1
|
Song Y, Yu C, Bo D, Sun J, Wang Y, Chen P, Wu H, Hong L, Ye Z, Zhang L, Zhou D. Ox-LDL Induces Neuron Apoptosis and Worsens Neurological Outcomes in aSAH via Fas/FADD Pathway. Mol Neurobiol 2025:10.1007/s12035-025-04912-7. [PMID: 40199806 DOI: 10.1007/s12035-025-04912-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 04/02/2025] [Indexed: 04/10/2025]
Abstract
The aim of this study was to assess the role of Ox-LDL (oxidized low-density lipoprotein) in the clinical prognosis of patients with aneurysmal subarachnoid hemorrhage (aSAH) and to investigate the underlying mechanisms in a mouse model of aSAH. Plasma Ox-LDL levels were measured in 50 aSAH patients and in 20 control patients via ELISA. Analysis of the associations between Ox-LDL levels and neurological function was carried out 1 year after discharge. The effects of Ox-LDL on aSAH model behavior and neurological damage were studied via Nissl staining and brain assessments. qRT‒PCR, Western blotting, and FITC/PI apoptosis detection were performed in an aSAH cell model to reveal the effects of Ox-LDL on neurons. Protein docking and Fas knockdown were used to explore the role of the Fas/FADD pathway in the Ox-LDL-induced exacerbation of neuron dysfunction. Among aSAH patients, those with lower Ox-LDL levels (1.755 ± 0.2107 mmol/L) had an mRS score ≤ 2 after one year, whereas those with higher Ox-LDL levels (2.532 ± 0.1860 mmol/L) had an mRS score > 2. Mice that were injected twice weekly with 0.2 ml of Ox-LDL, seven times, experienced increased neurological damage and neuronal apoptosis, activating the Fas/FADD pathway, an effect that was mirrored in the 20 µg/ml Ox-LDL-treated cell model. Blocking Fas/FADD with 170 µg of C75 or siRNA inhibited the apoptotic phenotype both in vivo and in vitro. Ox-LDL promoted neuronal apoptosis via Fas/FADD pathway after aSAH. The inhibition of Ox-LDL could serve as a therapeutic strategy to prevent neuronal damage after aSAH and improve prognostic outcomes.
Collapse
Affiliation(s)
- Yabin Song
- Department of Neurology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Chen Yu
- Department of Neurology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Dandan Bo
- Department of Neurology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Junqi Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yong Wang
- Department of Neurology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Pingping Chen
- Department of Neurology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Hanming Wu
- Department of Neurology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Linghong Hong
- Department of Drug Clinical Trial Institution, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Zhennan Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Long Zhang
- Department of Pain, Zhejiang Provincial People'S Hospital, Affiliated People'S Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Diangui Zhou
- Department of Neurology, Zhongshan Torch Development Zone Hospital, Zhongshan, Guangdong, China.
| |
Collapse
|
2
|
Wroe W, Dienel A, Hong S, Matsumura K, Guzman J, Torres K, Bernal A, Zeineddine HA, Pandit PT, Blackburn SL, McBride DW. Incidence and Factors in Delayed Neurological Deficits after Subarachnoid Hemorrhage in Mice. BRAIN HEMORRHAGES 2024; 5:99-106. [PMID: 39830728 PMCID: PMC11741540 DOI: 10.1016/j.hest.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Background Delayed cerebral ischemia (DCI) is one of the most feared complications in aneurysmal subarachnoid hemorrhage (SAH). Animal models are crucial to studying the disease mechanisms and potential treatments. DCI in rodents was thought to not exist; herein we examine literature and our experience with DCI in rodents. Methods Daily behavioral performance was assessed every day from day 1 to up to 7 days post-SAH on mice from 5 different studies that used the endovascular perforation model. Performance was graded using an 8-test sensorimotor neuroscore previously described. The daily neuroscore was then used to identify the incidence and timing of delayed neurological deficits, a clinical surrogate for DCI. A total number of 298 mice (134 males, 164 females) were subjected to SAH. Fifty-one mice had histological staining done to identify infarct volume. Results The overall incidence of DND was 33.9%; 27.6% in males and 39.0% in females, but this difference was not statistically significant. The overall incidence of delayed death was 21.1%, and there was no significant difference for delayed mortality in females versus male mice. There is a non-statistically significant trend towards increased infarct volume in mice suffering DND. Conclusions Mice with endovascular puncture induced SAH develop DND at rates comparable to human patients. Future work needs to correlate the DND seen with decreased regional cerebral blood flow, another hallmark of DCI, but in spite of this need, researchers may use the murine models to test therapies for DCI after SAH.
Collapse
Affiliation(s)
- William Wroe
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ari Dienel
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Sungha Hong
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Kanako Matsumura
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jose Guzman
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Kiara Torres
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | | | - Hussein A. Zeineddine
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Peeyush Thankamani Pandit
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Spiros L. Blackburn
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Devin W. McBride
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
3
|
Kawakita F, Nakano F, Kanamaru H, Asada R, Suzuki H. Anti-Apoptotic Effects of AMPA Receptor Antagonist Perampanel in Early Brain Injury After Subarachnoid Hemorrhage in Mice. Transl Stroke Res 2024; 15:462-475. [PMID: 36757633 DOI: 10.1007/s12975-023-01138-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/12/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023]
Abstract
This study was aimed to investigate if acute neuronal apoptosis is induced by activation of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionate) receptors (AMPARs) and inhibited by a clinically available selective AMPAR antagonist and antiepileptic drug perampanel (PER) in subarachnoid hemorrhage (SAH), and if the mechanisms include upregulation of an inflammation-related matricellular protein periostin. Sham-operated and endovascular perforation SAH mice randomly received an administration of 3 mg/kg PER or the vehicle intraperitoneally. Post-SAH neurological impairments and increased caspase-dependent neuronal apoptosis were associated with activation of AMPAR subunits GluA1 and GluA2, and upregulation of periostin and proinflammatory cytokines interleukins-1β and -6, all of which were suppressed by PER. PER also inhibited post-SAH convulsion-unrelated increases in the total spectral power on video electroencephalogram (EEG) monitoring. Intracerebroventricularly injected recombinant periostin blocked PER's anti-apoptotic effects on neurons. An intracerebroventricular injection of a selective agonist for GluA1 and GluA2 aggravated neurological impairment, neuronal apoptosis as well as periostin upregulation, but did not increase the EEG total spectral power after SAH. A higher dosage (10 mg/kg) of PER had even more anti-apoptotic effects compared with 3 mg/kg PER. Thus, this study first showed that AMPAR activation causes post-SAH neuronal apoptosis at least partly via periostin upregulation. A clinically available AMPAR antagonist PER appears to be neuroprotective against post-SAH early brain injury through the anti-inflammatory and anti-apoptotic effects, independent of the antiepileptic action, and deserves further study.
Collapse
Affiliation(s)
- Fumihiro Kawakita
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Mie , 514-8507, Tsu, Japan
| | - Fumi Nakano
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Mie , 514-8507, Tsu, Japan
| | - Hideki Kanamaru
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Mie , 514-8507, Tsu, Japan
| | - Reona Asada
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Mie , 514-8507, Tsu, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Mie , 514-8507, Tsu, Japan.
| |
Collapse
|
4
|
Weng W, Cheng F, Zhang J. Specific signature biomarkers highlight the potential mechanisms of circulating neutrophils in aneurysmal subarachnoid hemorrhage. Front Pharmacol 2022; 13:1022564. [PMID: 36438795 PMCID: PMC9685413 DOI: 10.3389/fphar.2022.1022564] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
Background: Aneurysmal subarachnoid hemorrhage (aSAH) is a devastating hemorrhagic stroke with high disability and mortality. Neuroinflammation and the immunological response after aSAH are complex pathophysiological processes that have not yet been fully elucidated. Therefore, attention should be paid to exploring the inflammation-related genes involved in the systemic response to the rupture of intracranial aneurysms. Methods: The datasets of gene transcriptomes were downloaded from the Gene Expression Omnibus database. We constructed a gene co-expression network to identify cluster genes associated with aSAH and screened out differentially expressed genes (DEGs). The common gene was subsequently applied to identify hub genes by protein-protein interaction analysis and screen signature genes by machine learning algorithms. CMap analysis was implemented to identify potential small-molecule compounds. Meanwhile, Cibersort and ssGSEA were used to evaluate the immune cell composition, and GSEA reveals signal biological pathways. Results: We identified 602 DEGs from the GSE36791. The neutrophil-related module associated with aSAH was screened by weighted gene co-expression network analysis (WGCNA) and functional enrichment analysis. Several small molecular compounds were predicted based on neutrophil-related genes. MAPK14, ITGAM, TLR4, and FCGR1A have been identified as crucial genes involved in the peripheral immune activation related to neutrophils. Six significant genes (CST7, HSP90AB1, PADI4, PLBD1, RAB32, and SLAMF6) were identified as signature biomarkers by performing the LASSO analysis and SVM algorithms. The constructed machine learning model appears to be robust by receiver-operating characteristic curve analysis. The immune feature analysis demonstrated that neutrophils were upregulated post-aSAH and PADI4 was positively correlated with neutrophils. The NETs pathway was significantly upregulated in aSAH. Conclusion: We identified core regulatory genes influencing the transcription profiles of circulating neutrophils after the rupture of intracranial aneurysms using bioinformatics analysis and machine learning algorithms. This study provides new insight into the mechanism of peripheral immune response and inflammation after aSAH.
Collapse
|
5
|
Solár P, Zamani A, Lakatosová K, Joukal M. The blood-brain barrier and the neurovascular unit in subarachnoid hemorrhage: molecular events and potential treatments. Fluids Barriers CNS 2022; 19:29. [PMID: 35410231 PMCID: PMC8996682 DOI: 10.1186/s12987-022-00312-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
The response of the blood-brain barrier (BBB) following a stroke, including subarachnoid hemorrhage (SAH), has been studied extensively. The main components of this reaction are endothelial cells, pericytes, and astrocytes that affect microglia, neurons, and vascular smooth muscle cells. SAH induces alterations in individual BBB cells, leading to brain homeostasis disruption. Recent experiments have uncovered many pathophysiological cascades affecting the BBB following SAH. Targeting some of these pathways is important for restoring brain function following SAH. BBB injury occurs immediately after SAH and has long-lasting consequences, but most changes in the pathophysiological cascades occur in the first few days following SAH. These changes determine the development of early brain injury as well as delayed cerebral ischemia. SAH-induced neuroprotection also plays an important role and weakens the negative impact of SAH. Supporting some of these beneficial cascades while attenuating the major pathophysiological pathways might be decisive in inhibiting the negative impact of bleeding in the subarachnoid space. In this review, we attempt a comprehensive overview of the current knowledge on the molecular and cellular changes in the BBB following SAH and their possible modulation by various drugs and substances.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
- Department of Neurosurgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic
| | - Alemeh Zamani
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Klaudia Lakatosová
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
6
|
Demirci AY, Güvenç Y, Özeren E, Akyol Ç, Bayram P, Billur D, Aydın S, Seçkin H, Yiğitkanlı K. What is the restorative effect of VEGF inhibitor bevacuzimab against subarachnoid hemorrhage in an experimental model? Turk J Med Sci 2021; 51:2698-2704. [PMID: 33356024 DOI: 10.3906/sag-2001-230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 12/26/2020] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND This study investigated the effect of vascular endothelial growth factor (VEGF) inhibitor bevacuzimab (BVZ) on the rabbit basilar artery using an experimental subarachnoid hemorrhage (SAH) model. METHODS Eighteen adult male New-Zealand white rabbits were randomly divided into three groups: a control group (n = 6), SAH group (n = 6), and SAH+BVZ group (n = 6). Experimental SAH was created by injecting autologous arterial blood into the cisterna magna. In the treatment group, the subjects were administered a daily dose of 10 mg/kg, intravenous BVZ for 2 days after the SAH. Basilar artery diameters were measured with magnetic resonance angiography (MRA) 72 h after the SAH in all groups. After 72 h, whole brains, including the upper cervical region, were obtained from all the animals after perfusion and fixation of the animal. The wall thickness, luminal area, and the apoptosis at the basilar arteries were evaluated in all groups. RESULTS BVZ significantly prevented SAH-induced vasospasm confirmed in vivo with MRA imaging with additional suppression of apoptosis on basilar artery wall. DISCUSSION VEGF inhibition with BVZ has shown to have a vasospasm and apoptosis attenuating effect on basilar artery in a SAH model.
Collapse
Affiliation(s)
- Adnan Yalçın Demirci
- Department of Neurosurgery, Yüksek İhtisas Education and Training Hospital, Bursa, Turkey
| | - Yahya Güvenç
- Department of Neurosurgery, Faculty of Medicine, Marmara University, İstanbul, Turkey
| | - Ersin Özeren
- Department of Neurosurgery, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Çetin Akyol
- Department of Histology and Embryology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Pınar Bayram
- Department of Neurosurgery, Yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey
| | - Deniz Billur
- Department of Histology and Embryology, Faculty of Medicine, Kafkas University, Kars, Turkey
| | - Sevim Aydın
- Department of Histology and Embryology, Faculty of Medicine, Kafkas University, Kars, Turkey
| | - Hakan Seçkin
- Neurosurgery Clinic, Medicana Bursa Hospital, Bursa, Turkey
| | | |
Collapse
|
7
|
Kawakita F, Kanamaru H, Asada R, Imanaka-Yoshida K, Yoshida T, Suzuki H. Inhibition of AMPA (α-Amino-3-Hydroxy-5-Methyl-4-Isoxazole Propionate) Receptor Reduces Acute Blood-Brain Barrier Disruption After Subarachnoid Hemorrhage in Mice. Transl Stroke Res 2021; 13:326-337. [PMID: 34342874 DOI: 10.1007/s12975-021-00934-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/10/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
Abstract
Activation of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor (AMPAR) is thought to cause acute brain injury, but the role remains poorly understood in subarachnoid hemorrhage (SAH). This study was conducted to evaluate if AMPAR activation induces acute blood-brain barrier (BBB) disruption after SAH. C57BL/6 male adult mice (n = 117) underwent sham or filament perforation SAH modeling, followed by a random intraperitoneal injection of vehicle or two dosages (1 mg/kg or 3 mg/kg) of a selective noncompetitive AMPAR antagonist perampanel (PER) at 30 min post-modeling. The effects were evaluated by mortality, neurological scores, and brain water content at 24-48 h and video electroencephalogram monitoring, immunostaining, and Western blotting at 24 h post-SAH. PER significantly suppressed post-SAH neurological impairments, brain edema, and BBB disruption. SAH developed epileptiform spikes without obvious convulsion, which were also inhibited by PER. Western blotting showed that the expression of AMPAR subunits GluA1 and GluA2 was unchanged after SAH, but they were significantly activated after SAH. PER prevented post-SAH activation of GluA1/2, associated with the suppression of post-SAH induction of tenascin-C, a causative mediator of post-SAH BBB disruption. Meanwhile, an intracerebroventricular injection of a subtype-selective GluA1/2 agonist augmented the activation of GluA1/2 and the induction of tenascin-C in brain capillary endothelial cells and aggravated post-SAH BBB disruption without increases in epileptiform spikes. Neurological impairments and brain edema were not correlated with the occurrence of epileptiform spikes. This study first showed that AMPAR plays an important role in the development of post-SAH BBB disruption and can be a novel therapeutic target against it.
Collapse
Affiliation(s)
- Fumihiro Kawakita
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hideki Kanamaru
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Reona Asada
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Toshimichi Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
8
|
Kanamaru H, Kawakita F, Nishikawa H, Nakano F, Asada R, Suzuki H. Clarithromycin Ameliorates Early Brain Injury After Subarachnoid Hemorrhage via Suppressing Periostin-Related Pathways in Mice. Neurotherapeutics 2021; 18:1880-1890. [PMID: 33829412 PMCID: PMC8609016 DOI: 10.1007/s13311-021-01050-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 02/04/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) remains a life-threatening disease, and early brain injury (EBI) is an important cause of poor outcomes. The authors have reported that periostin, a matricellular protein, is one of key factors of post-SAH EBI. Clarithromycin (CAM) is a worldwide antibiotic that can inhibit periostin expression. This study aimed to investigate whether CAM suppressed EBI after experimental SAH, focusing on blood-brain barrier (BBB) disruption, an important pathology of EBI. C57BL/6 male adult mice underwent endovascular perforation SAH modeling (n = 139) or sham operation (n = 30). Different dosages (25, 50, or 100 mg/kg) of CAM or the vehicle (n = 16, 52, 13, and 58, respectively) were randomly administered by an intramuscular injection 5 min after SAH induction. Post-SAH 50 mg/kg CAM treatment most effectively improved neurological scores and brain water content at 24 and 48 h and reduced immunoglobulin G extravasation at 24 h compared with vehicle-treated SAH mice (p < 0.01). Western blotting showed that post-SAH BBB disruption was associated with increased expressions of periostin, phosphorylated signal transducer and activator of transcription 1 and 3, matrix metalloproteinase-9, and the consequent degradation of zonula occludens-1, which were suppressed by 50 mg/kg CAM treatment (p < 0.05, respectively, versus vehicle-treated SAH mice). Periostin and its related molecules were upregulated in capillary endothelial cells and neurons after SAH. An intracerebroventricular injection of recombinant periostin blocked the neuroprotective effects of CAM in SAH mice (n = 6, respectively; p < 0.05). In conclusion, this study first demonstrated that CAM improved post-SAH EBI in terms of BBB disruption at least partly via the suppression of periostin-related pathways.
Collapse
Affiliation(s)
- Hideki Kanamaru
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Fumihiro Kawakita
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hirofumi Nishikawa
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Fumi Nakano
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Reona Asada
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan.
| |
Collapse
|
9
|
Suzuki H, Kanamaru H, Kawakita F, Asada R, Fujimoto M, Shiba M. Cerebrovascular pathophysiology of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Histol Histopathol 2020; 36:143-158. [PMID: 32996580 DOI: 10.14670/hh-18-253] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) remains a serious cerebrovascular disease. Even if SAH patients survive the initial insults, delayed cerebral ischemia (DCI) may occur at 4 days or later post-SAH. DCI is characteristics of SAH, and is considered to develop by blood breakdown products and inflammatory reactions, or secondary to early brain injury, acute pathophysiological events that occur in the brain within the first 72 hours of aneurysmal SAH. The pathology underlying DCI may involve large artery vasospasm and/or microcirculatory disturbances by microvasospasm, microthrombosis, dysfunction of venous outflow and compression of microvasculature by vasogenic or cytotoxic tissue edema. Recent clinical evidence has shown that large artery vasospasm is not the only cause of DCI, and that both large artery vasospasm-dependent and -independent cerebral infarction causes poor outcome. Animal studies suggest that mechanisms of vasospasm may differ between large artery and arterioles or capillaries, and that many kinds of cells in the vascular wall and brain parenchyma may be involved in the pathogenesis of microcirculatory disturbances. The impairment of the paravascular and glymphatic systems also may play important roles in the development of DCI. As pathological mediators for DCI, glutamate and several matricellular proteins have been investigated in addition to inflammatory molecules. Glutamate is involved in excitotoxicity contributing to cortical spreading ischemia and epileptic activity-related events. Microvascular dysfunction is an attractive mechanism to explain the cause of poor outcomes independently of large cerebral artery vasospasm, but needs more studies to clarify the pathophysiologies or mechanisms and to develop a novel therapeutic strategy.
Collapse
Affiliation(s)
- Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan.
| | - Hideki Kanamaru
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Fumihiro Kawakita
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Reona Asada
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masashi Fujimoto
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masato Shiba
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
10
|
Okada T, Suzuki H. Mechanisms of neuroinflammation and inflammatory mediators involved in brain injury following subarachnoid hemorrhage. Histol Histopathol 2020; 35:623-636. [PMID: 32026458 DOI: 10.14670/hh-18-208] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Subarachnoid hemorrhage (SAH) is a devastating cerebrovascular disorder. Neuroinflammation is a critical cause of brain injury following SAH in both acute and chronic phases. While accumulating evidence has shown that therapies targeting neuroinflammation exerted beneficial effects in experimental SAH, there is little clinical evidence. One of the factors making neuroinflammation complicated is that inflammatory signaling pathways and mediators act as protective or detrimental responses at different phases. In addition, biomarkers to detect neuroinflammation are little known in clinical settings. In this review, first, we discuss how the inflammatory signaling pathways contribute to brain injury and other secondary pathophysiological changes in SAH. Damage-associated molecular patterns arising from mechanical stress, transient global cerebral ischemia, red blood cell breakdown and delayed cerebral ischemia following SAH trigger to activate pattern recognition receptors (PRRs) such as Toll-like receptors, nucleotide-binding oligomerization domain-like receptors, and receptors for advanced glycation end products. Most of PRRs activate common downstream signaling transcriptional factor nuclear factor-κΒ and mitogen-activated protein kinases, releasing pro-inflammatory mediators and cytokines. Next, we focus on how pro-inflammatory substances play a role during the course of SAH. Finally, we highlight an important inducer of neuroinflammation, matricellular protein (MCP). MCPs are a component of extracellular matrix and exert beneficial and harmful effects through binding to receptors, other matrix proteins, growth factors, and cytokines. Treatment targeting MCPs is being proved efficacious in pre-clinical models for preventing brain injury including neuroinflammation in SAH. In addition, MCPs may be a candidate of biomarkers predicting brain injury following SAH in clinical settings.
Collapse
Affiliation(s)
- Takeshi Okada
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan.
| |
Collapse
|
11
|
Evaluation of the platelet volume index as a prognostic factor after aneurysmal subarachnoid hemorrhage. JOURNAL OF SURGERY AND MEDICINE 2019. [DOI: 10.28982/josam.567491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Suzuki H. Inflammation: a Good Research Target to Improve Outcomes of Poor-Grade Subarachnoid Hemorrhage. Transl Stroke Res 2019; 10:597-600. [PMID: 31214920 DOI: 10.1007/s12975-019-00713-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|