1
|
Ali NH, Al-Kuraishy HM, Al-Gareeb AI, Alnaaim SA, Hetta HF, Saad HM, Batiha GES. A Mutual Nexus Between Epilepsy and α-Synuclein: A Puzzle Pathway. Mol Neurobiol 2024; 61:10198-10215. [PMID: 38703341 DOI: 10.1007/s12035-024-04204-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 04/12/2024] [Indexed: 05/06/2024]
Abstract
Alpha-synuclein (α-Syn) is a specific neuronal protein that regulates neurotransmitter release and trafficking of synaptic vesicles. Exosome-associated α-Syn which is specific to the central nervous system (CNS) is involved in the pathogenesis of epilepsy. Therefore, this review aimed to elucidate the possible link between α-Syn and epilepsy, and how it affects the pathophysiology of epilepsy. A neurodegenerative protein such as α-Syn is implicated in the pathogenesis of epilepsy. Evidence from preclinical and clinical studies revealed that upregulation of α-Syn induces progressive neuronal dysfunctions through induction of oxidative stress, neuroinflammation, and inhibition of autophagy in a vicious cycle with subsequent development of severe epilepsy. In addition, accumulation of α-Syn in epilepsy could be secondary to the different cellular alterations including oxidative stress, neuroinflammation, reduction of brain-derived neurotrophic factor (BDNF) and progranulin (PGN), and failure of the autophagy pathway. However, the mechanism of α-Syn-induced-epileptogenesis is not well elucidated. Therefore, α-Syn could be a secondary consequence of epilepsy. Preclinical and clinical studies are warranted to confirm this causal relationship.
Collapse
Affiliation(s)
- Naif H Ali
- Department of Internal Medicine, Medical College, Najran University, Najran, Kingdom of Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, M.B.Ch.B, FRCP, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Jabir Ibn Hayyan Medical University, Al-Ameer Qu, P.O. Box 13, Kufa, Najaf, Iraq
| | - Saud A Alnaaim
- Clinical Neurosciences Department, College of Medicine, King Faisal University, Hofuf, Saudi Arabia
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
2
|
Chelucci E, Scarfò G, Piccarducci R, Rizza A, Fusi J, Epifani F, Carpi S, Polini B, Betti L, Costa B, Taliani S, Cela V, Artini P, Daniele S, Martini C, Franzoni F. Sex Differences in Blood Accumulation of Neurodegenerative-Related Proteins and Antioxidant Responses to Regular Physical Exercise. J Mol Neurosci 2024; 74:105. [PMID: 39496982 PMCID: PMC11535074 DOI: 10.1007/s12031-024-02278-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/04/2024] [Indexed: 11/06/2024]
Abstract
Physical activity has been demonstrated to improve cognitive function, thereby preventing/slowing neurodegenerative diseases (NDs). Biological responses to physical activity and vulnerabilities to NDs are emerging to be gender-related. Herein, known ND-associated markers (β-amyloid, tau, α-synuclein), main sex steroid hormones, antioxidant responses, and key gene transcription modulators were evaluated in the blood of physically active and sedentary women and men. In our hands, females presented higher basal erythrocytes β-amyloid and α-synuclein amounts than males. Regular physical activity was able to significantly reduce the erythrocyte content of β-amyloid in females and the tau levels in males, suggesting that these differences may be mediated by organizational actions of sex steroid hormones during development. Furthermore, despite a comparable plasma antioxidant capability (AOC) between males and females, in the latter group, physical activity significantly enhances AOC versus peroxynitrite radicals only. Finally, regular physical activity modulated the levels of transcription factor Nrf2 in erythrocytes, as well as the plasma concentration of the microRNA miR-195 and miR-153, suggesting the promotion of antioxidant/autophagic processes associated with ND-related proteins. Overall, these results could shed light on how cerebral adaptations to physical activity differ between males and females, especially with regard to blood accumulation of ND proteins and mechanisms of antioxidant responses to regular exercise.
Collapse
Affiliation(s)
| | - Giorgia Scarfò
- Division of General Medicine, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Antonio Rizza
- Interventional Cardiology Division, Gaetano Pasquinucci Heart Hospital, Fondazione Toscana Gabriele Monasterio, Massa, Italy
| | - Jonathan Fusi
- Division of General Medicine, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesco Epifani
- Department of Juridical and Economic Sciences, Pegaso Telematic University, Fanfani Diagnostics and Health, Florence, Italy
| | - Sara Carpi
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- National Enterprise for nanoScience and nanoTechnology (NEST), Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | | | - Laura Betti
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Barbara Costa
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Vito Cela
- Division of Gynecology and Obstetrics, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paolo Artini
- Division of Gynecology and Obstetrics, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Simona Daniele
- Department of Pharmacy, University of Pisa, Pisa, Italy.
| | | | - Ferdinando Franzoni
- Division of General Medicine, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
3
|
Dhauria M, Mondal R, Deb S, Shome G, Chowdhury D, Sarkar S, Benito-León J. Blood-Based Biomarkers in Alzheimer's Disease: Advancing Non-Invasive Diagnostics and Prognostics. Int J Mol Sci 2024; 25:10911. [PMID: 39456697 PMCID: PMC11507237 DOI: 10.3390/ijms252010911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia, is expected to rise dramatically in incidence due to the global population aging. Traditional diagnostic approaches, such as cerebrospinal fluid analysis and positron emission tomography, are expensive and invasive, limiting their routine clinical use. Recent advances in blood-based biomarkers, including amyloid-beta, phosphorylated tau, and neurofilament light, offer promising non-invasive alternatives for early AD detection and disease monitoring. This review synthesizes current research on these blood-based biomarkers, highlighting their potential to track AD pathology and enhance diagnostic accuracy. Furthermore, this review uniquely integrates recent findings on protein-protein interaction networks and microRNA pathways, exploring novel combinations of proteomic, genomic, and epigenomic biomarkers that provide new insights into AD's molecular mechanisms. Additionally, we discuss the integration of these biomarkers with advanced neuroimaging techniques, emphasizing their potential to revolutionize AD diagnostics. Although large-scale validation is still needed, these biomarkers represent a critical advancement toward more accessible, cost-effective, and early diagnostic tools for AD.
Collapse
Affiliation(s)
| | - Ritwick Mondal
- Department of Clinical Pharmacology and Therapeutic Medicine, IPGMER and SSKM Hospital, Kolkata 700020, India;
| | - Shramana Deb
- Department of Stroke Medicine, Institute of Neuroscience, Kolkata 700017, India;
| | - Gourav Shome
- Department of Biological Sciences, Bose Institute, Kolkata 700054, India;
| | - Dipanjan Chowdhury
- Department of Internal Medicine, IPGMER and SSKM Hospital, Kolkata 700020, India; (D.C.); (S.S.)
| | - Shramana Sarkar
- Department of Internal Medicine, IPGMER and SSKM Hospital, Kolkata 700020, India; (D.C.); (S.S.)
| | - Julián Benito-León
- Department of Neurology, University Hospital “12 de Octubre”, ES-28041 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), ES-28041 Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ES-28029 Madrid, Spain
- Department of Medicine, Complutense University, ES-28040 Madrid, Spain
| |
Collapse
|
4
|
Yadav S, Deepika, Moar K, Kumar A, Khola N, Pant A, Kakde GS, Maurya PK. Reconsidering red blood cells as the diagnostic potential for neurodegenerative disorders. Biol Cell 2024; 116:e2400019. [PMID: 38822416 DOI: 10.1111/boc.202400019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/12/2024] [Accepted: 04/29/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Red blood cells (RBCs) are usually considered simple cells and transporters of gases to tissues. HYPOTHESIS However, recent research has suggested that RBCs may have diagnostic potential in major neurodegenerative disorders (NDDs). RESULTS This review summarizes the current knowledge on changes in RBC in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and other NDDs. It discusses the deposition of neuronal proteins like amyloid-β, tau, and α-synuclein, polyamines, changes in the proteins of RBCs like band-3, membrane transporter proteins, heat shock proteins, oxidative stress biomarkers, and altered metabolic pathways in RBCs during neurodegeneration. It also highlights the comparison of RBC diagnostic markers to other in-market diagnoses and discusses the challenges in utilizing RBCs as diagnostic tools, such as the need for standardized protocols and further validation studies. SIGNIFICANCE STATEMENT The evidence suggests that RBCs have diagnostic potential in neurodegenerative disorders, and this study can pave the foundation for further research which may lead to the development of novel diagnostic approaches and treatments.
Collapse
Affiliation(s)
- Somu Yadav
- Department of Biochemistry, Central University of Haryana, Mahendergarh, India
| | - Deepika
- Department of Biochemistry, Central University of Haryana, Mahendergarh, India
| | - Kareena Moar
- Department of Biochemistry, Central University of Haryana, Mahendergarh, India
| | - Akshay Kumar
- Department of Biochemistry, Central University of Haryana, Mahendergarh, India
| | - Nikhila Khola
- Department of Biochemistry, Central University of Haryana, Mahendergarh, India
| | - Anuja Pant
- Department of Biochemistry, Central University of Haryana, Mahendergarh, India
| | - Ganseh S Kakde
- Department of Biochemistry, Central University of Haryana, Mahendergarh, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh, India
| |
Collapse
|
5
|
Lista S, Santos-Lozano A, Emanuele E, Mercuri NB, Gabelle A, López-Ortiz S, Martín-Hernández J, Maisto N, Imbimbo C, Caraci F, Imbimbo BP, Zetterberg H, Nisticò R. Monitoring synaptic pathology in Alzheimer's disease through fluid and PET imaging biomarkers: a comprehensive review and future perspectives. Mol Psychiatry 2024; 29:847-857. [PMID: 38228892 DOI: 10.1038/s41380-023-02376-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 01/18/2024]
Abstract
Alzheimer's disease (AD) is currently constrained by limited clinical treatment options. The initial pathophysiological event, which can be traced back to decades before the clinical symptoms become apparent, involves the excessive accumulation of amyloid-beta (Aβ), a peptide comprised of 40-42 amino acids, in extraneuronal plaques within the brain. Biochemical and histological studies have shown that overaccumulation of Aβ instigates an aberrant escalation in the phosphorylation and secretion of tau, a microtubule-binding axonal protein. The accumulation of hyperphosphorylated tau into intraneuronal neurofibrillary tangles is in turn correlated with microglial dysfunction and reactive astrocytosis, culminating in synaptic dysfunction and neurodegeneration. As neurodegeneration progresses, it gives rise to mild clinical symptoms of AD, which may eventually evolve into overt dementia. Synaptic loss in AD may develop even before tau alteration and in response to possible elevations in soluble oligomeric forms of Aβ associated with early AD. These findings largely rely on post-mortem autopsy examinations, which typically involve a limited number of patients. Over the past decade, a range of fluid biomarkers such as neurogranin, α-synuclein, visinin-like protein 1 (VILIP-1), neuronal pentraxin 2, and β-synuclein, along with positron emission tomography (PET) markers like synaptic vesicle glycoprotein 2A, have been developed. These advancements have facilitated the exploration of how synaptic markers in AD patients correlate with cognitive impairment. However, fluid biomarkers indicating synaptic loss have only been validated in cerebrospinal fluid (CSF), not in plasma, with the exception of VILIP-1. The most promising PET radiotracer, [11C]UCB-J, currently faces significant challenges hindering its widespread clinical use, primarily due to the necessity of a cyclotron. As such, additional research geared toward the exploration of synaptic pathology biomarkers is crucial. This will not only enable their extensive clinical application, but also refine the optimization process of AD pharmacological trials.
Collapse
Affiliation(s)
- Simone Lista
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012, Valladolid, Spain.
| | - Alejandro Santos-Lozano
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012, Valladolid, Spain
- Physical Activity and Health Research Group (PaHerg), Research Institute of the Hospital 12 de Octubre ('imas12'), 28041, Madrid, Spain
| | | | - Nicola B Mercuri
- Experimental Neurology Laboratory, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Audrey Gabelle
- CMRR, Memory Resources and Research Center, Montpellier University of Excellence i-site, 34295, Montpellier, France
| | - Susana López-Ortiz
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012, Valladolid, Spain
| | - Juan Martín-Hernández
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012, Valladolid, Spain
| | - Nunzia Maisto
- Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, 00143, Rome, Italy
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185, Rome, Italy
| | - Camillo Imbimbo
- Department of Brain and Behavioral Sciences, University of Pavia, 27100, Pavia, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
- Neuropharmacology and Translational Neurosciences Research Unit, Oasi Research Institute-IRCCS, 94018, Troina, Italy
| | - Bruno P Imbimbo
- Department of Research and Development, Chiesi Farmaceutici, 43122, Parma, Italy
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, 431 80, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, WC1N, London, UK
- UK Dementia Research Institute at UCL, WC1E 6BT, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, 53726, WI, USA
| | - Robert Nisticò
- Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, 00143, Rome, Italy.
- School of Pharmacy, University of Rome "Tor Vergata", 00133, Rome, Italy.
| |
Collapse
|
6
|
Butler AE, Moin ASM, Sathyapalan T, Atkin SL. A Cross-Sectional Study of Protein Changes Associated with Dementia in Non-Obese Weight Matched Women with and without Polycystic Ovary Syndrome. Int J Mol Sci 2024; 25:2409. [PMID: 38397086 PMCID: PMC10889209 DOI: 10.3390/ijms25042409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Dysregulated Alzheimer's disease (AD)-associated protein expression is reported in polycystic ovary syndrome (PCOS), paralleling the expression reported in type 2 diabetes (T2D). We hypothesized, however, that these proteins would not differ between women with non-obese and non-insulin resistant PCOS compared to matched control subjects. We measured plasma amyloid-related proteins levels (Amyloid-precursor protein (APP), alpha-synuclein (SNCA), amyloid P-component (APCS), Pappalysin (PAPPA), Microtubule-associated protein tau (MAPT), apolipoprotein E (apoE), apoE2, apoE3, apoE4, Serum amyloid A (SAA), Noggin (NOG) and apoA1) in weight and aged-matched non-obese PCOS (n = 24) and control (n = 24) women. Dementia-related proteins fibronectin (FN), FN1.3, FN1.4, Von Willebrand factor (VWF) and extracellular matrix protein 1 (ECM1) were also measured. Protein levels were determined by Slow Off-rate Modified Aptamer (SOMA)-scan plasma protein measurement. Only APCS differed between groups, being elevated in non-obese PCOS women (p = 0.03) relative to the non-obese control women. This differed markedly from the elevated APP, APCS, ApoE, FN, FN1.3, FN1.4 and VWF reported in obese women with PCOS. Non-obese, non-insulin resistant PCOS subjects have a lower AD-associated protein pattern risk profile versus obese insulin resistant PCOS women, and are not dissimilar to non-obese controls, indicating that lifestyle management to maintain optimal body weight could be beneficial to reduce the long-term AD-risk in women with PCOS.
Collapse
Affiliation(s)
- Alexandra E. Butler
- Research Department, Royal College of Surgeons of Ireland, Busaiteen P.O. Box 15503, Bahrain; (A.S.M.M.); (S.L.A.)
| | - Abu Saleh Md Moin
- Research Department, Royal College of Surgeons of Ireland, Busaiteen P.O. Box 15503, Bahrain; (A.S.M.M.); (S.L.A.)
| | - Thozhukat Sathyapalan
- Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull HU6 7RU, UK;
| | - Stephen L. Atkin
- Research Department, Royal College of Surgeons of Ireland, Busaiteen P.O. Box 15503, Bahrain; (A.S.M.M.); (S.L.A.)
| |
Collapse
|
7
|
Butler AE, Moin ASM, Sathyapalan T, Atkin SL. A Cross-Sectional Study of Alzheimer-Related Proteins in Women with Polycystic Ovary Syndrome. Int J Mol Sci 2024; 25:1158. [PMID: 38256230 PMCID: PMC10816448 DOI: 10.3390/ijms25021158] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine condition in women of reproductive age, and several risk factors found in PCOS are associated with an increased risk of Alzheimer's disease (AD). Proteins increased in AD have been reported to include fibronectin (FN) fragments 3 and 4 (FN1.3 and FN1.4, respectively) and ApoE. We hypothesized that Alzheimer-related proteins would be dysregulated in PCOS because of associated insulin resistance and obesity. In this comparative cross-sectional analysis, aptamer-based SomaScan proteomic analysis for the detection of plasma Alzheimer-related proteins was undertaken in a PCOS biobank of 143 women with PCOS and 97 control women. Amyloid precursor protein (APP) (p < 0.05) and amyloid P-component (APCS) (p < 0.001) were elevated in PCOS, while alpha-synuclein (SNCA) (p < 0.05) was reduced in PCOS. Associations with protective heat shock proteins (HSPs) showed that SNCA positively correlated with HSP90 (p < 0.0001) and HSP60 (p < 0.0001) in both the PCOS and control women. Correlations with markers of inflammation showed that APCS correlated with interleukin 6 (IL6) (p = 0.04), while Apolipoprotein (Apo) E3 correlated with TNF-alpha (p = 0.02). FN, FN1.3, FN1.4 and ApoE were all elevated significantly (p < 0.05). An AD-associated protein pattern with elevated FN, FN1.3, FN1.4 and ApoE was found in PCOS, in addition to elevated APP and reduced SNCA, which was the same as reported for type 2 diabetes (T2D) with, additionally, an elevation in APCS. With the AD biomarker pattern in PCOS being very similar to that in T2D, where there is an association between AD and T2D, this suggests that larger prospective cohort studies are needed in women with PCOS to determine if there is a causal association with AD.
Collapse
Affiliation(s)
- Alexandra E. Butler
- Research Department, Royal College of Surgeons of Ireland, Busaiteen P.O. Box 15503, Bahrain; (A.S.M.M.); (S.L.A.)
| | - Abu Saleh Md Moin
- Research Department, Royal College of Surgeons of Ireland, Busaiteen P.O. Box 15503, Bahrain; (A.S.M.M.); (S.L.A.)
| | - Thozhukat Sathyapalan
- Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull HU6 7RU, UK;
| | - Stephen L. Atkin
- Research Department, Royal College of Surgeons of Ireland, Busaiteen P.O. Box 15503, Bahrain; (A.S.M.M.); (S.L.A.)
| |
Collapse
|
8
|
Taneva SG, Todinova S, Andreeva T. Morphometric and Nanomechanical Screening of Peripheral Blood Cells with Atomic Force Microscopy for Label-Free Assessment of Alzheimer's Disease, Parkinson's Disease, and Amyotrophic Lateral Sclerosis. Int J Mol Sci 2023; 24:14296. [PMID: 37762599 PMCID: PMC10531602 DOI: 10.3390/ijms241814296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/09/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Neurodegenerative disorders (NDDs) are complex, multifactorial disorders with significant social and economic impact in today's society. NDDs are predicted to become the second-most common cause of death in the next few decades due to an increase in life expectancy but also to a lack of early diagnosis and mainly symptomatic treatment. Despite recent advances in diagnostic and therapeutic methods, there are yet no reliable biomarkers identifying the complex pathways contributing to these pathologies. The development of new approaches for early diagnosis and new therapies, together with the identification of non-invasive and more cost-effective diagnostic biomarkers, is one of the main trends in NDD biomedical research. Here we summarize data on peripheral biomarkers, biofluids (cerebrospinal fluid and blood plasma), and peripheral blood cells (platelets (PLTs) and red blood cells (RBCs)), reported so far for the three most common NDDs-Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). PLTs and RBCs, beyond their primary physiological functions, are increasingly recognized as valuable sources of biomarkers for NDDs. Special attention is given to the morphological and nanomechanical signatures of PLTs and RBCs as biophysical markers for the three pathologies. Modifications of the surface nanostructure and morphometric and nanomechanical signatures of PLTs and RBCs from patients with AD, PD, and ALS have been revealed by atomic force microscopy (AFM). AFM is currently experiencing rapid and widespread adoption in biomedicine and clinical medicine, in particular for early diagnostics of various medical conditions. AFM is a unique instrument without an analog, allowing the generation of three-dimensional cell images with extremely high spatial resolution at near-atomic scale, which are complemented by insights into the mechanical properties of cells and subcellular structures. Data demonstrate that AFM can distinguish between the three pathologies and the normal, healthy state. The specific PLT and RBC signatures can serve as biomarkers in combination with the currently used diagnostic tools. We highlight the strong correlation of the morphological and nanomechanical signatures between RBCs and PLTs in PD, ALS, and AD.
Collapse
Affiliation(s)
- Stefka G. Taneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bontchev” Str. 21, 1113 Sofia, Bulgaria; (S.T.); (T.A.)
| | - Svetla Todinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bontchev” Str. 21, 1113 Sofia, Bulgaria; (S.T.); (T.A.)
| | - Tonya Andreeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bontchev” Str. 21, 1113 Sofia, Bulgaria; (S.T.); (T.A.)
- Faculty of Life Sciences, Reutlingen University, Alteburgstraße 150, D-72762 Reutlingen, Germany
| |
Collapse
|
9
|
Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Santos-García D, Martínez-Valbuena I, Agúndez JAG. Alpha-Synuclein in Peripheral Tissues as a Possible Marker for Neurological Diseases and Other Medical Conditions. Biomolecules 2023; 13:1263. [PMID: 37627328 PMCID: PMC10452242 DOI: 10.3390/biom13081263] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The possible usefulness of alpha-synuclein (aSyn) determinations in peripheral tissues (blood cells, salivary gland biopsies, olfactory mucosa, digestive tract, skin) and in biological fluids, except for cerebrospinal fluid (serum, plasma, saliva, feces, urine), as a marker of several diseases, has been the subject of numerous publications. This narrative review summarizes data from studies trying to determine the role of total, oligomeric, and phosphorylated aSyn determinations as a marker of various diseases, especially PD and other alpha-synucleinopathies. In summary, the results of studies addressing the determinations of aSyn in its different forms in peripheral tissues (especially in platelets, skin, and digestive tract, but also salivary glands and olfactory mucosa), in combination with other potential biomarkers, could be a useful tool to discriminate PD from controls and from other causes of parkinsonisms, including synucleinopathies.
Collapse
Affiliation(s)
| | | | - Elena García-Martín
- Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| | - Diego Santos-García
- Department of Neurology, CHUAC—Complejo Hospitalario Universitario de A Coruña, 15006 A Coruña, Spain;
| | - Iván Martínez-Valbuena
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 2S8, Canada;
| | - José A. G. Agúndez
- Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| |
Collapse
|
10
|
Piccarducci R, Caselli MC, Zappelli E, Ulivi L, Daniele S, Siciliano G, Ceravolo R, Mancuso M, Baldacci F, Martini C. The Role of Amyloid-β, Tau, and α-Synuclein Proteins as Putative Blood Biomarkers in Patients with Cerebral Amyloid Angiopathy. J Alzheimers Dis 2022; 89:1039-1049. [PMID: 35964181 DOI: 10.3233/jad-220216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Cerebral amyloid angiopathy (CAA) is a cerebrovascular disorder characterized by the deposition of amyloid-β protein (Aβ) within brain blood vessels that develops in elderly people and Alzheimer's disease (AD) patients. Therefore, the investigation of biomarkers able to differentiate CAA patients from AD patients and healthy controls (HC) is of great interest, in particular in peripheral fluids. OBJECTIVE The current study aimed to detect the neurodegenerative disease (ND)-related protein (i.e., Aβ 1 - 40, Aβ 1 - 42, tau, and α-synuclein) levels in both red blood cells (RBCs) and plasma of CAA patients and HC, evaluating their role as putative peripheral biomarkers for CAA. METHODS For this purpose, the proteins' concentration was quantified in RBCs and plasma by homemade immunoenzymatic assays in an exploratory cohort of 20 CAA patients and 20 HC. RESULTS The results highlighted a significant increase of Aβ 1 - 40 and α-synuclein concentrations in both RBCs and plasma of CAA patients, while higher Aβ 1 - 42 and t-tau levels were detected only in RBCs of CAA individuals compared to HC. Moreover, Aβ 1 - 42/Aβ 1 - 40 ratio increased in RBCs and decreased in plasma of CAA patients. The role of these proteins as candidate peripheral biomarkers easily measurable with a blood sample in CAA needs to be confirmed in larger studies. CONCLUSION In conclusion, we provide evidence concerning the possible use of blood biomarkers for contributing to CAA diagnosis and differentiation from other NDs.
Collapse
Affiliation(s)
| | - Maria Chiara Caselli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Leonardo Ulivi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Michelangelo Mancuso
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | |
Collapse
|
11
|
Biomarker Candidates for Alzheimer’s Disease Unraveled through In Silico Differential Gene Expression Analysis. Diagnostics (Basel) 2022; 12:diagnostics12051165. [PMID: 35626321 PMCID: PMC9139748 DOI: 10.3390/diagnostics12051165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 01/27/2023] Open
Abstract
Alzheimer’s disease (AD) is neurodegeneration that accounts for 60–70% of dementia cases. Symptoms begin with mild memory difficulties and evolve towards cognitive impairment. The underlying risk factors remain primarily unclear for this heterogeneous disorder. Bioinformatics is a relevant research tool that allows for identifying several pathways related to AD. Open-access databases of RNA microarrays from the peripheral blood and brain of AD patients were analyzed after background correction and data normalization; the Limma package was used for differential expression analysis (DEA) through statistical R programming language. Data were corrected with the Benjamini and Hochberg approach, and genes with p-values equal to or less than 0.05 were considered to be significant. The direction of the change in gene expression was determined by its variation in the log2-fold change between healthy controls and patients. We performed the functional enrichment analysis of GO using goana and topGO-Limma. The functional enrichment analysis of DEGs showed upregulated (UR) pathways: behavior, nervous systems process, postsynapses, enzyme binding; downregulated (DR) were cellular component organization, RNA metabolic process, and signal transduction. Lastly, the intersection of DEGs in the three databases showed eight shared genes between brain and blood, with potential use as AD biomarkers for blood tests.
Collapse
|
12
|
Beatino MF, De Luca C, Campese N, Belli E, Piccarducci R, Giampietri L, Martini C, Perugi G, Siciliano G, Ceravolo R, Vergallo A, Hampel H, Baldacci F. α-synuclein as an emerging pathophysiological biomarker of Alzheimer's disease. Expert Rev Mol Diagn 2022; 22:411-425. [PMID: 35443850 DOI: 10.1080/14737159.2022.2068952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION α-syn aggregates represent the pathological hallmark of synucleinopathies as well as a frequent copathology (almost 1/3 of cases) in AD. Recent research indicates a potential role of α-syn species, measured in CSF with conventional analytical techniques, in the differential diagnosis between AD and synucleinopathies (such as DLB). Pioneering studies report the detection of α-syn in blood, however, conclusive investigations are controversial. Ultrasensitive seed amplification techniques, enabling the selective quantification of α-syn seeds, may represent an effective solution to identify the α-syn component in AD and facilitate a biomarker-guided stratification. AREAS COVERED We performed a PubMed-based review of the latest findings on α-syn-related biomarkers for AD, focusing on bodily fluids. A dissertation on the role of ultrasensitive seed amplification assays, detecting α-syn seeds from different biological samples, was conducted. EXPERT OPINION α-syn may contribute to progressive AD neurodegeneration through cross-seeding especially with tau protein. Ultrasensitive seed amplification techniques may support a biomarker-drug co-development pathway and may be a pathophysiological candidate biomarker for the evolving ATX(N) system to classify AD and the spectrum of primary NDDs. This would contribute to a precise approach to AD, aimed at implementing disease-modifying treatments.
Collapse
Affiliation(s)
| | - Ciro De Luca
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nicole Campese
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elisabetta Belli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Linda Giampietri
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Giulio Perugi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Andrea Vergallo
- GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Sorbonne University, Pitié-Salpêtrière Hospital, Boulevard De l'Hôpital, Paris, France
| | - Harald Hampel
- GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Sorbonne University, Pitié-Salpêtrière Hospital, Boulevard De l'Hôpital, Paris, France
| | - Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Sorbonne University, Pitié-Salpêtrière Hospital, Boulevard De l'Hôpital, Paris, France
| |
Collapse
|
13
|
Manzine PR, Vatanabe IP, Grigoli MM, Pedroso RV, de Almeida MPOMEP, de Oliveira DDSMS, Crispim Nascimento CM, Peron R, de Souza Orlandi F, Cominetti MR. Potential Protein Blood-Based Biomarkers in Different Types of Dementia: A Therapeutic Overview. Curr Pharm Des 2022; 28:1170-1186. [DOI: 10.2174/1381612828666220408124809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/24/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Biomarkers capable of identifying and distinguishing types of dementia such as Alzheimer's disease (AD), Parkinson's disease dementia (PDD), Lewy body dementia (LBD), and frontotemporal dementia (FTD) have been become increasingly relentless. Studies of possible biomarker proteins in the blood that can help formulate new diagnostic proposals and therapeutic visions of different types of dementia are needed. However, due to several limitations of these biomarkers, especially in discerning dementia, their clinical applications are still undetermined. Thus, the updating of biomarker blood proteins that can help in the diagnosis and discrimination of these main dementia conditions is essential to enable new pharmacological and clinical management strategies, with specificities for each type of dementia. To review the literature concerning protein blood-based AD and non-AD biomarkers as new pharmacological targets and/or therapeutic strategies. Recent findings for protein-based AD, PDD, LBD, and FTD biomarkers are focused on in this review. Protein biomarkers were classified according to the pathophysiology of the dementia types. The diagnosis and distinction of dementia through protein biomarkers is still a challenge. The lack of exclusive biomarkers for each type of dementia highlights the need for further studies in this field. Only after this, blood biomarkers may have a valid use in clinical practice as they are promising to help in diagnosis and in the differentiation of diseases.
Collapse
Affiliation(s)
- Patricia Regina Manzine
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Izabela Pereira Vatanabe
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Marina Mantellatto Grigoli
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Renata Valle Pedroso
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | | | | | | | - Rafaela Peron
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Fabiana de Souza Orlandi
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Márcia Regina Cominetti
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| |
Collapse
|
14
|
Sexton CE, Anstey KJ, Baldacci F, Barnum CJ, Barron AM, Blennow K, Brodaty H, Burnham S, Elahi FM, Götz J, Jeon YH, Koronyo-Hamaoui M, Landau SM, Lautenschlager NT, Laws SM, Lipnicki DM, Lu H, Masters CL, Moyle W, Nakamura A, Pasinetti GM, Rao N, Rowe C, Sachdev PS, Schofield PR, Sigurdsson EM, Smith K, Srikanth V, Szoeke C, Tansey MG, Whitmer R, Wilcock D, Wong TY, Bain LJ, Carrillo MC. Alzheimer's disease research progress in Australia: The Alzheimer's Association International Conference Satellite Symposium in Sydney. Alzheimers Dement 2022; 18:178-190. [PMID: 34058063 PMCID: PMC9396711 DOI: 10.1002/alz.12380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 01/03/2023]
Abstract
The Alzheimer's Association International Conference held its sixth Satellite Symposium in Sydney, Australia in 2019, highlighting the leadership of Australian researchers in advancing the understanding of and treatment developments for Alzheimer's disease (AD) and other dementias. This leadership includes the Australian Imaging, Biomarker, and Lifestyle Flagship Study of Ageing (AIBL), which has fueled the identification and development of many biomarkers and novel therapeutics. Two multimodal lifestyle intervention studies have been launched in Australia; and Australian researchers have played leadership roles in other global studies in diverse populations. Australian researchers have also played an instrumental role in efforts to understand mechanisms underlying vascular contributions to cognitive impairment and dementia; and through the Women's Healthy Aging Project have elucidated hormonal and other factors that contribute to the increased risk of AD in women. Alleviating the behavioral and psychological symptoms of dementia has also been a strong research and clinical focus in Australia.
Collapse
Affiliation(s)
| | - Kaarin J. Anstey
- University of New South Wales and Neuroscience Research, Sydney, NSW, Australia
| | - Filippo Baldacci
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | | | - Anna M. Barron
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, NSW, Australia
| | - Samantha Burnham
- CSIRO Health & Biosecurity, The Australian e-Health Research Centre, Parkville, VIC, Australia
| | - Fanny M. Elahi
- Memory and Aging Center, Weill Institute for NeurosciencesUniversity of California San Francisco, San Francisco, California, USA
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, St Lucia Campus (Brisbane), Brisbane, QLD, Australia
| | - Yun-Hee Jeon
- The University of Sydney, Sydney, NSW, Australia
| | - Maya Koronyo-Hamaoui
- Departments of Neurosurgery and Biomedical Sciences, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Susan M. Landau
- University of California Berkeley, Berkeley, California, USA
| | - Nicola T. Lautenschlager
- Academic Unit for Psychiatry of Old Age, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
- North Western Mental Health, Royal Melbourne Hospital, Melbourne, Australia
| | - Simon M. Laws
- Collaborative Genomics and Translation Group, Edith Cowan University, Joondalup, WA, Australia
| | - Darren M. Lipnicki
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, NSW, Australia
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Colin L. Masters
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Wendy Moyle
- Menzies Health Institute Queensland, Griffith University, Griffith, QLD, Australia
| | - Akinori Nakamura
- Department of Biomarker Research, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai (ISSMS), New York, New York, USA
| | - Naren Rao
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Christopher Rowe
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
- Department of Molecular Imaging, Austin Health, Melbourne, VIC, Australia
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, NSW, Australia
- Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Peter R. Schofield
- Neuroscience Research Australia, Sydney and School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Einar M. Sigurdsson
- Departments of Neuroscience and Physiology, and Psychiatry, Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, USA
| | - Kate Smith
- Centre for Aboriginal Medical and Dental Health, University of Western Australia, Crawley, WA, Australia
| | - Velandai Srikanth
- Peninsula Clinical School, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | | | - Malú G. Tansey
- Departments of Neuroscience and Neurology, Center for Translational Research in Neurodegenerative Disease, Normal Fixel Center for Neurological Diseases, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Rachel Whitmer
- Department of Public Health Sciences, University of California, Davis, Davis, California, USA
| | - Donna Wilcock
- Sanders-Brown Center on Aging and Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Tien Y. Wong
- Singapore Eye Research Institute, Singapore National Eye Center, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Lisa J. Bain
- Independent Science Writer, Elverson, Pennsylvania, USA
| | | |
Collapse
|
15
|
Todinova S, Krumova S, Bogdanova D, Danailova A, Zlatareva E, Kalaydzhiev N, Langari A, Milanov I, Taneva SG. Red Blood Cells' Thermodynamic Behavior in Neurodegenerative Pathologies and Aging. Biomolecules 2021; 11:biom11101500. [PMID: 34680133 PMCID: PMC8534019 DOI: 10.3390/biom11101500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/17/2021] [Accepted: 10/08/2021] [Indexed: 02/07/2023] Open
Abstract
The main trend of current research in neurodegenerative diseases (NDDs) is directed towards the discovery of novel biomarkers for disease diagnostics and progression. The pathological features of NDDs suggest that diagnostic markers can be found in peripheral fluids and cells. Herein, we investigated the thermodynamic behavior of the peripheral red blood cells (RBCs) derived from patients diagnosed with three common NDDs—Parkinson’s disease (PD), Alzheimer’s disease (AD), and amyotrophic lateral sclerosis (ALS) and compared it with that of healthy individuals, evaluating both fresh and aged RBCs. We established that NDDs can be differentiated from the normal healthy state on the basis of the variation in the thermodynamic parameters of the unfolding of major RBCs proteins—the cytoplasmic hemoglobin (Hb) and the membrane Band 3 (B3) protein. A common feature of NDDs is the higher thermal stability of both Hb and B3 proteins along the RBCs aging, while the calorimetric enthalpy can distinguish PD from ALS and AD. Our data provide insights into the RBCs thermodynamic behavior in two complex and tightly related phenomena—neurodegenerative pathologies and aging, and it suggests that the determined thermodynamic parameters are fingerprints of the altered conformation of Hb and B3 protein and modified RBCs’ aging in the studied NDDs.
Collapse
Affiliation(s)
- Svetla Todinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev, 1113 Sofia, Bulgaria; (S.T.); (S.K.); (A.D.); (A.L.)
| | - Sashka Krumova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev, 1113 Sofia, Bulgaria; (S.T.); (S.K.); (A.D.); (A.L.)
| | - Desislava Bogdanova
- Department of Neurology, University Multiprofile Hospital for Active Treatment in Neurology and Psychiatry Sv. Naum, 1113 Sofia, Bulgaria; (D.B.); (E.Z.); (N.K.); (I.M.)
| | - Avgustina Danailova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev, 1113 Sofia, Bulgaria; (S.T.); (S.K.); (A.D.); (A.L.)
| | - Elena Zlatareva
- Department of Neurology, University Multiprofile Hospital for Active Treatment in Neurology and Psychiatry Sv. Naum, 1113 Sofia, Bulgaria; (D.B.); (E.Z.); (N.K.); (I.M.)
| | - Nikolay Kalaydzhiev
- Department of Neurology, University Multiprofile Hospital for Active Treatment in Neurology and Psychiatry Sv. Naum, 1113 Sofia, Bulgaria; (D.B.); (E.Z.); (N.K.); (I.M.)
| | - Ariana Langari
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev, 1113 Sofia, Bulgaria; (S.T.); (S.K.); (A.D.); (A.L.)
| | - Ivan Milanov
- Department of Neurology, University Multiprofile Hospital for Active Treatment in Neurology and Psychiatry Sv. Naum, 1113 Sofia, Bulgaria; (D.B.); (E.Z.); (N.K.); (I.M.)
| | - Stefka G. Taneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev, 1113 Sofia, Bulgaria; (S.T.); (S.K.); (A.D.); (A.L.)
- Correspondence:
| |
Collapse
|
16
|
Lv S, Zhou X, Li Y, Zhang S, Wang Y, Jia S, Niu X, Wang L, Peng D. The Association Between Plasma α-Synuclein (α-syn) Protein, Urinary Alzheimer-Associated Neuronal Thread Protein (AD7c-NTP), and Apolipoprotein Epsilon 4 (ApoE ε4) Alleles and Cognitive Decline in 60 Patients with Alzheimer's Disease Compared with 28 Age-Matched Normal Individuals. Med Sci Monit 2021; 27:e932998. [PMID: 34312362 PMCID: PMC8325392 DOI: 10.12659/msm.932998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background Accumulating evidence has shown that α-synuclein (α-syn) pathology is involved in the pathophysiology of Alzheimer’s disease (AD). This study aimed to investigate the association between the levels of plasma α-syn protein, urinary Alzheimer-associated neuronal thread protein (AD7c-NTP), apolipoprotein epsilon 4 (ApoE ɛ4) alleles and cognitive decline in 60 AD patients compared with 28 age-matched normal controls (NCs) at a single center. Material/Methods All participants underwent α-syn, apolipoprotein E (ApoE), AD7c-NTP, cholesterol (CHO), high-density lipoprotein (HDL), low-density lipoprotein (LDL) and triglycerides (TGs) analyses, neuropsychological scale assessments and neuroimaging analysis. Moreover, urine and peripheral blood samples were collected from all participants. The levels of plasma α-syn and AD7c-NTP were assayed using an enzyme-linked immunosorbent assay (ELISA) kit. Other test results were obtained from China-Japan Friendship Hospital. Results We found that plasma α-syn levels were significantly different between AD patients and NCs (p=0.045). α-Syn levels were also associated with AD7c-NTP (r=0.231, p=0.03) but not ApoE ɛ4 (Z=−0.147, p=0.883) levels. Neither α-syn [CHO (p=0.432), HDL (p=0.484), LDL (p=0.733) or TGs (p=0.253)] nor AD7c-NTP [CHO (p=0.867), HDL (p=0.13), LDL (p=0.57) or TGs (p=0.678)] had a relationship with lipids. Conclusions This study showed that the levels of plasma α-syn protein and urinary AD7c-NTP were significantly increased in AD patients compared with NCs, but not with ApoE alleles or serum lipid levels.
Collapse
Affiliation(s)
- Shuang Lv
- Department of Neurology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China (mainland).,Department of Neurology, China-Japan Friendship Hospital, Beijing, China (mainland)
| | - Xiao Zhou
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China (mainland).,Department of Neurology, Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (mainland)
| | - Yiming Li
- Department of Cardiovascular, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China (mainland)
| | - Shujuan Zhang
- Department of Neurology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China (mainland).,Department of Neurology, China-Japan Friendship Hospital, Beijing, China (mainland)
| | - Yu Wang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China (mainland)
| | - Shuhong Jia
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China (mainland)
| | - Xiaoqian Niu
- Department of Neurology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China (mainland).,Department of Neurology, China-Japan Friendship Hospital, Beijing, China (mainland)
| | - Lei Wang
- Department of Neurology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China (mainland).,Department of Neurology, China-Japan Friendship Hospital, Beijing, China (mainland)
| | - Dantao Peng
- Department of Neurology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China (mainland).,Department of Neurology, China-Japan Friendship Hospital, Beijing, China (mainland).,Department of Neurology, Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (mainland)
| |
Collapse
|
17
|
Daniele S, Baldacci F, Piccarducci R, Palermo G, Giampietri L, Manca ML, Pietrobono D, Frosini D, Nicoletti V, Tognoni G, Giorgi FS, Lo Gerfo A, Petrozzi L, Cavallini C, Franzoni F, Ceravolo R, Siciliano G, Trincavelli ML, Martini C, Bonuccelli U. α-Synuclein Heteromers in Red Blood Cells of Alzheimer's Disease and Lewy Body Dementia Patients. J Alzheimers Dis 2021; 80:885-893. [PMID: 33579836 DOI: 10.3233/jad-201038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Red blood cells (RBCs) contain the majority of α-synuclein (α-syn) in blood, representing an interesting model for studying the peripheral pathological alterations proved in neurodegeneration. OBJECTIVE The current study aimed to investigate the diagnostic value of total α-syn, amyloid-β (Aβ1-42), tau, and their heteroaggregates in RBCs of Lewy body dementia (LBD) and Alzheimer's disease (AD) patients compared to healthy controls (HC). METHODS By the use of enzyme-linked immunosorbent assays, RBCs concentrations of total α-syn, Aβ1-42, tau, and their heteroaggregates (α-syn/Aβ1-42 and α-syn/tau) were measured in 27 individuals with LBD (Parkinson's disease dementia, n = 17; dementia with Lewy bodies, n = 10), 51 individuals with AD (AD dementia, n = 37; prodromal AD, n = 14), and HC (n = 60). RESULTS The total α-syn and tau concentrations as well as α-syn/tau heterodimers were significantly lower in the LBD group and the AD group compared with HC, whereas α-syn/Aβ1-42 concentrations were significantly lower in the AD dementia group only. RBC α-syn/tau heterodimers had a higher diagnostic accuracy for differentiating patients with LBD versus HC (AUROC = 0.80). CONCLUSION RBC α-syn heteromers may be useful for differentiating between neurodegenerative dementias (LBD and AD) and HC. In particular, RBC α-syn/tau heterodimers have demonstrated good diagnostic accuracy for differentiating LBD from HC. However, they are not consistently different between LBD and AD. Our findings also suggest that α-syn, Aβ1-42, and tau interact in vivo to promote the aggregation and accumulation of each other.
Collapse
Affiliation(s)
| | - Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Giovanni Palermo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Linda Giampietri
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Maria Laura Manca
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Department of Mathematics, University of Pisa, Pisa, Italy
| | | | - Daniela Frosini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Valentina Nicoletti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gloria Tognoni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Filippo Sean Giorgi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Annalisa Lo Gerfo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lucia Petrozzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Ferdinando Franzoni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | | | - Ubaldo Bonuccelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
18
|
Moin ASM, Al-Qaissi A, Sathyapalan T, Atkin SL, Butler AE. Hypoglycaemia in type 2 diabetes exacerbates amyloid-related proteins associated with dementia. Diabetes Obes Metab 2021; 23:338-349. [PMID: 33026133 DOI: 10.1111/dom.14220] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/17/2020] [Accepted: 10/04/2020] [Indexed: 12/12/2022]
Abstract
AIMS Hypoglycaemia in diabetes (T2D) may increase the risk of Alzheimer's disease (AD). We hypothesized that hypoglycaemia-induced amyloid-related protein changes would be exacerbated in T2D. MATERIALS AND METHODS A prospective, parallel study in T2D (n = 23) and controls (n = 23). Subjects underwent insulin-induced hypoglycaemia with blood sampling at baseline, hypoglycaemia and post-hypoglycaemia; proteomic analysis of amyloid-related proteins was undertaken. RESULTS At baseline, amyloid-precursor protein (APP) (P < .01) was elevated and alpha-synuclein (SNCA) (P < .01) reduced in T2D. At hypoglycaemia, amyloid P-component (P < .01) was elevated and SNCA (P < .05) reduced in T2D; APP (P < .01) and noggin (P < .05) were elevated and SNCA (P < .01) reduced in controls. In the post-hypoglycaemia follow-up period, APP and microtubule-associated protein tau normalized in controls but showed a below-baseline decrease in T2D; noggin normalized in both; SNCA normalized in T2D, with a below-baseline decrease in controls. CONCLUSION The AD-associated protein pattern found in T2D, with basal elevated APP and reduced SNCA, was exaggerated by hypoglycaemia with increased APP and decreased SNCA. Additional AD-associated protein levels that changed in response to hypoglycaemia, particularly in T2D, included amyloid P-component, microtubule-associated protein tau, apolipoproteins A1 and E3, pappalysin and noggin. These results are in accordance with the reported detrimental effects of hypoglycaemia.
Collapse
Affiliation(s)
- Abu Saleh Md Moin
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Ahmed Al-Qaissi
- Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull, UK
- Leeds Medical School, Leeds, UK
| | | | | | - Alexandra E Butler
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| |
Collapse
|
19
|
Ben Khedher MR, Haddad M, Laurin D, Ramassamy C. Apolipoprotein E4-driven effects on inflammatory and neurotrophic factors in peripheral extracellular vesicles from cognitively impaired, no dementia participants who converted to Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12124. [PMID: 33537405 PMCID: PMC7842191 DOI: 10.1002/trc2.12124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 01/08/2023]
Abstract
INTRODUCTION In brain, extracellular vesicles (EVs) play an essential role in the neuron-glia interface and ensure the crosstalk between the brain and the periphery. Some studies now link the pathway dysfunction of the EVs to apolipoprotein E gene variant (APOE ε4) and the risk of progression to Alzheimer's disease (AD). To better understand the role of APOE ε4 in pre-clinical AD, we have determined levels of pathogenic, neurotrophic and inflammatory proteins in peripheral EVs (pEVs) and in plasma from cognitively impaired, no dementia (CIND) participants stratified upon the absence (APOE ε4-) or the presence (APOE ε4+ ) of the ε4 allele of APOE. METHODS Levels of 15 neurodegenerative, neurotrophic and neuroinflammatory proteins were quantified in pEVs and compared to their plasma levels from cognitively normal and CIND participants. RESULTS Levels of neurotrophic and inflammatory markers were reduced in pEVs from APOE ε4+. The pentraxin-2/α-synuclein ratio measured in pEVs was able to predict AD 5 years before the onset among APOE ε4+-CIND individuals. DISCUSSION Our findings suggest an alteration of the endosomal pathway in APOE ε4+ and that pEVs pentraxin-2/α-synuclein ratio could serve as a useful early biomarker for AD susceptibility.
Collapse
Affiliation(s)
- Mohamed Raâfet Ben Khedher
- INRS‐Centre Armand‐Frappier Santé‐BiotechnologieLavalQuebecCanada
- Institute of Nutrition and Functional FoodsQuébecQuebecCanada
| | - Mohamed Haddad
- INRS‐Centre Armand‐Frappier Santé‐BiotechnologieLavalQuebecCanada
- Institute of Nutrition and Functional FoodsQuébecQuebecCanada
| | - Danielle Laurin
- Institute of Nutrition and Functional FoodsQuébecQuebecCanada
- Centre d'excellence sur le vieillissement de Québec, CHU de Québec‐Université Laval Research CentreVITAM‐Centre de recherche en santé durableQuébecQuebecCanada
- Faculty of pharmacyLaval UniversityQuébecQuebecCanada
| | - Charles Ramassamy
- INRS‐Centre Armand‐Frappier Santé‐BiotechnologieLavalQuebecCanada
- Institute of Nutrition and Functional FoodsQuébecQuebecCanada
| |
Collapse
|
20
|
Manzine PR, Vatanabe IP, Peron R, Grigoli MM, Pedroso RV, Nascimento CMC, Cominetti MR. Blood-based Biomarkers of Alzheimer's Disease: The Long and Winding Road. Curr Pharm Des 2020; 26:1300-1315. [PMID: 31942855 DOI: 10.2174/1381612826666200114105515] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Blood-based biomarkers can be very useful in formulating new diagnostic and treatment proposals in the field of dementia, especially in Alzheimer's disease (AD). However, due to the influence of several factors on the reproducibility and reliability of these markers, their clinical use is still very uncertain. Thus, up-to-date knowledge about the main blood biomarkers that are currently being studied is extremely important in order to discover clinically useful and applicable tools, which could also be used as novel pharmacological strategies for the AD treatment. METHODS A narrative review was performed based on the current candidates of blood-based biomarkers for AD to show the main results from different studies, focusing on their clinical applicability and association with AD pathogenesis. OBJECTIVE The aim of this paper was to carry out a literature review on the major blood-based biomarkers for AD, connecting them with the pathophysiology of the disease. RESULTS Recent advances in the search of blood-based AD biomarkers were summarized in this review. The biomarkers were classified according to the topics related to the main hallmarks of the disease such as inflammation, amyloid, and tau deposition, synaptic degeneration and oxidative stress. Moreover, molecules involved in the regulation of proteins related to these hallmarks were described, such as non-coding RNAs, neurotrophins, growth factors and metabolites. Cells or cellular components with the potential to be considered as blood-based AD biomarkers were described in a separate topic. CONCLUSION A series of limitations undermine new discoveries on blood-based AD biomarkers. The lack of reproducibility of findings due to the small size and heterogeneity of the study population, different analytical methods and other assay conditions make longitudinal studies necessary in this field to validate these structures, especially when considering a clinical evaluation that includes a broad panel of these potential and promising blood-based biomarkers.
Collapse
Affiliation(s)
- Patricia R Manzine
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| | - Izabela P Vatanabe
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| | - Rafaela Peron
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| | - Marina M Grigoli
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| | - Renata V Pedroso
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| | - Carla M C Nascimento
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| | - Marcia R Cominetti
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| |
Collapse
|
21
|
Fluid Candidate Biomarkers for Alzheimer's Disease: A Precision Medicine Approach. J Pers Med 2020; 10:jpm10040221. [PMID: 33187336 PMCID: PMC7712586 DOI: 10.3390/jpm10040221] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
A plethora of dynamic pathophysiological mechanisms underpins highly heterogeneous phenotypes in the field of dementia, particularly in Alzheimer's disease (AD). In such a faceted scenario, a biomarker-guided approach, through the implementation of specific fluid biomarkers individually reflecting distinct molecular pathways in the brain, may help establish a proper clinical diagnosis, even in its preclinical stages. Recently, ultrasensitive assays may detect different neurodegenerative mechanisms in blood earlier. ß-amyloid (Aß) peptides, phosphorylated-tau (p-tau), and neurofilament light chain (NFL) measured in blood are gaining momentum as candidate biomarkers for AD. P-tau is currently the more convincing plasma biomarker for the diagnostic workup of AD. The clinical role of plasma Aβ peptides should be better elucidated with further studies that also compare the accuracy of the different ultrasensitive techniques. Blood NFL is promising as a proxy of neurodegeneration process tout court. Protein misfolding amplification assays can accurately detect α-synuclein in cerebrospinal fluid (CSF), thus representing advancement in the pathologic stratification of AD. In CSF, neurogranin and YKL-40 are further candidate biomarkers tracking synaptic disruption and neuroinflammation, which are additional key pathophysiological pathways related to AD genesis. Advanced statistical analysis using clinical scores and biomarker data to bring together individuals with AD from large heterogeneous cohorts into consistent clusters may promote the discovery of pathophysiological causes and detection of tailored treatments.
Collapse
|
22
|
Mazzucchi S, Palermo G, Campese N, Galgani A, Della Vecchia A, Vergallo A, Siciliano G, Ceravolo R, Hampel H, Baldacci F. The role of synaptic biomarkers in the spectrum of neurodegenerative diseases. Expert Rev Proteomics 2020; 17:543-559. [PMID: 33028119 DOI: 10.1080/14789450.2020.1831388] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The quest for reliable fluid biomarkers tracking synaptic disruption is supported by the evidence of a tight association between synaptic density and cognitive performance in neurodegenerative diseases (NDD), especially Alzheimer's disease (AD). AREAS COVERED Neurogranin (Ng) is a post-synaptic protein largely expressed in neurons involved in the memory networks. Currently, Ng measured in CSF is the most promising synaptic biomarker. Several studies show Ng elevated in AD dementia with a hippocampal phenotype as well as in MCI individuals who progress to AD. Ng concentrations are also increased in Creutzfeldt Jacob Disease where widespread and massive synaptic disintegration takes place. Ng does not discriminate Parkinson's disease from atypical parkinsonisms, nor is it altered in Huntington disease. CSF synaptosomal-associated protein 25 (SNAP-25) and synaptotagmin-1 (SYT-1) are emerging candidates. EXPERT OPINION CSF Ng revealed a role as a diagnostic and prognostic biomarker in NDD. Ng increase seems to be very specific for typical AD phenotype, probably for a prevalent hippocampal involvement. Synaptic biomarkers may serve different context-of-use in AD and other NDD including prognosis, diagnosis, and tracking synaptic damage - a critical pathophysiological mechanism in NDD - thus representing reliable tools for a precision medicine-oriented approach to NDD.
Collapse
Affiliation(s)
- Sonia Mazzucchi
- Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | - Giovanni Palermo
- Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | - Nicole Campese
- Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | - Alessandro Galgani
- Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | | | - Andrea Vergallo
- Sorbonne University, GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de L'hôpital , Paris, France.,Brain & Spine Institute (ICM), INSERM U1127 , Paris, France.,Department of Neurology, Institute of Memory and Alzheimer's Disease (IM2A), Pitié-Salpêtrière Hospital, AP-HP , Paris, France
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | - Harald Hampel
- Sorbonne University, GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de L'hôpital , Paris, France
| | - Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy.,Sorbonne University, GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de L'hôpital , Paris, France
| |
Collapse
|
23
|
Yang W, Li X, Li X, Yu S. Hemoglobin-α-synuclein complex exhibited age-dependent alterations in the human striatum and peripheral RBCs. Neurosci Lett 2020; 736:135274. [DOI: 10.1016/j.neulet.2020.135274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 10/23/2022]
|
24
|
Camporesi E, Nilsson J, Brinkmalm A, Becker B, Ashton NJ, Blennow K, Zetterberg H. Fluid Biomarkers for Synaptic Dysfunction and Loss. Biomark Insights 2020; 15:1177271920950319. [PMID: 32913390 PMCID: PMC7444114 DOI: 10.1177/1177271920950319] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
Synapses are the site for brain communication where information is transmitted between neurons and stored for memory formation. Synaptic degeneration is a global and early pathogenic event in neurodegenerative disorders with reduced levels of pre- and postsynaptic proteins being recognized as a core feature of Alzheimer's disease (AD) pathophysiology. Together with AD, other neurodegenerative and neurodevelopmental disorders show altered synaptic homeostasis as an important pathogenic event, and due to that, they are commonly referred to as synaptopathies. The exact mechanisms of synapse dysfunction in the different diseases are not well understood and their study would help understanding the pathogenic role of synaptic degeneration, as well as differences and commonalities among them and highlight candidate synaptic biomarkers for specific disorders. The assessment of synaptic proteins in cerebrospinal fluid (CSF), which can reflect synaptic dysfunction in patients with cognitive disorders, is a keen area of interest. Substantial research efforts are now directed toward the investigation of CSF synaptic pathology to improve the diagnosis of neurodegenerative disorders at an early stage as well as to monitor clinical progression. In this review, we will first summarize the pathological events that lead to synapse loss and then discuss the available data on established (eg, neurogranin, SNAP-25, synaptotagmin-1, GAP-43, and α-syn) and emerging (eg, synaptic vesicle glycoprotein 2A and neuronal pentraxins) CSF biomarkers for synapse dysfunction, while highlighting possible utilities, disease specificity, and technical challenges for their detection.
Collapse
Affiliation(s)
- Elena Camporesi
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johanna Nilsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ann Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bruno Becker
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- King’s College London, Institute of Psychiatry, Psychology & Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
- Wallenberg Centre for Molecular and Translational Medicine, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| |
Collapse
|
25
|
Future avenues for Alzheimer's disease detection and therapy: liquid biopsy, intracellular signaling modulation, systems pharmacology drug discovery. Neuropharmacology 2020; 185:108081. [PMID: 32407924 DOI: 10.1016/j.neuropharm.2020.108081] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/01/2020] [Accepted: 03/30/2020] [Indexed: 12/20/2022]
Abstract
When Alzheimer's disease (AD) disease-modifying therapies will be available, global healthcare systems will be challenged by a large-scale demand for clinical and biological screening. Validation and qualification of globally accessible, minimally-invasive, and time-, cost-saving blood-based biomarkers need to be advanced. Novel pathophysiological mechanisms (and related candidate biomarkers) - including neuroinflammation pathways (TREM2 and YKL-40), axonal degeneration (neurofilament light chain protein), synaptic dysfunction (neurogranin, synaptotagmin, α-synuclein, and SNAP-25) - may be integrated into an expanding pathophysiological and biomarker matrix and, ultimately, integrated into a comprehensive blood-based liquid biopsy, aligned with the evolving ATN + classification system and the precision medicine paradigm. Liquid biopsy-based diagnostic and therapeutic algorithms are increasingly employed in Oncology disease-modifying therapies and medical practice, showing an enormous potential for AD and other brain diseases as well. For AD and other neurodegenerative diseases, newly identified aberrant molecular pathways have been identified as suitable therapeutic targets and are currently investigated by academia/industry-led R&D programs, including the nerve-growth factor pathway in basal forebrain cholinergic neurons, the sigma1 receptor, and the GTPases of the Rho family. Evidence for a clinical long-term effect on cognitive function and brain health span of cholinergic compounds, drug candidates for repositioning programs, and non-pharmacological multidomain interventions (nutrition, cognitive training, and physical activity) is developing as well. Ultimately, novel pharmacological paradigms, such as quantitative systems pharmacology-based integrative/explorative approaches, are gaining momentum to optimize drug discovery and accomplish effective pathway-based strategies for precision medicine. This article is part of the special issue on 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
|
26
|
Piccarducci R, Daniele S, Fusi J, Chico L, Baldacci F, Siciliano G, Bonuccelli U, Franzoni F, Martini C. Impact of ApoE Polymorphism and Physical Activity on Plasma Antioxidant Capability and Erythrocyte Membranes. Antioxidants (Basel) 2019; 8:E538. [PMID: 31717561 PMCID: PMC6912376 DOI: 10.3390/antiox8110538] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023] Open
Abstract
The allele epsilon 4 (ε4) of apolipoprotein E (ApoE) is the strongest genetic risk factor for Alzheimer's disease (AD). ApoE protein plays a pivotal role in the synthesis and metabolism of amyloid beta (Aβ), the major component of the extracellular plaques that constitute AD pathological hallmarks. Regular exercise is an important preventive/therapeutic tool in aging and AD. Nevertheless, the impact of physical exercise on the well-being of erythrocytes, a good model of oxidative stress and neurodegenerative processes, remains to be investigated, particularly depending on ApoE polymorphism. Herein, we evaluate the oxidative status, Aβ levels, and the membrane's composition of erythrocytes in a cohort of human subjects. In our hands, the plasma antioxidant capability (AOC), erythrocytes membrane fluidity, and the amount of phosphatidylcholine (PC) were demonstrated to be significantly decreased in the ApoE ε4 genotype and non-active subjects. In contrast, erythrocyte Aβ content and lipid peroxidation increased in ε4 carriers. Regular physical exercise was associated with an increased plasma AOC and membrane fluidity, as well as to a reduced amount of erythrocytes Aβ. Altogether, these data highlight the influence of the ApoE genotype on erythrocytes' well-being and confirm the positive impact of regular physical exercise.
Collapse
Affiliation(s)
- Rebecca Piccarducci
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (R.P.); (S.D.)
| | - Simona Daniele
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (R.P.); (S.D.)
| | - Jonathan Fusi
- Department of Clinical and Experimental Medicine, University of Pisa, 56100 Pisa, Italy; (J.F.); (L.C.); (F.B.); (G.S.); (U.B.)
| | - Lucia Chico
- Department of Clinical and Experimental Medicine, University of Pisa, 56100 Pisa, Italy; (J.F.); (L.C.); (F.B.); (G.S.); (U.B.)
| | - Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa, 56100 Pisa, Italy; (J.F.); (L.C.); (F.B.); (G.S.); (U.B.)
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, 56100 Pisa, Italy; (J.F.); (L.C.); (F.B.); (G.S.); (U.B.)
| | - Ubaldo Bonuccelli
- Department of Clinical and Experimental Medicine, University of Pisa, 56100 Pisa, Italy; (J.F.); (L.C.); (F.B.); (G.S.); (U.B.)
| | - Ferdinando Franzoni
- Department of Clinical and Experimental Medicine, University of Pisa, 56100 Pisa, Italy; (J.F.); (L.C.); (F.B.); (G.S.); (U.B.)
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (R.P.); (S.D.)
| |
Collapse
|
27
|
Baldacci F, Lista S, Vergallo A, Palermo G, Giorgi FS, Hampel H. A frontline defense against neurodegenerative diseases:the development of early disease detection methods. Expert Rev Mol Diagn 2019; 19:559-563. [DOI: 10.1080/14737159.2019.1627202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
- Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, Paris, France
- Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Paris, France
| | - Simone Lista
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
- Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, Paris, France
- Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Paris, France
| | - Andrea Vergallo
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
- Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, Paris, France
- Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Paris, France
| | - Giovanni Palermo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Filippo Sean Giorgi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Harald Hampel
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| |
Collapse
|
28
|
High Levels of β-Amyloid, Tau, and Phospho-Tau in Red Blood Cells as Biomarkers of Neuropathology in Senescence-Accelerated Mouse. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5030475. [PMID: 31281579 PMCID: PMC6590616 DOI: 10.1155/2019/5030475] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/25/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
Alzheimer's Disease (AD) is the most common Neurodegenerative Disease (ND), primarily characterised by neuroinflammation, neuronal plaques of β-amyloid (Aβ), and neurofibrillary tangles of hyperphosphorylated tau. α-Synuclein (α-syn) and its heteroaggregates with Aβ and tau have been recently included among the neuropathological elements of NDs. These pathological traits are not restricted to the brain, but they reach peripheral fluids as well. In this sense, Red Blood Cells (RBCs) are emerging as a good model to investigate the biochemical alterations of aging and NDs. Herein, the levels of homo- and heteroaggregates of ND-related proteins were analysed at different stages of disease progression. In particular, a validated animal model of AD, the SAMP8 (Senescence-Accelerated Mouse-Prone) and its control strain SAMR1 (Senescence-Accelerated Mouse-Resistant) were used in parallel experiments. The levels of the aforementioned proteins and of the inflammatory marker interleukin-1β (IL-1β) were examined in both brain and RBCs of SAMP8 and SAMR1 at 6 and 8 months. Brain Aβ, tau, and phospho-tau (p-tau) were higher in SAMP8 mice than in control mice and increased with AD progression. Similar accumulation kinetics were found in RBCs, even if slower. By contrast, α-syn and its heterocomplexes (α-syn-Aβ and α-syn-tau) displayed different accumulation kinetics between brain tissue and RBCs. Both brain and peripheral IL-1β levels were higher in SAMP8 mice, but increased sooner in RBCs, suggesting that inflammation might initiate at a peripheral level before affecting the brain. In conclusion, these results confirm RBCs as a valuable model for monitoring neurodegeneration, suggesting peripheral Aβ, tau, and p-tau as potential early biomarkers of AD.
Collapse
|