1
|
Rościszewska-Żukowska I, Biesiadecki M, Mołoń M, Rożek A, Bartosik-Psujek H, Galiniak S. Elevated Oxidative Stress in Patients with Coexisting Multiple Sclerosis and Migraine: A Cross-Sectional Study. Antioxidants (Basel) 2025; 14:511. [PMID: 40427393 PMCID: PMC12108162 DOI: 10.3390/antiox14050511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/12/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
One potential association that is gaining increasing attention is the link between multiple sclerosis (MS) and migraine, which are suggested to frequently coexist in young patients. This is the first study to analyze the levels of multiple markers of oxidative stress in sociodemographically similar groups of patients with migraine, MS, and both MS and migraine. A single cross-sectional study was conducted at the Department of Neurology, Rzeszów University. The study included 110 participants, comprising 26 healthy controls, 24 subjects with migraines, 30 with MS, and 30 with both MS and migraine. Oxidative stress markers were measured in patients' serum. Patients with MS and migraines had statistically elevated levels of 3-nitrotyrosine, Amadori products, 4-hydroxy-nonenal, and oxidative damage to amino acids. Moreover, we observed reduced levels of thiol groups and total antioxidant capacity in the serum of patients with MS and migraines compared to healthy controls. The co-occurrence of migraines in MS leads to greater oxidative stress than MS alone. The impact of chronic oxidative stress on both MS and migraines may exacerbate symptoms and deteriorate the quality of life.
Collapse
Affiliation(s)
| | - Marek Biesiadecki
- Faculty of Medicine, University of Rzeszów, Warzywna 1a, 35-310 Rzeszów, Poland; (M.B.); (H.B.-P.)
| | - Mateusz Mołoń
- Faculty of Biology and Nature Protection, University of Rzeszów, Zelwerowicza 4, 35-601 Rzeszów, Poland; (M.M.); (A.R.)
| | - Aleksandra Rożek
- Faculty of Biology and Nature Protection, University of Rzeszów, Zelwerowicza 4, 35-601 Rzeszów, Poland; (M.M.); (A.R.)
| | - Halina Bartosik-Psujek
- Faculty of Medicine, University of Rzeszów, Warzywna 1a, 35-310 Rzeszów, Poland; (M.B.); (H.B.-P.)
| | - Sabina Galiniak
- Faculty of Medicine, University of Rzeszów, Warzywna 1a, 35-310 Rzeszów, Poland; (M.B.); (H.B.-P.)
| |
Collapse
|
2
|
Vojdani A, Almulla AF, Vojdani E, Li J, Zhang Y, Maes M. Autoimmune responses to myelin-associated proteins as diagnostic and prognostic biomarkers of relapsing-remitting multiple sclerosis: Associations with human herpesvirus-6 and Epstein-Barr virus reactivation. J Adv Res 2025:S2090-1232(25)00119-5. [PMID: 39965730 DOI: 10.1016/j.jare.2025.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND The pathogenesis of relapsing-remitting multiple sclerosis (RRMS) is linked to autoimmune attacks against myelin proteins, and reactivation of Epstein-Barr virus (EBV) and human herpesvirus 6 (HHV-6). However, the connection between viral reactivation and autoimmune biomarkers has remained unclear. OBJECTIVES To investigate immunoglobulin (Ig)G/IgA/IgM responses targeting myelin-related proteins in association with EBV and HHV-6 replication markers in RRMS. METHODS We recruited 55 patients with RRMS and 63 healthy controls and assessed IgG/IgA/IgM responses against seven myelin-related components, as well as EBV nuclear antigen 1 (EBNA-1) and deoxyuridine-triphosphate nucleotidohydrolase (dUTPases). Disability was evaluated using the Expanded Disability Status Scale (EDSS) and disease progression using the Multiple Sclerosis Severity Score (MSSS). RESULTS IgG/IgA/IgM levels targeting seven myelin-related proteins were significantly higher in RRMS than in controls. IgG against myelin basic protein (MBP) (IgG-MBP), IgM-myelin-associated glycoprotein (IgM-MAG)-37-60, IgA-MBP, and IgA-myelin-oligodendrocyte-glycoprotein (IgA-MOG-31-55) distinguished RRMS from controls with a predictive accuracy of 96.6 % (sensitivity = 95.7 %, specificity = 95.2 %) and an area under the ROC curve of 0.991. A large part of the variance in the EDSS (around 75 %) and MSSS score (62.8 %) was explained by IgG-MBP, IgM-MBP, IgA-MOG-31-55, and IgM-MAG. Part of the variance (47.4 %) in the IgG/IgA/IgM responses to myelin-related proteins was explained by immune responses to EBNA and dUTPases of EBV and HHV-6. CONCLUSIONS Autoimmune reactivities targeting myelin-related proteins are valuable biomarkers of RRMS and the severity and progression of RRMS. Reactivation of EBV and HHV-6 may trigger or maintain these autoimmune responses thereby impacting disease progression.
Collapse
Affiliation(s)
- Aristo Vojdani
- Immunosciences Lab, Inc., Los Angeles, CA 90035, USA; Cyrex Laboratories, LLC, Phoenix, AZ 85034, USA
| | - Abbas F Almulla
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China; Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand; Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Jing Li
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China.
| | - Yingqian Zhang
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China
| | - Michael Maes
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China; Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand; Research and Innovation Program for the Development of MU - PLOVDIV- (SRIPD-MUP), Creation of a Network of Research Higher Schools, National Plan for Recovery and Sustainability, European Union, NextGenerationEU, USA; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria, EU; Research Center, Medical University of Plovdiv, Plovdiv, Bulgaria, EU; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| |
Collapse
|
3
|
Ribeiro CM, Oliveira SR, Flauzino T, Alfieri DF, Simão ANC, Lozovoy MAB, Maes M, Reiche EMV. The effects of the MTHFR 677C>T (rs1801133) genetic variant on susceptibility and disability worsening in multiple sclerosis patients are mediated by homocysteine. Mult Scler Relat Disord 2024; 91:105883. [PMID: 39270536 DOI: 10.1016/j.msard.2024.105883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/29/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Interactions between genetic and environmental variables contribute to the autoimmune inflammatory process in multiple sclerosis (MS). Elevated homocysteine levels, and vitamin D, vitamin B12, and folate deficiencies are some of the environmental factors associated with the pathogenesis of MS. Considering that the relationship between MTHFR 677C>T (rs1801133) genetic variant, homocysteine, and folate in patients with MS remains unclear and that their role were not extensively explored in the clinical course of the disease, we investigated whether this variant and plasma homocysteine and folate levels are associated with MS susceptibility, disability, disability progression, and inflammatory biomarkers. METHODS The case-control study included 163 patients with MS categorized using the Expanded Disability Status Scale (EDSS) as mild (EDSS<3) and moderate/high (EDSS≥3) disability, and 226 healthy controls (HC). Disability progression was evaluated using Multiple Sclerosis Severity Score (MSSS) and the MTHFR 677C>T variant was genotyped using real time polymerase chain reaction. The plasma levels of some inflammatory biomarkers were determined. Two new composed scores were proposed: the first, namely as inflammatory activity index (IAI), was entered as a latent vector extracted from the macrophage M1 + T helper (Th)1 + Th17 + Th2 + T regulatory (Treg) cytokines, + tumor necrosis factor (TNF)-α+ soluble TNF receptor (sTNFR)-1 + sTNFR2. The second score, namely MS-severity index was entered as a latent vector extracted from the EDSS + MSSS scores + MS diagnosis. RESULTS Patients with MS showed higher homocysteine and folate than controls (p < 0.001); homocysteine, and the M1, Th1, Th17, and Th2 Treg cytokine values were different between the three study groups and increased from HC to MS patients with mild disability and to MS patients with moderate/high disability (p < 0.0001). The levels of TNF-α and their soluble receptors sTNFR1 and sTNFR2 were higher in MS patients with EDSS≥3 than in the two other groups (EDSS<3 and HC) (p < 0.001). There was no association between the MTHFR 677 C > T genotypes and MS susceptibility, disability and disability progression (p > 0.05). Moreover, 21.8 % of the disability variance was explained by age, IAI and C-reactive protein (CRP) (all positively associated); 10.9 % of the disability progression variance was predicted by IAI and CRP (both positively) and 25-hydroxyvitamin D (negatively), whereas 54.4 % of the severity index (MS-EDSS-MSSS) was explained by the regression on age, IAI, homocysteine, folate, and CRP (all positively), and adiponectin, body mass index, and 25-hydroxyvitamin D (all negatively), female sex, and the MTHFR 677 TT genotype. In patients and controls, 16.6 % of the variance in the homocysteine was explained by the MTHFR 677 TT genotype and age (both positively), folate (negatively) and male sex. CONCLUSION The MTHFR 677C>T variant has an indirect effect on the increase in disability in patients with MS, which also depends on factors such as age, sex, ad folate status.
Collapse
Affiliation(s)
- Claudia Mara Ribeiro
- Postgraduate Program of Clinical and Laboratory Pathophysiology, Health Sciences Center, State University of Londrina, Londrina, Paraná, Brazil
| | - Sayonara Rangel Oliveira
- Postgraduate Program of Clinical and Laboratory Pathophysiology, Health Sciences Center, State University of Londrina, Londrina, Paraná, Brazil; Department of Pathology, Clinical Analysis, and Toxicology, Health Sciences Center, State University of Londrina, Paraná, Brazil
| | - Tamires Flauzino
- Experimental Pathology Postgraduate Program, Biological Sciences Center, State University of Londrina, Londrina, Paraná, Brazil
| | - Daniela Frizon Alfieri
- Department of Pharmaceutical Sciences, Health Sciences Center, State University of Londrina, Londrina, Paraná, Brazil
| | - Andrea Name Colado Simão
- Postgraduate Program of Clinical and Laboratory Pathophysiology, Health Sciences Center, State University of Londrina, Londrina, Paraná, Brazil; Department of Pathology, Clinical Analysis, and Toxicology, Health Sciences Center, State University of Londrina, Paraná, Brazil
| | - Marcell Alysson Batisti Lozovoy
- Postgraduate Program of Clinical and Laboratory Pathophysiology, Health Sciences Center, State University of Londrina, Londrina, Paraná, Brazil; Department of Pathology, Clinical Analysis, and Toxicology, Health Sciences Center, State University of Londrina, Paraná, Brazil
| | - Michael Maes
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, PR China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, PR China
| | - Edna Maria Vissoci Reiche
- Postgraduate Program of Clinical and Laboratory Pathophysiology, Health Sciences Center, State University of Londrina, Londrina, Paraná, Brazil; Catholic Pontifical University, School of Medicine, Campus Londrina, Londrina, Paraná, Brazil.
| |
Collapse
|
4
|
Arrambide G, Comabella M, Tur C. Big data and artificial intelligence applied to blood and CSF fluid biomarkers in multiple sclerosis. Front Immunol 2024; 15:1459502. [PMID: 39493759 PMCID: PMC11527669 DOI: 10.3389/fimmu.2024.1459502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Artificial intelligence (AI) has meant a turning point in data analysis, allowing predictions of unseen outcomes with precedented levels of accuracy. In multiple sclerosis (MS), a chronic inflammatory-demyelinating condition of the central nervous system with a complex pathogenesis and potentially devastating consequences, AI-based models have shown promising preliminary results, especially when using neuroimaging data as model input or predictor variables. The application of AI-based methodologies to serum/blood and CSF biomarkers has been less explored, according to the literature, despite its great potential. In this review, we aimed to investigate and summarise the recent advances in AI methods applied to body fluid biomarkers in MS, highlighting the key features of the most representative studies, while illustrating their limitations and future directions.
Collapse
Affiliation(s)
- Georgina Arrambide
- Multiple Sclerosis Centre of Catalonia (Cemcat), Department of Neurology, Hospital
Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Carmen Tur
- Multiple Sclerosis Centre of Catalonia (Cemcat), Department of Neurology, Hospital
Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Amin M, Martínez-Heras E, Ontaneda D, Prados Carrasco F. Artificial Intelligence and Multiple Sclerosis. Curr Neurol Neurosci Rep 2024; 24:233-243. [PMID: 38940994 PMCID: PMC11258192 DOI: 10.1007/s11910-024-01354-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
In this paper, we analyse the different advances in artificial intelligence (AI) approaches in multiple sclerosis (MS). AI applications in MS range across investigation of disease pathogenesis, diagnosis, treatment, and prognosis. A subset of AI, Machine learning (ML) models analyse various data sources, including magnetic resonance imaging (MRI), genetic, and clinical data, to distinguish MS from other conditions, predict disease progression, and personalize treatment strategies. Additionally, AI models have been extensively applied to lesion segmentation, identification of biomarkers, and prediction of outcomes, disease monitoring, and management. Despite the big promises of AI solutions, model interpretability and transparency remain critical for gaining clinician and patient trust in these methods. The future of AI in MS holds potential for open data initiatives that could feed ML models and increasing generalizability, the implementation of federated learning solutions for training the models addressing data sharing issues, and generative AI approaches to address challenges in model interpretability, and transparency. In conclusion, AI presents an opportunity to advance our understanding and management of MS. AI promises to aid clinicians in MS diagnosis and prognosis improving patient outcomes and quality of life, however ensuring the interpretability and transparency of AI-generated results is going to be key for facilitating the integration of AI into clinical practice.
Collapse
Affiliation(s)
- Moein Amin
- Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland Clinic, Cleveland, OH, USA
| | - Eloy Martínez-Heras
- Neuroimmunology and Multiple Sclerosis Unit, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland Clinic, Cleveland, OH, USA
| | - Ferran Prados Carrasco
- e-Health Center, Universitat Oberta de Catalunya, Barcelona, Spain.
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.
- Center for Medical Image Computing, University College London, London, UK.
- National Institute for Health Research Biomedical Research Centre at UCL and UCLH, London, UK.
| |
Collapse
|
6
|
Stojsavljević A, Jagodić J, Perović T, Manojlović D, Pavlović S. Changes of Target Essential Trace Elements in Multiple Sclerosis: A Systematic Review and Meta-Analysis. Biomedicines 2024; 12:1589. [PMID: 39062163 PMCID: PMC11274787 DOI: 10.3390/biomedicines12071589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: Multiple sclerosis (MS) is a chronic, complex, and demyelinating disease closely associated with altered levels of trace elements. Although the first studies into the role of trace elements in MS were published in the 1970s, for five decades it has remained unknown whether trace elements can be part of this heterogeneous neurological disease. (2) Materials and methods: To drive toward at a potential solution, we conducted a systematic review and meta-analysis to elucidate whether there were differences in circulating levels of neurologically important essential trace elements (Zn, Fe, Co, Cu, Mn, and Se) between MS cases and controls. (3) Results: This study revealed significantly lower serum/plasma Zn and Fe levels and higher Cu levels in MS-affected individuals compared to controls. At the same time, no significant differences were found between the MS cases and controls regarding their serum/plasma levels of Co, Mn, or Se. Thus, the loss of Fe and Zn should be considered in supplementation/nutrition strategies for MS patients. On the other hand, since high serum Cu levels indicate a burden on the bloodstreams of MS patients, Cu should be excluded from mineral supplement strategies. Furthermore, all three trace elements (Fe, Zn, and Cu) should be considered from an etiological point of view, and, most importantly, their levels in the bloodstreams of MS patients should be monitored. (4) Conclusions: This study highlights the way for personalized and targeted strategies in the management of MS.
Collapse
Affiliation(s)
- Aleksandar Stojsavljević
- Innovation Center, Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, 11000 Belgrade, Serbia
| | - Jovana Jagodić
- Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia; (J.J.); (D.M.)
| | - Tatjana Perović
- Psychiatric Hospital, University Medical Center Zvezdara, 11000 Belgrade, Serbia;
- Serbian RE&CBT Centre, 11000 Belgrade, Serbia
| | - Dragan Manojlović
- Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia; (J.J.); (D.M.)
| | - Slađan Pavlović
- Institute for Biological Research “Siniša Stanković”-National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia;
| |
Collapse
|
7
|
Jiménez-Jiménez FJ, Alonso-Navarro H, Salgado-Cámara P, García-Martín E, Agúndez JAG. Oxidative Stress Markers in Multiple Sclerosis. Int J Mol Sci 2024; 25:6289. [PMID: 38927996 PMCID: PMC11203935 DOI: 10.3390/ijms25126289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/10/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
The pathogenesis of multiple sclerosis (MS) is not completely understood, but genetic factors, autoimmunity, inflammation, demyelination, and neurodegeneration seem to play a significant role. Data from analyses of central nervous system autopsy material from patients diagnosed with multiple sclerosis, as well as from studies in the main experimental model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), suggest the possibility of a role of oxidative stress as well. In this narrative review, we summarize the main data from studies reported on oxidative stress markers in patients diagnosed with MS and in experimental models of MS (mainly EAE), and case-control association studies on the possible association of candidate genes related to oxidative stress with risk for MS. Most studies have shown an increase in markers of oxidative stress, a decrease in antioxidant substances, or both, with cerebrospinal fluid and serum/plasma malonyl-dialdehyde being the most reliable markers. This topic requires further prospective, multicenter studies with a long-term follow-up period involving a large number of patients with MS and controls.
Collapse
Affiliation(s)
- Félix Javier Jiménez-Jiménez
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, E-28500 Madrid, Spain; (H.A.-N.); (P.S.-C.)
| | - Hortensia Alonso-Navarro
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, E-28500 Madrid, Spain; (H.A.-N.); (P.S.-C.)
| | - Paula Salgado-Cámara
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, E-28500 Madrid, Spain; (H.A.-N.); (P.S.-C.)
| | - Elena García-Martín
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E-10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| | - José A. G. Agúndez
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E-10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| |
Collapse
|
8
|
Xu M, Wang H, Ren S, Wang B, Yang W, Lv L, Sha X, Li W, Wang Y. Identification of crucial inflammaging related risk factors in multiple sclerosis. Front Mol Neurosci 2024; 17:1398665. [PMID: 38836117 PMCID: PMC11148336 DOI: 10.3389/fnmol.2024.1398665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/30/2024] [Indexed: 06/06/2024] Open
Abstract
Background Multiple sclerosis (MS) is an immune-mediated disease characterized by inflammatory demyelinating lesions in the central nervous system. Studies have shown that the inflammation is vital to both the onset and progression of MS, where aging plays a key role in it. However, the potential mechanisms on how aging-related inflammation (inflammaging) promotes MS have not been fully understood. Therefore, there is an urgent need to integrate the underlying mechanisms between inflammaging and MS, where meaningful prediction models are needed. Methods First, both aging and disease models were developed using machine learning methods, respectively. Then, an integrated inflammaging model was used to identify relative risk factors, by identifying essential "aging-inflammation-disease" triples. Finally, a series of bioinformatics analyses (including network analysis, enrichment analysis, sensitivity analysis, and pan-cancer analysis) were further used to explore the potential mechanisms between inflammaging and MS. Results A series of risk factors were identified, such as the protein homeostasis, cellular homeostasis, neurodevelopment and energy metabolism. The inflammaging indices were further validated in different cancer types. Therefore, various risk factors were integrated, and even both the theories of inflammaging and immunosenescence were further confirmed. Conclusion In conclusion, our study systematically investigated the potential relationships between inflammaging and MS through a series of computational approaches, and could present a novel thought for other aging-related diseases.
Collapse
Affiliation(s)
- Mengchu Xu
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
| | - Huize Wang
- Department of Nursing, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Siwei Ren
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
| | - Bing Wang
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
| | - Wenyan Yang
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
| | - Ling Lv
- Department of Thorax, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xianzheng Sha
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
| | - Wenya Li
- Department of Thorax, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yin Wang
- Department of Biomedical Engineering, School of Intelligent Sciences, China Medical University, Shenyang, Liaoning, China
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
9
|
Doskas T, Dardiotis E, Vavougios GD, Ntoskas KT, Sionidou P, Vadikolias K. Stroke risk in multiple sclerosis: a critical appraisal of the literature. Int J Neurosci 2023; 133:1132-1152. [PMID: 35369835 DOI: 10.1080/00207454.2022.2056459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
Abstract
Observational studies suggest that the occurrence of stroke on multiple sclerosis (MS) patients is higher compared to the general population. MS is a heterogeneous disease that involves an interplay of genetic, environmental and immune factors. The occurrence of stroke is subject to a wide range of both modifiable and non-modifiable, short- and long-term risk factors. Both MS and stroke share common risk factors. The immune mechanisms that underlie stroke are similar to neurodegenerative diseases and are attributed to neuroinflammation. The inflammation in autoimmune diseases may, therefore, predispose to an increased risk for stroke or potentiate the effect of conventional stroke risk factors. There are, however, additional determinants that contribute to a higher risk and incidence of stroke in MS. Due to the challenges that are associated with their differential diagnosis, the objective is to present an overview of the factors that may contribute to increased susceptibility or occurrence of stroke in MSpatients by performing a review of the available to date literature. As both MS and stroke can individually detrimentally affect the quality of life of afflicted patients, the identification of factors that contribute to an increased risk for stroke in MS is crucial for the prompt implementation of preventative therapeutic measures to limit the additive burden that stroke imposes.
Collapse
Affiliation(s)
- Triantafyllos Doskas
- Department of Neurology, Athens Naval Hospital, Athens, Greece
- Department of Neurology, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Larissa, Greece
- Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | | | | | | | | |
Collapse
|
10
|
Vázquez-Marrufo M, Sarrias-Arrabal E, García-Torres M, Martín-Clemente R, Izquierdo G. A systematic review of the application of machine-learning algorithms in multiple sclerosis. Neurologia 2023; 38:577-590. [PMID: 35843587 DOI: 10.1016/j.nrleng.2020.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/11/2020] [Indexed: 10/17/2022] Open
Abstract
INTRODUCTION The applications of artificial intelligence, and in particular automatic learning or "machine learning" (ML), constitute both a challenge and a great opportunity in numerous scientific, technical, and clinical disciplines. Specific applications in the study of multiple sclerosis (MS) have been no exception, and constitute an area of increasing interest in recent years. OBJECTIVE We present a systematic review of the application of ML algorithms in MS. MATERIALS AND METHODS We used the PubMed search engine, which allows free access to the MEDLINE medical database, to identify studies including the keywords "machine learning" and "multiple sclerosis." We excluded review articles, studies written in languages other than English or Spanish, and studies that were mainly technical and did not specifically apply to MS. The final selection included 76 articles, and 38 were rejected. CONCLUSIONS After the review process, we established 4 main applications of ML in MS: 1) classifying MS subtypes; 2) distinguishing patients with MS from healthy controls and individuals with other diseases; 3) predicting progression and response to therapeutic interventions; and 4) other applications. Results found to date have shown that ML algorithms may offer great support for health professionals both in clinical settings and in research into MS.
Collapse
Affiliation(s)
- M Vázquez-Marrufo
- Departamento de Psicología Experimental, Facultad de Psicología, Universidad de Sevilla, Sevilla, Spain.
| | - E Sarrias-Arrabal
- Departamento de Psicología Experimental, Facultad de Psicología, Universidad de Sevilla, Sevilla, Spain
| | - M García-Torres
- Escuela Politécnica Superior, Universidad Pablo de Olavide, Sevilla, Spain
| | - R Martín-Clemente
- Departamento de Teoría de la Señal y Comunicaciones, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Sevilla, Spain
| | - G Izquierdo
- Unidad de Esclerosis Múltiple, Hospital VITHAS, Sevilla, Spain
| |
Collapse
|
11
|
Nowak-Kiczmer M, Niedziela N, Zalejska-Fiolka J, Adamczyk-Sowa M. Evaluation of antioxidant parameters of multiple sclerosis patients' serum according to the disease course. Mult Scler Relat Disord 2023; 77:104875. [PMID: 37454567 DOI: 10.1016/j.msard.2023.104875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
INTRODUCTION Multiple sclerosis (MS) is a chronic, demyelinating disease of the central nervous system. Its clinical courses are clinically isolated syndrome (CIS), relapsing remitting (RRMS), secondary progressive (SPMS), and primary progressive (PPMS). The differentiation of MS types is crucial for adequate treatment. OBJECTIVES To evaluate antioxidant parameters of MS patients' serum according to MS type. MATERIALS AND METHODS The study included 84 patients diagnosed with MS. The study group was divided into three subgroups corresponding to MS courses RRMS, SPMS, and PPMS. Sulfhydryl groups (SH), ceruloplasmin (CER), and superoxide dismutase (SOD) and its isoforms were identified in study participants' sera. RESULTS CuZnSOD levels were significantly higher in SPMS patients than in PPMS patients, but there was no difference between SMPS and treatment-naive PPMS patients. MnSOD activity was significantly lower in SPMS patients than in PPMS patients. Our results show that SH levels were decreased in SPMS patients compared with RRMS patients, but this difference was significant only for male participants. SH concentration was reversely correlated with age, BMI, disease duration, EDSS, and in smoking patients with pack-years. CER serum levels waere elevated in SPMS patients compared with RRMS patients, but this difference was significant only for male participants. Our results show correlation between CER and EDSS levels. CONCLUSION Oxidative stress plays a limited role in all disease stages, particularly in smokers as a confounding factor.
Collapse
Affiliation(s)
- Maria Nowak-Kiczmer
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland.
| | - Natalia Niedziela
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Jolanta Zalejska-Fiolka
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Monika Adamczyk-Sowa
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland
| |
Collapse
|
12
|
Naji Y, Mahdaoui M, Klevor R, Kissani N. Artificial Intelligence and Multiple Sclerosis: Up-to-Date Review. Cureus 2023; 15:e45412. [PMID: 37854769 PMCID: PMC10581506 DOI: 10.7759/cureus.45412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2023] [Indexed: 10/20/2023] Open
Abstract
Multiple sclerosis (MS) remains a challenging neurological disorder for the clinician in terms of diagnosis and management. The growing integration of AI-based algorithms in healthcare offers a golden opportunity for clinicians and patients with MS. AI models are based on statistical analyses of large quantities of data from patients including "demographics, genetics, clinical and radiological presentation." These approaches are promising in the quest for greater diagnostic accuracy, tailored management plans, and better prognostication of disease. The use of AI in multiple sclerosis represents a paradigm shift in disease management. With ongoing advancements in AI technologies and the increasing availability of large-scale datasets, the potential for further innovation is immense. As AI continues to evolve, its integration into clinical practice will play a vital role in improving diagnostics, optimizing treatment strategies, and enhancing patient outcomes for MS. This review is about conducting a literature review to identify relevant studies on AI applications in MS. Only peer-reviewed studies published in the last four years have been selected. Data related to AI techniques, advancements, and implications are extracted. Through data analysis, key themes and tendencies are identified. The review presents a cohesive synthesis of the current state of AI and MS, highlighting potential implications and new advancements.
Collapse
Affiliation(s)
- Yahya Naji
- Neurology Department, REGNE Research Laboratory, Faculty of Medicine and Pharmacy, Ibn Zohr University, Agadir, MAR
- Neurology Department, Agadir University Hospital, Agadir, MAR
| | - Mohamed Mahdaoui
- Neurology Department, University Hospital Mohammed VI, Marrakech, MAR
- Neuroscience Research Laboratory, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, MAR
| | - Raymond Klevor
- Neurology Department, University Hospital Mohammed VI, Marrakech, MAR
- Neuroscience Research Laboratory, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, MAR
| | - Najib Kissani
- Neurology Department, University Hospital Mohammed VI, Marrakech, MAR
- Neuroscience Research Laboratory, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, MAR
| |
Collapse
|
13
|
Vezzoli A, Mrakic-Sposta S, Dellanoce C, Montorsi M, Vietti D, Ferrero ME. Chelation Therapy Associated with Antioxidant Supplementation Can Decrease Oxidative Stress and Inflammation in Multiple Sclerosis: Preliminary Results. Antioxidants (Basel) 2023; 12:1338. [PMID: 37507878 PMCID: PMC10376540 DOI: 10.3390/antiox12071338] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
An imbalance of oxy-inflammation status has been involved in axonal damage and demyelination in multiple sclerosis (MS). The aim of this study was to investigate the efficacy of an antioxidant treatment (calcium disodium ethylenediaminetetracetic acid-EDTA) chelation therapy associated with a micronutrient complex in MS patients. A total of 20 MS patients and 20 healthy subjects, enrolled as a control group (CTR), were recruited. We measured the plasma ROS production and total antioxidant capacity (TAC) by a direct assessment using Electron Paramagnetic Resonance; activities of the antioxidant system (thiols' redox status and enzymes); and the urinary presence of biomarkers of oxidative stress by immunoenzymatic assays. We also evaluated the levels of inflammation by plasmatic cytokines (TNFα, IL-1β, and IL-6) and assessed the sICAM levels, as well as the nitric oxide (NO) catabolism and transthyretin (TTR) concentration. Comparing CTR and MS, in the latter ROS production, oxidative damage, inflammatory biomarkers, and NO metabolite concentrations results were significantly higher, while TAC was significantly lower. Treatment in MS induced significant (p < 0.05) down-regulating of pro-inflammatory sICAM1, TNF-α, IL6, as well as biomarkers of lipid peroxidation and DNA damage production. The protective effect exhibited may occur by decreasing ROS production and increasing antioxidant capacity, turning into a more reduced thiols' status.
Collapse
Affiliation(s)
- Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Piazza Ospedale Maggiore 3, 20159 Milano, Italy
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Piazza Ospedale Maggiore 3, 20159 Milano, Italy
| | - Cinzia Dellanoce
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Piazza Ospedale Maggiore 3, 20159 Milano, Italy
| | - Michela Montorsi
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Via di val Cannuta 247, 00166 Roma, Italy
| | - Daniele Vietti
- Driatec Srl, Via Leonardo da Vinci 21/E, 20060 Cassina de' Pecchi, Italy
| | - Maria Elena Ferrero
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milano, Italy
| |
Collapse
|
14
|
Wang B, Fang T, Chen H. Zinc and Central Nervous System Disorders. Nutrients 2023; 15:2140. [PMID: 37432243 DOI: 10.3390/nu15092140] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 07/12/2023] Open
Abstract
Zinc (Zn2+) is the second most abundant necessary trace element in the human body, exerting a critical role in many physiological processes such as cellular proliferation, transcription, apoptosis, growth, immunity, and wound healing. It is an essential catalyst ion for many enzymes and transcription factors. The maintenance of Zn2+ homeostasis is essential for the central nervous system, in which Zn2+ is abundantly distributed and accumulates in presynaptic vesicles. Synaptic Zn2+ is necessary for neural transmission, playing a pivotal role in neurogenesis, cognition, memory, and learning. Emerging data suggest that disruption of Zn2+ homeostasis is associated with several central nervous system disorders including Alzheimer's disease, depression, Parkinson's disease, multiple sclerosis, schizophrenia, epilepsy, and traumatic brain injury. Here, we reviewed the correlation between Zn2+ and these central nervous system disorders. The potential mechanisms were also included. We hope that this review can provide new clues for the prevention and treatment of nervous system disorders.
Collapse
Affiliation(s)
- Bangqi Wang
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China
| | - Tianshu Fang
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China
| | - Hongping Chen
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
| |
Collapse
|
15
|
Diagnostic performance of artificial intelligence in multiple sclerosis: a systematic review and meta-analysis. Neurol Sci 2023; 44:499-517. [PMID: 36303065 DOI: 10.1007/s10072-022-06460-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND The expansion of the availability of advanced imaging methods needs more time, expertise, and resources which is in contrast to the primary goal of the imaging techniques. To overcome most of these difficulties, artificial intelligence (AI) can be used. A number of studies used AI models for multiple sclerosis (MS) diagnosis and reported diverse results. Therefore, we aim to perform a comprehensive systematic review and meta-analysis study on the role of AI in the diagnosis of MS. METHODS We performed a systematic search using four databases including PubMed, Scopus, Web of Science, and IEEE. Studies that applied deep learning or AI to the diagnosis of MS based on any modalities were considered eligible in our study. The accuracy, sensitivity, specificity, precision, and area under curve (AUC) were pooled with a random-effects model and 95% confidence interval (CI). RESULTS After the screening, 41 articles with 5989 individuals met the inclusion criteria and were included in our qualitative and quantitative synthesis. Our analysis showed that the overall accuracy among studies was 94% (95%CI: 93%, 96%). The pooled sensitivity and specificity were 92% (95%CI: 90%, 95%) and 93% (95%CI: 90%, 96%), respectively. Furthermore, our analysis showed 92% precision in MS diagnosis for AI studies (95%CI: 88%, 97%). Also, the overall pooled AUC was 93% (95%CI: 89%, 96%). CONCLUSION Overall, AI models can further improve our diagnostic practice in MS patients. Our results indicate that the use of AI can aid the clinicians in accurate diagnosis of MS and improve current diagnostic approaches as most of the parameters including accuracy, sensitivity, specificity, precision, and AUC were considerably high, especially when using MRI data.
Collapse
|
16
|
Bizoń A, Chojdak-Łukasiewicz J, Kołtuniuk A, Budrewicz S, Pokryszko-Dragan A, Piwowar A. Evaluation of Selected Oxidant/Antioxidant Parameters in Patients with Relapsing-Remitting Multiple Sclerosis Undergoing Disease-Modifying Therapies. Antioxidants (Basel) 2022; 11:antiox11122416. [PMID: 36552624 PMCID: PMC9774652 DOI: 10.3390/antiox11122416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to evaluate oxidative stress parameters, specifically the concentration of advanced oxidation protein products (AOPP) and ferric-reducing antioxidant power (FRAP), in the serum of patients with relapsing-remitting multiple sclerosis (RRMS). We also analyzed the relationships between each parameter and selected clinical/laboratory multiple-sclerosis-related parameters. The study group comprised 204 patients with RRMS and 29 healthy, age-matched controls. The concentration of AOPP was significantly higher in the RRMS patients than in controls. ROC analysis showed the ability of AOPP to distinguish between the patients with RRMS and controls (the value of AUC was 94.8%, with a sensitivity of 89.69% and specificity of 89.3%). AOPP and FRAP were significantly higher in male than in female RRMS patients. Correlations were found between AOPP and the laboratory markers of inflammation. AOPP differed in the subgroups of patients treated with particular medications. Our findings indicate an increase in the markers of oxidative stress in the serum of RRMS patients, possibly linked with chronic inflammation. Gender and type of treatment affected the markers of oxidative stress.
Collapse
Affiliation(s)
- Anna Bizoń
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
- Correspondence: ; Tel.: +48-71-784-0455
| | | | - Aleksandra Kołtuniuk
- Department of Nervous System Diseases, Faculty of Health Sciences, Wroclaw Medical University, Bartla 5, 51-618 Wroclaw, Poland
| | - Sławomir Budrewicz
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Anna Pokryszko-Dragan
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| |
Collapse
|
17
|
Lavorgna L, Bonavita S. Artificial intelligence will change MS care within the next 10 years: Commentary. Mult Scler 2022; 28:2175-2176. [DOI: 10.1177/13524585221133537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Luigi Lavorgna
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Simona Bonavita
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
18
|
Aslam N, Khan IU, Bashamakh A, Alghool FA, Aboulnour M, Alsuwayan NM, Alturaif RK, Brahimi S, Aljameel SS, Al Ghamdi K. Multiple Sclerosis Diagnosis Using Machine Learning and Deep Learning: Challenges and Opportunities. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22207856. [PMID: 36298206 PMCID: PMC9609137 DOI: 10.3390/s22207856] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/29/2022] [Accepted: 10/11/2022] [Indexed: 05/17/2023]
Abstract
Multiple Sclerosis (MS) is a disease that impacts the central nervous system (CNS), which can lead to brain, spinal cord, and optic nerve problems. A total of 2.8 million are estimated to suffer from MS. Globally, a new case of MS is reported every five minutes. In this review, we discuss the proposed approaches to diagnosing MS using machine learning (ML) published between 2011 and 2022. Numerous models have been developed using different types of data, including magnetic resonance imaging (MRI) and clinical data. We identified the methods that achieved the best results in diagnosing MS. The most implemented approaches are SVM, RF, and CNN. Moreover, we discussed the challenges and opportunities in MS diagnosis to improve AI systems to enable researchers and practitioners to enhance their approaches and improve the automated diagnosis of MS. The challenges faced by automated MS diagnosis include difficulty distinguishing the disease from other diseases showing similar symptoms, protecting the confidentiality of the patients' data, achieving reliable ML models that are also easily understood by non-experts, and the difficulty of collecting a large reliable dataset. Moreover, we discussed several opportunities in the field such as the implementation of secure platforms, employing better AI solutions, developing better disease prognosis systems, combining more than one data type for better MS prediction and using OCT data for diagnosis, utilizing larger, multi-center datasets to improve the reliability of the developed models, and commercialization.
Collapse
Affiliation(s)
- Nida Aslam
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Correspondence:
| | - Irfan Ullah Khan
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Asma Bashamakh
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Fatima A. Alghool
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Menna Aboulnour
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Noorah M. Alsuwayan
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Rawa’a K. Alturaif
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Samiha Brahimi
- Department of Computer Information Systems, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Sumayh S. Aljameel
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Kholoud Al Ghamdi
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
19
|
Torkey H, Belal NA. An Enhanced Multiple Sclerosis Disease Diagnosis via an Ensemble Approach. Diagnostics (Basel) 2022; 12:1771. [PMID: 35885672 PMCID: PMC9316893 DOI: 10.3390/diagnostics12071771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/25/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022] Open
Abstract
Multiple Sclerosis (MS) is a disease attacking the central nervous system. According to MS Atlas's most recent statistics, there are more than 2.8 million people worldwide diagnosed with MS. Recently, studies started to explore machine learning techniques to predict MS using various data. The objective of this paper is to develop an ensemble approach for diagnosis of MS using gene expression profiles, while handling the class imbalance problem associated with the data. A hierarchical ensemble approach employing voting and boosting techniques is proposed. This approach adopts a heterogeneous voting approach using two base learners, random forest and support vector machine. Experiments show that our approach outperforms state-of-the-art methods, with the highest recorded accuracy being 92.81% and 93.5% with BoostFS and DEGs for feature selection, respectively. Conclusively, the proposed approach is able to efficiently diagnose MS using the gene expression profiles that are more relevant to the disease. The approach is not merely an ensemble classifier outperforming previous work; it also identifies differentially expressed genes between normal samples and patients with multiple sclerosis using a genome-wide expression microarray. The results obtained show that the proposed approach is an efficient diagnostic tool for MS.
Collapse
Affiliation(s)
- Hanaa Torkey
- Computer Science and Engineering Department, Faculty of Electronic Engineering, Menoufia University, Menouf 32952, Egypt;
| | - Nahla A. Belal
- College of Computing and Information Technology, Arab Academy for Science, Technology, and Maritime Transport, Smart Village 12577, Egypt
| |
Collapse
|
20
|
Nabizadeh F, Masrouri S, Ramezannezhad E, Ghaderi A, Sharafi AM, Soraneh S, Moghadasi AN. Artificial intelligence in the diagnosis of Multiple Sclerosis: a systematic review. Mult Scler Relat Disord 2022; 59:103673. [DOI: 10.1016/j.msard.2022.103673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/24/2022] [Accepted: 02/05/2022] [Indexed: 10/19/2022]
|
21
|
Nirooei E, Kashani SMA, Owrangi S, Malekpour F, Niknam M, Moazzen F, Nowrouzi-Sohrabi P, Farzinmehr S, Akbari H. Blood Trace Element Status in Multiple Sclerosis: a Systematic Review and Meta-analysis. Biol Trace Elem Res 2022; 200:13-26. [PMID: 33611740 DOI: 10.1007/s12011-021-02621-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/31/2021] [Indexed: 12/17/2022]
Abstract
The aim of this meta-analysis was to investigate whether the blood concentrations of patients with multiple sclerosis (MS) are associated with those of the healthy control group in terms of trace elements including zinc (Zn), iron (Fe), manganese (Mn), magnesium (Mg), selenium (Se), and copper (Cu). A comprehensive search was performed in online databases including PubMed, Scopus, Embase, and Web of Science for studies, which have addressed trace elements in MS up to July 23, 2020. The chi-square test and I2 statistic were utilized to evaluate inter-study heterogeneity across the included studies. Weighted mean differences (WMDs) and corresponding 95% CI were considered as a pooled effect size (ES). Twenty-seven articles (or 32 studies) with a total sample comprised of 2895 participants (MS patients (n = 1567) and controls (n = 1328)) were included. Pooled results using random-effects model indicated that the levels of Zn (WMD = - 7.83 mcg/dl, 95% CI = - 12.78 to - 2.87, Z = 3.09, P = 0.002), and Fe (WMD = - 13.66 mcg/dl, 95% CI = - 23.13 to - 4.19, Z = 2.83, P = 0.005) were significantly lower in MS patients than in controls. However, it was found that levels of Mn (WMD = 0.03 mcg/dl, 95% CI = 0.01 to 0.04, Z = 2.89, P = 0.004) were significantly higher in MS patients. Yet, no significant differences were observed in the levels of Mg, Se, and Cu between both groups. This meta-analysis revealed that the circulating levels of Zn and Fe were significantly lower in MS patients and that Mn level was significantly higher than those in the control group. However, it was found that there was no significant difference between MS patients and controls with regard to levels of Mg, Se, and Cu.
Collapse
Affiliation(s)
- Elahe Nirooei
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Soroor Owrangi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Malekpour
- Family Medicine Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Niknam
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Moazzen
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Peyman Nowrouzi-Sohrabi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somaye Farzinmehr
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Hamed Akbari
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
22
|
Rodrigues P, Bochi GV, Trevisan G. Advanced Oxidative Protein Products Role in Multiple Sclerosis: a Systematic Review and Meta-analysis. Mol Neurobiol 2021; 58:5724-5742. [PMID: 34392502 DOI: 10.1007/s12035-021-02493-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/11/2021] [Indexed: 01/11/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune-mediated disease that damages the central nervous system. MS pathophysiological features are not entirely understood, but the increase of reactive oxygen species (ROS) possibly causes myelin and oligodendrocyte degeneration. ROS-increased production generates new compounds through oxidative modifications, including advanced oxidative protein products (AOPPs). The AOPPs are oxidative stress biomarkers and inflammatory mediators commonly formed by hypochlorous acid oxidative action on albumin. Considering that AOPPs accumulation produces ROS and induces neuronal apoptosis, these may represent a new target for drug development to MS treatment and a possible biomarker to monitor the severity of the disease. Thus, this review aims to investigate if there is an alteration in the AOPPs levels in MS and its possible involvement in patient disability. The second objective is to analyze whether drugs or compounds used in MS treatment could modify the AOPPs levels. The protocol was registered in PROSPERO (CRD42020203268). The databases' search yielded 327 articles. We excluded 259 duplicated articles and evaluated 68 articles by the title and abstract. We full-text analyzed 17 articles and included 13 articles. The AOPPs levels were increased in not-treated MS patients. Furthermore, the increase in disability status was associated with AOPPs accumulation in not-treated MS patients. Additionally, the AOPPs levels were reduced in MS patients after treatment. Therefore, AOPPs seem to play a role in MS pathophysiology and may become a new target for drug development and help MS diagnosis or treatment follow-up.
Collapse
Affiliation(s)
- Patrícia Rodrigues
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), Avenida Roraima, 1000, Building 21, Room 5207, Santa Maria, RS, 97105-900, Brazil
| | - Guilherme Vargas Bochi
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), Avenida Roraima, 1000, Building 21, Room 5207, Santa Maria, RS, 97105-900, Brazil
| | - Gabriela Trevisan
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), Avenida Roraima, 1000, Building 21, Room 5207, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
23
|
Baesler J, Michaelis V, Stiboller M, Haase H, Aschner M, Schwerdtle T, Sturzenbaum SR, Bornhorst J. Nutritive Manganese and Zinc Overdosing in Aging C. elegans Result in a Metallothionein-Mediated Alteration in Metal Homeostasis. Mol Nutr Food Res 2021; 65:e2001176. [PMID: 33641237 PMCID: PMC8224813 DOI: 10.1002/mnfr.202001176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/15/2021] [Indexed: 01/02/2023]
Abstract
SCOPE Manganese (Mn) and zinc (Zn) are not only essential trace elements, but also potential exogenous risk factors for various diseases. Since the disturbed homeostasis of single metals can result in detrimental health effects, concerns have emerged regarding the consequences of excessive exposures to multiple metals, either via nutritional supplementation or parenteral nutrition. This study focuses on Mn-Zn-interactions in the nematode Caenorhabditis elegans (C. elegans) model, taking into account aspects related to aging and age-dependent neurodegeneration. METHODS AND RESULTS Chronic co-exposure of C. elegans to Mn and Zn increases metal uptake, exceeding levels of single metal exposures. Supplementation with Mn and/or Zn also leads to an age-dependent increase in metal content, a decline in overall mRNA expression, and metal co-supplementation induced expression of target genes involved in Mn and Zn homeostasis, in particular metallothionein 1 (mtl-1). Studies in transgenic worms reveal that mtl-1 played a prominent role in mediating age- and diet-dependent alterations in metal homeostasis. Metal dyshomeostasis is further induced in parkin-deficient nematodes (Parkinson's disease (PD) model), but this did not accelerate the age-dependent dopaminergic neurodegeneration. CONCLUSIONS A nutritive overdose of Mn and Zn can alter interactions between essential metals in an aging organism, and metallothionein 1 acts as a potential protective modulator in regulating homeostasis.
Collapse
Affiliation(s)
- Jessica Baesler
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
- TraceAge – DFG Research Unit FOR 2558, Berlin-Potsdam-Jena, Germany
| | - Vivien Michaelis
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Michael Stiboller
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Hajo Haase
- TraceAge – DFG Research Unit FOR 2558, Berlin-Potsdam-Jena, Germany
- TU Berlin, Department of Food Chemistry and Toxicology, Berlin, Germany
| | - Michael Aschner
- Department of Molecular Pharmacology, Neuroscience, and Pediatrics, Albert Einstein College of Medicine, NY, USA
- IM Sechenov First Moscow State Medical University, Moscow, Russia
| | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
- TraceAge – DFG Research Unit FOR 2558, Berlin-Potsdam-Jena, Germany
| | - Stephen R. Sturzenbaum
- Department of Analytical, Environmental & Forensic Sciences, School of Population Health & Environmental Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
- TraceAge – DFG Research Unit FOR 2558, Berlin-Potsdam-Jena, Germany
| |
Collapse
|
24
|
Lozinski BM, de Almeida LGN, Silva C, Dong Y, Brown D, Chopra S, Yong VW, Dufour A. Exercise rapidly alters proteomes in mice following spinal cord demyelination. Sci Rep 2021; 11:7239. [PMID: 33790323 PMCID: PMC8012633 DOI: 10.1038/s41598-021-86593-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/16/2021] [Indexed: 02/01/2023] Open
Abstract
Exercise affords broad benefits for people with multiple sclerosis (PwMS) including less fatigue, depression, and improved cognition. In animal models of multiple sclerosis (MS), exercise has been shown to improve remyelination, decrease blood-brain barrier permeability and reduce leukocyte infiltration. Despite these benefits many PwMS refrain from engaging in physical activity. This barrier to participation in exercise may be overcome by uncovering and describing the mechanisms by which exercise promotes beneficial changes in the central nervous system (CNS). Here, we show that acute bouts of exercise in mice profoundly alters the proteome in demyelinating lesions. Following lysolecithin induced demyelination of the ventral spinal cord, mice were given immediate access to a running wheel for 4 days. Lesioned spinal cords and peripheral blood serum were then subjected to tandem mass tag labeling shotgun proteomics workflow to identify alteration in protein levels. We identified 86 significantly upregulated and 85 downregulated proteins in the lesioned spinal cord as well as 14 significantly upregulated and 11 downregulated proteins in the serum following acute exercise. Altered pathways following exercise in demyelinated mice include oxidative stress response, metabolism and transmission across chemical synapses. Similar acute bout of exercise in naïve mice also changed several proteins in the serum and spinal cord, including those for metabolism and anti-oxidant responses. Improving our understanding of the mechanisms and duration of activity required to influence the injured CNS should motivate PwMS and other conditions to embrace exercise as part of their therapy to manage CNS disability.
Collapse
Affiliation(s)
- Brian Mark Lozinski
- Department of Clinical Neurosciences, University of Calgary, Alberta, Canada
- The Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | - Luiz Gustavo Nogueira de Almeida
- Department of Biochemistry and Molecular Biology, University of Calgary, Alberta, Canada
- HRIC 3C64, Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Drive Calgary, Alberta, T2N 4N1, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Alberta, Canada
| | - Claudia Silva
- Department of Clinical Neurosciences, University of Calgary, Alberta, Canada
- The Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | - Yifei Dong
- Department of Clinical Neurosciences, University of Calgary, Alberta, Canada
- The Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | - Dennis Brown
- Department of Clinical Neurosciences, University of Calgary, Alberta, Canada
- The Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | - Sameeksha Chopra
- Department of Biochemistry and Molecular Biology, University of Calgary, Alberta, Canada
- HRIC 3C64, Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Drive Calgary, Alberta, T2N 4N1, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Alberta, Canada
| | - V Wee Yong
- Department of Clinical Neurosciences, University of Calgary, Alberta, Canada
- The Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | - Antoine Dufour
- Department of Biochemistry and Molecular Biology, University of Calgary, Alberta, Canada.
- HRIC 3C64, Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Drive Calgary, Alberta, T2N 4N1, Canada.
- The Hotchkiss Brain Institute, University of Calgary, Alberta, Canada.
- McCaig Institute for Bone and Joint Health, University of Calgary, Alberta, Canada.
| |
Collapse
|
25
|
Vázquez-Marrufo M, Sarrias-Arrabal E, García-Torres M, Martín-Clemente R, Izquierdo G. A systematic review of the application of machine-learning algorithms in multiple sclerosis. Neurologia 2021; 38:S0213-4853(20)30431-X. [PMID: 33549371 DOI: 10.1016/j.nrl.2020.10.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/20/2020] [Accepted: 10/11/2020] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION The applications of artificial intelligence, and in particular automatic learning or "machine learning" (ML), constitute both a challenge and a great opportunity in numerous scientific, technical, and clinical disciplines. Specific applications in the study of multiple sclerosis (MS) have been no exception, and constitute an area of increasing interest in recent years. OBJECTIVE We present a systematic review of the application of ML algorithms in MS. MATERIALS AND METHODS We used the PubMed search engine, which allows free access to the MEDLINE medical database, to identify studies including the keywords "machine learning" and "multiple sclerosis." We excluded review articles, studies written in languages other than English or Spanish, and studies that were mainly technical and did not specifically apply to MS. The final selection included 76 articles, and 38 were rejected. CONCLUSIONS After the review process, we established 4 main applications of ML in MS: 1) classifying MS subtypes; 2) distinguishing patients with MS from healthy controls and individuals with other diseases; 3) predicting progression and response to therapeutic interventions; and 4) other applications. Results found to date have shown that ML algorithms may offer great support for health professionals both in clinical settings and in research into MS.
Collapse
Affiliation(s)
- M Vázquez-Marrufo
- Departamento de Psicología Experimental, Facultad de Psicología, Universidad de Sevilla, Sevilla, España.
| | - E Sarrias-Arrabal
- Departamento de Psicología Experimental, Facultad de Psicología, Universidad de Sevilla, Sevilla, España
| | - M García-Torres
- Escuela Politécnica Superior, Universidad Pablo de Olavide, Sevilla, España
| | - R Martín-Clemente
- Departamento de Teoría de la Señal y Comunicaciones, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Sevilla, España
| | - G Izquierdo
- Unidad de Esclerosis Múltiple, Hospital VITHAS, Sevilla, España
| |
Collapse
|
26
|
Superoxide dismutase (SOD), advanced oxidation protein products (AOPP), and disease-modifying treatment are related to better relapse recovery after corticosteroid treatment in multiple sclerosis. Neurol Sci 2020; 42:3241-3247. [PMID: 33241537 DOI: 10.1007/s10072-020-04928-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/20/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVES The aim of our study was to analyze oxidative stress (OS) markers in multiple sclerosis (MS) patients during relapse and remission and to evaluate the effects of corticosteroid relapse treatment on oxidative status, and also to determine possible relationship between OS markers and relapse disability recovery after corticosteroid treatment. METHODS Our study included 118 MS patients, (59 relapse/59 remission) 70 females and 48 males, mean age 40.2 ± 9.4 years, and 88 matched healthy controls. Undergoing disease-modifying therapy (DMT) was present in 30.5% of relapse and 88% of remission MS patients. We analyzed in plasma/serum the following: pro-oxidative-antioxidative balance (PAB), nitrates and nitrites (NO3 + NO2), malondialdehyde (MDA), advanced oxidation protein products (AOPP) superoxide dismutase (SOD), catalase (CAT), uric acid, bilirubin, albumin, and transferrin in all patients and additionally after corticosteroid relapse treatment. Neurological disability was measured using the Extended Disability Status Scale (EDSS). RESULTS Better clinical recovery after relapse treatment was associated with increased baseline SOD, decreased AOPP, and ongoing DMT (all p < 0.05). There was no difference between OS markers in relapse and remission. MS patients had higher MDA, NO3 + NO2, PAB, SOD, CAT, lower AOPP, uric acid, albumin, bilirubin, and transferrin compared to controls (all p < 0.05). Corticosteroids caused significant decrease of all OS markers (all p < 0.05). CONCLUSION Increased baseline antioxidative activity of SOD and decreased baseline levels of pro-oxidant AOPP along with ongoing DMT were related to better clinical recovery after corticosteroid relapse treatment. Increase of pro-oxidants and antioxidant enzyme activity in relapse and remission confirms ongoing oxidative injury irrelevant of MS clinical presentation.
Collapse
|
27
|
Attia SM, Ahmad SF, Nadeem A, Attia MSM, Ansari MA, Harisa GI, Al-Hamamah MA, Mahmoud MA, Bakheet SA. The MAP kinase inhibitor PD98059 reduces chromosomal instability in the autoimmune encephalomyelitis SJL/J-mouse model of multiple sclerosis. Mutat Res 2020; 861-862:503278. [PMID: 33551096 DOI: 10.1016/j.mrgentox.2020.503278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 10/23/2022]
Abstract
Multiple sclerosis (MS), a disease in which the immune system attacks nerve cells, has been associated with both genetic and environmental risk factors. We observed increased micronucleus (MN) formation in SJL/J mouse experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Most of these MN were due to chromosomal loss. Increased activation of MAP kinases, which leads to disruption of the mitotic spindle and improper segregation of chromosomes, is associated with MS. MAP kinase inhibitors, such as PD98059, may therefore be beneficial for MS. In the EAE model, PD98059 treatment reduced adverse effects, including MN formation, lipid peroxidation, and GSH oxidation. Interventions that mitigate chromosomal instability may have therapeutic value in MS.
Collapse
Affiliation(s)
- Sabry M Attia
- Department of Pharmacology and Toxicology, Saudi Arabia.
| | | | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, Saudi Arabia
| | | | | | - Gamaleldin I Harisa
- Kayyali Chair for Pharmaceutical Industry, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | | | | |
Collapse
|