West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Yuying Tang
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, and Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China; Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, and Department of Respiratory Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610093, China.
| |
Collapse
|
9
|
Chakraborty S, Tripathi SJ, Raju TR, Shankaranarayana Rao BS. Brain stimulation rewarding experience attenuates neonatal clomipramine-induced adulthood anxiety by reversal of pathological changes in the amygdala. Prog Neuropsychopharmacol Biol Psychiatry 2020; 103:110000. [PMID: 32512130 DOI: 10.1016/j.pnpbp.2020.110000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/04/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022]
Abstract
Major depressive disorder (MDD) is associated with enhanced anxiety and reduced reward processing leading to impaired cognitive flexibility. These pathological changes during depression are accompanied by dysfunctional hypothalamic-pituitary-adrenal (HPA) axis and its impaired regulation by the amygdala. Notably, the electrical stimulation of brain reward areas produces an antidepressant effect in both MDD patients and animal models of depression. However, the effects of chronic electrical self-stimulation of lateral hypothalamus - medial forebrain bundle (LH-MFB) on depression-associated anxiety and accompanying changes in plasma corticosterone levels, structural, and neurochemical alterations in the amygdala are unknown. Here, we used the neonatal clomipramine (CLI) model of depression. During adulthood, neonatal CLI and vehicle administered rats were subjected to bilateral electrode implantation at LH-MFB and trained to receive intracranial self-stimulation (ICSS) for 14 days. Rats were then tested for anhedonic and anxiety-like behaviors, followed by estimation of plasma corticosterone levels, assessment of amygdalar volumes and neuronal/glial numbers, levels of monoamines and their metabolites in the amygdala. We found that chronic ICSS of LH-MFB reverses CLI-induced anhedonia and anxiety. Interestingly, amelioration of CLI-induced enhanced anhedonia and anxiety in ICSS rats was associated with partial reversal of enhanced plasma corticosterone levels, hypertrophy of basolateral amygdala (BLA), and altered noradrenaline (NA) metabolism in the amygdalar complex. We suggest that beneficial effects of ICSS on CLI-induced anxiety at least in part mediated by the restoration of amygdalar and HPA axis functioning. Our results support the hypothesis that brain stimulation rewarding experience might be evolved as a therapeutic strategy for reversal of amygdalar dysfunction in depression.
Collapse
Affiliation(s)
- Suwarna Chakraborty
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru 560 029, India
| | - Sunil Jamuna Tripathi
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru 560 029, India
| | - T R Raju
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru 560 029, India
| | - B S Shankaranarayana Rao
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru 560 029, India.
| |
Collapse
|
10
|
Tripathi SJ, Chakraborty S, Rao BSS. Remediation of chronic immobilization stress-induced negative affective behaviors and altered metabolism of monoamines in the prefrontal cortex by inactivation of basolateral amygdala. Neurochem Int 2020; 141:104858. [PMID: 33010391 DOI: 10.1016/j.neuint.2020.104858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/06/2020] [Accepted: 09/26/2020] [Indexed: 01/28/2023]
Abstract
Exposure to chronic stress precipitates depression and anxiety. Stress-induced responses are differentially regulated by the prefrontal cortex (PFC) and basolateral amygdala (BLA). For instance, repeated stress leads to hypertrophy of BLA, resulting in the emergence of affective symptoms. Chronic stress-induced changes in the metabolism of monoamines are central in the manifestation of affective symptoms. Interestingly, BLA via its reciprocal connections modulates prefrontal cortical monoaminergic responses to acute stress. However, the effects of BLA inactivation on chronic stress-induced affective behaviors and monoaminergic changes in the PFC are relatively unknown. Thus, we hypothesized that inactivation of BLA might prevent chronic immobilization stress (CIS)-induced depressive-, anxiety-like behaviors, and associated monoaminergic alterations in the prelimbic (PrL) and anterior cingulate cortex (ACC) subregions of PFC. We used two different BLA silencing strategies, namely ibotenic acid lesion and reversible temporary inactivation using lidocaine. We found that CIS precipitates depressive- and anxiety-like behaviors. Further, CIS-induced negative affective behaviors were associated with decreased levels of 5-HT, DA, and NE, and increased 5-HIAA/5-HT, DOPAC + HVA/DA, and MHPG/NE ratio in the PrL and ACC, suggesting enhanced metabolism. Interestingly, BLA lesion prior to CIS blocked the emergence of depressive- and anxiety-like behaviors. Moreover, the lesion of BLA prior to CIS was sufficient to prevent alterations in levels of monoamines and their metabolites in the PrL and ACC. Thereafter, we evaluated whether the effects of BLA lesion could be mirrored by temporary inactivation of BLA, specifically during stress. Remarkably, temporary inactivation of BLA during stress recapitulated the effects of lesion. Our results have implications for understanding the role of BLA in chronic stress-induced metabolic alterations in prefrontal cortical monoaminergic systems, and associated mood and anxiety disorders. The current study supports the hypothesis that combating amygdalar hyperactivity might be a viable strategy for the management of stress and associated affective disorders.
Collapse
Affiliation(s)
- Sunil Jamuna Tripathi
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru, 560 029, India
| | - Suwarna Chakraborty
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru, 560 029, India
| | - B S Shankaranarayana Rao
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru, 560 029, India.
| |
Collapse
|
11
|
Chakraborty S, Tripathi SJ, Raju TR, Shankaranarayana Rao BS. Mechanisms underlying remediation of depression-associated anxiety by chronic N-acetyl cysteine treatment. Psychopharmacology (Berl) 2020; 237:2967-2981. [PMID: 32572589 DOI: 10.1007/s00213-020-05585-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/11/2020] [Indexed: 11/29/2022]
Abstract
RATIONALE Anxiety is one of the most comorbid conditions with major depressive disorder (MDD). Depression-associated anxiety often stems from the dysfunctional hypothalamic-pituitary-adrenal (HPA) axis and its altered regulation by the amygdala. Furthermore, MDD is associated with altered glutamatergic processing leading to anxiety and impaired regulation of the HPA axis. Recent studies have demonstrated that N-acetyl cysteine (NAC), a pleiotropic drug, exerts antidepressant-like effect by modulation of hippocampal functions, periterminal release of glutamate, and/or redox systems. However, the effects of NAC on depression-associated anxiety, HPA axis hyperactivity, and amygdalar dysfunctions are relatively unknown. OBJECTIVES Accordingly, we evaluated the effect of NAC on neonatal clomipramine (CLI)-induced adulthood anxiety and accompanying changes in plasma corticosterone levels, amygdalar volumes, neuronal/glial densities, levels of monoamines, and their metabolites in the amygdalar complex. RESULTS We found that chronic treatment with NAC reverses CLI-induced anhedonia and enhanced anxiety. Interestingly, attenuation of CLI-associated anxiety in NAC-treated rats were accompanied by a reversal of adrenal and spleen hypertrophy, and normalization of enhanced plasma corticosterone levels, indicating improved HPA axis functioning. Furthermore, NAC treatment was sufficient to reverse volumetric hypertrophy of basolateral amygdala (BLA), and altered noradrenaline (NA) metabolism in the amygdalar complex. The effects of NAC in the reversal of CLI-induced impairments were similar to that of fluoxetine (FLX). CONCLUSIONS We suggest that beneficial effects of NAC on antidepressive- and antianxiety-like behaviors are at least in part mediated via restoration of amygdalar and HPA axis functioning. Our results support the hypothesis that NAC might be evolved as a therapeutic strategy for reversal of amygdalar dysfunction in depression.
Collapse
Affiliation(s)
- Suwarna Chakraborty
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560 029, India
| | - Sunil Jamuna Tripathi
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560 029, India
| | - T R Raju
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560 029, India
| | - B S Shankaranarayana Rao
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560 029, India.
| |
Collapse
|
12
|
Chakraborty S, Tripathi SJ, Srikumar B, Raju T, Shankaranarayana Rao B. N-acetyl cysteine ameliorates depression-induced cognitive deficits by restoring the volumes of hippocampal subfields and associated neurochemical changes. Neurochem Int 2020; 132:104605. [DOI: 10.1016/j.neuint.2019.104605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/11/2019] [Accepted: 11/15/2019] [Indexed: 12/14/2022]
|
13
|
Devi SA, Abhijit S. Integration of qRT-PCR and Immunohistochemical Techniques for mRNA Expression and Localization of m1AChR in the Brain of Aging Rat. Methods Mol Biol 2020; 2138:323-336. [PMID: 32219760 DOI: 10.1007/978-1-0716-0471-7_23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The neurotransmitter acetylcholine (ACh) is involved in memory and cognitive functions, which normally decline with age. In this chapter, we describe qRT-PCR and immunohistochemical protocols for measurement of muscarinic ACh receptor M1 (m1AChR) levels in the brains of middle-aged rats, with and without administration of grape seed proanthocyanidin extract (GSPE) and exercise training. The analyses revealed that the interventions led to an increase in m1AChR mRNA and protein levels in the CA1 subfield of hippocampus. This would be expected to enhance Ach levels at synapses and thereby boost cognitive ability. The protocols can be applied to m1AChR measurements in neurodegenerative diseases and dementia.
Collapse
Affiliation(s)
- S Asha Devi
- Laboratory of Gerontology, Department of Zoology, Bangalore University, Bangalore, India.
| | - S Abhijit
- Laboratory of Gerontology, Department of Zoology, Bangalore University, Bangalore, India
| |
Collapse
|
14
|
Chronic brain stimulation rewarding experience ameliorates depression-induced cognitive deficits and restores aberrant plasticity in the prefrontal cortex. Brain Stimul 2019; 12:752-766. [PMID: 30765272 DOI: 10.1016/j.brs.2019.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 12/12/2018] [Accepted: 01/27/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a multifactorial disease which often coexists with cognitive deficits. Depression-induced cognitive deficits are known to be associated with aberrant reward processing, neurochemical and structural alterations. Recent studies have shown that chronic electrical stimulation of brain reward areas induces a robust antidepressant effect. However, the effects of repeated electrical self-stimulation of lateral hypothalamus - medial forebrain bundle (LH-MFB) on depression-induced cognitive deficits and associated neurochemical and structural alterations in the prefrontal cortex (PFC) are unknown. OBJECTIVES We investigated the effect of chronic rewarding self-stimulation of LH-MFB in neonatal clomipramine (CLI) model of depression. During adulthood, neonatal CLI and saline administered rats were implanted with bilateral electrodes stereotaxically in the LH-MFB and trained to receive intracranial self-stimulation (ICSS) for 14 days. The rats were tested for depressive-like behaviors, learning and memory followed by estimation of PFC volumes, levels of monoamines and its metabolites in the PFC. RESULTS We found that chronic ICSS of LH-MFB reverses CLI-induced behavioral despair and anhedonia. Interestingly, self-stimulation normalizes the impaired novel object and location recognition memory in CLI rats. The amelioration of learning impairments in CLI rats was associated with the reversal of volume loss and restoration of monoamine metabolism in the PFC. CONCLUSION We demonstrated that repeated intracranial self-stimulation of LH-MFB ameliorates CLI-induced learning deficits, reverses altered monoamine metabolism and the atrophy of PFC. Our results support the hypothesis that chronic brain stimulation rewarding experience might be evolved as a potential treatment strategy for reversal of learning deficits in depression and associated disorders.
Collapse
|