1
|
Gupta V, Ben-Mahmoud A, Idris AB, Hottenga JJ, Habbab W, Alsayegh A, Kim HG, AL-Mamari W, Stanton LW. Genetic Variant Analyses Identify Novel Candidate Autism Risk Genes from a Highly Consanguineous Cohort of 104 Families from Oman. Int J Mol Sci 2024; 25:13700. [PMID: 39769462 PMCID: PMC11679916 DOI: 10.3390/ijms252413700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Deficits in social communication, restricted interests, and repetitive behaviours are hallmarks of autism spectrum disorder (ASD). Despite high genetic heritability, the majority of clinically diagnosed ASD cases have unknown genetic origins. We performed genome sequencing on mothers, fathers, and affected individuals from 104 families with ASD in Oman, a Middle Eastern country underrepresented in international genetic studies. This approach identified 48 novel candidate genes significantly associated with ASD in Oman. In particular, 35 of these genes have been previously implicated in neurodevelopmental disorders (NDDs) in other populations, underscoring the conserved genetic basis of ASD across ethnicities. Genetic variants within these candidate genes that would impact the encoded protein included 1 insertion, 4 frameshift, 6 splicing, 12 nonsense, and 67 missense changes. Notably, 61% of the SNVs were homozygous, suggesting a prominent recessive genetic architecture for ASD in this unique population. The scarcity of genetic studies on ASD in the Arabian Peninsula has impeded the understanding of the unique genetic landscape of ASD in this region. These findings help bridge this knowledge gap and provide valuable insights into the complex genetic basis of ASD in Oman.
Collapse
Affiliation(s)
- Vijay Gupta
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 5825, Qatar; (V.G.); (A.B.-M.); (J.-J.H.); (W.H.); (H.-G.K.)
| | - Afif Ben-Mahmoud
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 5825, Qatar; (V.G.); (A.B.-M.); (J.-J.H.); (W.H.); (H.-G.K.)
| | - Ahmed B. Idris
- Developmental Paediatric Unit, Sultan Qaboos University Hospital, Sultan Qaboos University, Muscat 123, Oman;
| | - Jouke-Jan Hottenga
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 5825, Qatar; (V.G.); (A.B.-M.); (J.-J.H.); (W.H.); (H.-G.K.)
- Department of Biological Psychology, Vrije Universiteit Amsterdam, 1081 BT Amsterdam, The Netherlands
| | - Wesal Habbab
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 5825, Qatar; (V.G.); (A.B.-M.); (J.-J.H.); (W.H.); (H.-G.K.)
| | - Abeer Alsayegh
- Genomics Department, Sultan Qaboos Comprehensive Cancer Care and Research Center, University Medical City, Muscat 123, Oman;
| | - Hyung-Goo Kim
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 5825, Qatar; (V.G.); (A.B.-M.); (J.-J.H.); (W.H.); (H.-G.K.)
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Watfa AL-Mamari
- Developmental Paediatric Unit, Sultan Qaboos University Hospital, Sultan Qaboos University, Muscat 123, Oman;
| | - Lawrence W. Stanton
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 5825, Qatar; (V.G.); (A.B.-M.); (J.-J.H.); (W.H.); (H.-G.K.)
- College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 5825, Qatar
| |
Collapse
|
2
|
Cuinat S, Quélin C, Effray C, Dubourg C, Le Bouar G, Cabaret-Dufour AS, Loget P, Proisy M, Sauvestre F, Sarreau M, Martin-Berenguer S, Beneteau C, Naudion S, Michaud V, Arveiler B, Trimouille A, Macé P, Sigaudy S, Glazunova O, Torrents J, Raymond L, Saint-Frison MH, Attié-Bitach T, Lefebvre M, Capri Y, Bourgon N, Thauvin-Robinet C, Tran Mau-Them F, Bruel AL, Vitobello A, Denommé-Pichon AS, Faivre L, Brehin AC, Goldenberg A, Patrier-Sallebert S, Perani A, Dauriat B, Bourthoumieu S, Yardin C, Marquet V, Barnique M, Fiorenza-Gasq M, Marey I, Tournadre D, Doumit R, Nugues F, Barakat TS, Bustos F, Jaillard S, Launay E, Pasquier L, Odent S. Extending the clinical spectrum of X-linked Tonne-Kalscheuer syndrome (TOKAS): new insights from the fetal perspective. J Med Genet 2024; 61:824-832. [PMID: 38849204 PMCID: PMC11420740 DOI: 10.1136/jmg-2024-109854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/19/2024] [Indexed: 06/09/2024]
Abstract
INTRODUCTION Tonne-Kalscheuer syndrome (TOKAS) is a recessive X-linked multiple congenital anomaly disorder caused by RLIM variations. Of the 41 patients reported, only 7 antenatal cases were described. METHOD After the antenatal diagnosis of TOKAS by exome analysis in a family followed for over 35 years because of multiple congenital anomalies in five male fetuses, a call for collaboration was made, resulting in a cohort of 11 previously unpublished cases. RESULTS We present a TOKAS antenatal cohort, describing 11 new cases in 6 French families. We report a high frequency of diaphragmatic hernia (9 of 11), differences in sex development (10 of 11) and various visceral malformations. We report some recurrent dysmorphic features, but also pontocerebellar hypoplasia, pre-auricular skin tags and olfactory bulb abnormalities previously unreported in the literature. Although no clear genotype-phenotype correlation has yet emerged, we show that a recurrent p.(Arg611Cys) variant accounts for 66% of fetal TOKAS cases. We also report two new likely pathogenic variants in RLIM, outside of the two previously known mutational hotspots. CONCLUSION Overall, we present the first fetal cohort of TOKAS, describe the clinical features that made it a recognisable syndrome at fetopathological examination, and extend the phenotypical spectrum and the known genotype of this rare disorder.
Collapse
Affiliation(s)
- Silvestre Cuinat
- Service de Génétique Clinique, CRMR anomalies du développement CLAD-Ouest, CHU Rennes, Rennes, France
| | - Chloé Quélin
- Service de Génétique Clinique, CRMR anomalies du développement CLAD-Ouest, CHU Rennes, Rennes, France
- Service d'Anatomie et Cytologie Pathologiques, Hôpital Pontchaillou, CHU Rennes, Rennes, France
| | - Claire Effray
- Service de Génétique Clinique, CRMR anomalies du développement CLAD-Ouest, CHU Rennes, Rennes, France
| | - Christèle Dubourg
- Laboratoire de Génétique Moléculaire, Hôpital Pontchaillou, CHU Rennes, Rennes, France
- CNRS, INSERM UMR 6290, ERL U1305, F-35000, Université de Rennes, IGDR, Rennes, France
| | - Gwenaelle Le Bouar
- Unité de Médecine fœtale, Service de Gynécologie-Obstétrique, CHU Rennes, Rennes, France
| | | | - Philippe Loget
- Service d'Anatomie et Cytologie Pathologiques, Hôpital Pontchaillou, CHU Rennes, Rennes, France
| | - Maia Proisy
- Radiology Department, CHU de Brest, Brest, France
| | - Fanny Sauvestre
- Unité de Pathologie Fœto-placentaire, Service de Pathologie, CHU de Bordeaux, Bordeaux, France
| | - Mélie Sarreau
- Unité de Pathologie Fœto-placentaire, Service de Pathologie, CHU de Bordeaux, Bordeaux, France
| | - Sophie Martin-Berenguer
- Unité de Pathologie Fœto-placentaire, Service de Pathologie, CHU de Bordeaux, Bordeaux, France
- Department of Gynaecology and Obstetrics, Mother and Children's Hospital, CHU Limoges, Limoges, France
| | - Claire Beneteau
- Service de Génétique Médicale, CHU de Bordeaux, Bordeaux, France
| | - Sophie Naudion
- Service de Génétique Médicale, CHU de Bordeaux, Bordeaux, France
| | - Vincent Michaud
- Service de Génétique Médicale, CHU de Bordeaux, Bordeaux, France
- INSERM U1211, Maladies Rares, Génétique et Métabolisme, Université de Bordeaux, Bordeaux, France
| | - Benoit Arveiler
- Service de Génétique Médicale, CHU de Bordeaux, Bordeaux, France
- INSERM U1211, Maladies Rares, Génétique et Métabolisme, Université de Bordeaux, Bordeaux, France
| | - Aurélien Trimouille
- Service de Génétique Médicale, CHU de Bordeaux, Bordeaux, France
- INSERM U1211, Maladies Rares, Génétique et Métabolisme, Université de Bordeaux, Bordeaux, France
| | - Pierre Macé
- Institut méditerranéen d'imagerie médicale appliquée à la gynécologie, la grossesse et l'enfance IMAGE2, Marseille, France
| | - Sabine Sigaudy
- Département de Génétique Médicale, Hôpital Timone Enfant, AP-HM, Marseille, France
| | - Olga Glazunova
- Département de Génétique Médicale, Hôpital Timone Enfant, AP-HM, Marseille, France
| | - Julia Torrents
- Department of Pathology and Neuropathology, La Timone Hospital, Aix Marseille University, AP-HM, Marseille, France
| | - Laure Raymond
- Genetics Department, Laboratoire Eurofins Biomnis, Lyon, France
| | | | - Tania Attié-Bitach
- Service de Médecine Génomique des Maladies Rares, Hopital Universitaire Necker-Enfants Malades, AP-HP, Paris, France
- INSERM UMR 1163, Imagine Institute, Université Paris Cité, Paris, France
| | - Mathilde Lefebvre
- Service de Pathologie fœtale, Hôpital Universitaire Armand Trousseau, AP-HP, Paris, France
| | - Yline Capri
- Département de Génétique, Hôpital Robert Debré, AP-HP, Paris, France
| | - Nicolas Bourgon
- Service d'Obstétrique-Maternité Chirurgie, Médecine et Imagerie foetales, AP-HP, Hopital Universitaire Necker-Enfants Malades, Paris, France
- UMR1231 GAD, INSERM, Université Bourgogne Franche-Comté, Dijon, France
| | - Christel Thauvin-Robinet
- UMR1231 GAD, INSERM, Université Bourgogne Franche-Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon, Dijon, France
- Centre de référence Anomalies du Développement et Syndromes Malformatifs, Fédération Hospitalo-Universitaire TRANSLAD, CHU Dijon, Dijon, France
| | - Frédéric Tran Mau-Them
- UMR1231 GAD, INSERM, Université Bourgogne Franche-Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon, Dijon, France
| | - Ange-Line Bruel
- UMR1231 GAD, INSERM, Université Bourgogne Franche-Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon, Dijon, France
| | - Antonio Vitobello
- UMR1231 GAD, INSERM, Université Bourgogne Franche-Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon, Dijon, France
| | - Anne-Sophie Denommé-Pichon
- UMR1231 GAD, INSERM, Université Bourgogne Franche-Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon, Dijon, France
| | - Laurence Faivre
- UMR1231 GAD, INSERM, Université Bourgogne Franche-Comté, Dijon, France
- Centre de référence Anomalies du Développement et Syndromes Malformatifs, Fédération Hospitalo-Universitaire TRANSLAD, CHU Dijon, Dijon, France
| | - Anne-Claire Brehin
- Department of Pathology, Department of Genetics and Reference Center for Developmental Abnormalities, F-76000, CHU de Rouen, Rouen, France
- Inserm U1245, Université de Rouen Normandie, Rouen, France
| | - Alice Goldenberg
- Inserm U1245, Université de Rouen Normandie, Rouen, France
- Department of Genetics and Reference Center for Developmental Abnormalities, F-76000, CHU de Rouen, Rouen, France
| | | | - Alexandre Perani
- Cytogenetic, Medical Genetic and Reproductive Biology Department, Hôpital de la Mère et de l'Enfant, CHU Dupuytren, CHU Limoges, Limoges, France
| | - Benjamin Dauriat
- Cytogenetic, Medical Genetic and Reproductive Biology Department, Hôpital de la Mère et de l'Enfant, CHU Dupuytren, CHU Limoges, Limoges, France
| | - Sylvie Bourthoumieu
- Cytogenetic, Medical Genetic and Reproductive Biology Department, Hôpital de la Mère et de l'Enfant, CHU Dupuytren, CHU Limoges, Limoges, France
- UMR 7252, CNRS, XLIM, F-87000, Université de Limoges, Limoges, France
| | - Catherine Yardin
- Cytogenetic, Medical Genetic and Reproductive Biology Department, Hôpital de la Mère et de l'Enfant, CHU Dupuytren, CHU Limoges, Limoges, France
- UMR 7252, CNRS, XLIM, F-87000, Université de Limoges, Limoges, France
| | - Valentine Marquet
- Cytogenetic, Medical Genetic and Reproductive Biology Department, Hôpital de la Mère et de l'Enfant, CHU Dupuytren, CHU Limoges, Limoges, France
| | - Marion Barnique
- Cytogenetic, Medical Genetic and Reproductive Biology Department, Hôpital de la Mère et de l'Enfant, CHU Dupuytren, CHU Limoges, Limoges, France
| | - Maryse Fiorenza-Gasq
- Department of Gynaecology and Obstetrics, Mother and Children's Hospital, CHU Limoges, Limoges, France
| | - Isabelle Marey
- INSERM U1209, Institute for Advanced Bioscience, Université Grenoble Alpes, Grenoble, France
| | - Danielle Tournadre
- CPDPN de Grenoble, Echographie obstétricale dépistage et diagnostic, CHU Grenoble Alpes, Grenoble, France
| | - Raïa Doumit
- Service d'Imagerie Pédiatrique, CHU Grenoble Alpes, Grenoble, France
| | - Frédérique Nugues
- Service d'Imagerie Pédiatrique, CHU Grenoble Alpes, Grenoble, France
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Discovery Unit, Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Francisco Bustos
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, USA
| | - Sylvie Jaillard
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
- EHESP, INSERM U1085 IRSET, Université de Rennes 1, Rennes, France
| | - Erika Launay
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
| | - Laurent Pasquier
- Service de Génétique Clinique, CRMR anomalies du développement CLAD-Ouest, CHU Rennes, Rennes, France
- CNRS, INSERM UMR 6290, ERL U1305, F-35000, Université de Rennes, IGDR, Rennes, France
- FHU GenoMeds, ERN ITHACA, CHU Rennes, Rennes, France
| | - Sylvie Odent
- Service de Génétique Clinique, CRMR anomalies du développement CLAD-Ouest, CHU Rennes, Rennes, France
- CNRS, INSERM UMR 6290, ERL U1305, F-35000, Université de Rennes, IGDR, Rennes, France
- FHU GenoMeds, ERN ITHACA, CHU Rennes, Rennes, France
| |
Collapse
|
3
|
Vinci M, Treccarichi S, Galati Rando R, Musumeci A, Todaro V, Federico C, Saccone S, Elia M, Calì F. A de novo ARIH2 gene mutation was detected in a patient with autism spectrum disorders and intellectual disability. Sci Rep 2024; 14:15848. [PMID: 38982159 PMCID: PMC11233510 DOI: 10.1038/s41598-024-66475-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024] Open
Abstract
E3 ubiquitin protein ligase encoded by ARIH2 gene catalyses the ubiquitination of target proteins and plays a crucial role in posttranslational modifications across various cellular processes. As prior documented, mutations in genes involved in the ubiquitination process are often associated with autism spectrum disorder (ASD) and/or intellectual disability (ID). In the current study, a de novo heterozygous mutation was identified in the splicing intronic region adjacent to the last exon of the ARIH2 gene using whole exome sequencing (WES). We hypothesize that this mutation, found in an ASD/ID patient, disrupts the protein Ariadne domain which is involved in the autoinhibition of ARIH2 enzyme. Predictive analyses elucidated the implications of the novel mutation in the splicing process and confirmed its autosomal dominant inheritance model. Nevertheless, we cannot exclude the possibility that other genetic factors, undetectable by WES, such as mutations in non-coding regions and polygenic risk in inter-allelic complementation, may contribute to the patient's phenotype. This work aims to suggest potential relationship between the detected mutation in ARIH2 gene and both ASD and ID, even though functional studies combined with new sequencing approaches will be necessary to validate this hypothesis.
Collapse
Affiliation(s)
| | | | | | | | - Valeria Todaro
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Concetta Federico
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124, Catania, Italy
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124, Catania, Italy.
| | | | | |
Collapse
|
4
|
Kalani L, Kim BH, Vincent JB, Ausió J. MeCP2 ubiquitination and sumoylation, in search of a function†. Hum Mol Genet 2023; 33:1-11. [PMID: 37694858 DOI: 10.1093/hmg/ddad150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023] Open
Abstract
MeCP2 (Methyl CpG binding protein 2) is an intrinsically disordered protein that binds to methylated genome regions. The protein is a critical transcriptional regulator of the brain, and its mutations account for 95% of Rett syndrome (RTT) cases. Early studies of this neurodevelopmental disorder revealed a close connection with dysregulations of the ubiquitin system (UbS), notably as related to UBE3A, a ubiquitin ligase involved in the proteasome-mediated degradation of proteins. MeCP2 undergoes numerous post-translational modifications (PTMs), including ubiquitination and sumoylation, which, in addition to the potential functional outcomes of their monomeric forms in gene regulation and synaptic plasticity, in their polymeric organization, these modifications play a critical role in proteasomal degradation. UbS-mediated proteasomal degradation is crucial in maintaining MeCP2 homeostasis for proper function and is involved in decreasing MeCP2 in some RTT-causing mutations. However, regardless of all these connections to UbS, the molecular details involved in the signaling of MeCP2 for its targeting by the ubiquitin-proteasome system (UPS) and the functional roles of monomeric MeCP2 ubiquitination and sumoylation remain largely unexplored and are the focus of this review.
Collapse
Affiliation(s)
- Ladan Kalani
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8W 2Y2, Canada
| | - Bo-Hyun Kim
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8W 2Y2, Canada
| | - John B Vincent
- Molecular Neuropsychiatry & Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St, Toronto, ON M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, 27 King's College Cir, Toronto, ON M5S 1A8, Canada
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
5
|
Piras IS, Braccagni G, Huentelman MJ, Bortolato M. A preliminary transcriptomic analysis of the orbitofrontal cortex of antisocial individuals. CNS Neurosci Ther 2023; 29:3173-3182. [PMID: 37269073 PMCID: PMC10580340 DOI: 10.1111/cns.14283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/04/2023] Open
Abstract
AIMS Antisocial personality disorder (ASPD) and conduct disorder (CD) are characterized by a persistent pattern of violations of societal norms and others' rights. Ample evidence shows that the pathophysiology of these disorders is contributed by orbitofrontal cortex (OFC) alterations, yet the underlying molecular mechanisms remain elusive. To address this knowledge gap, we performed the first-ever RNA sequencing study of postmortem OFC samples from subjects with a lifetime diagnosis of ASPD and/or CD. METHODS The transcriptomic profiles of OFC samples from subjects with ASPD and/or CD were compared to those of unaffected age-matched controls (n = 9/group). RESULTS The OFC of ASPD/CD-affected subjects displayed significant differences in the expression of 328 genes. Further gene-ontology analyses revealed an extensive downregulation of excitatory neuron transcripts and upregulation of astrocyte transcripts. These alterations were paralleled by significant modifications in synaptic regulation and glutamatergic neurotransmission pathways. CONCLUSION These preliminary findings suggest that ASPD and CD feature a complex array of functional deficits in the pyramidal neurons and astrocytes of the OFC. In turn, these aberrances may contribute to the reduced OFC connectivity observed in antisocial subjects. Future analyses on larger cohorts are needed to validate these results.
Collapse
Affiliation(s)
- Ignazio S. Piras
- Neurogenomics DivisionTranslational Genomics Research Institute (TGen)PhoenixArizonaUSA
| | - Giulia Braccagni
- Department of Pharmacology and ToxicologyCollege of PharmacyUniversity of UtahSalt Lake CityUtahUSA
| | - Matthew J. Huentelman
- Neurogenomics DivisionTranslational Genomics Research Institute (TGen)PhoenixArizonaUSA
| | - Marco Bortolato
- Department of Pharmacology and ToxicologyCollege of PharmacyUniversity of UtahSalt Lake CityUtahUSA
| |
Collapse
|
6
|
Shirokova O, Zaborskaya O, Pchelin P, Kozliaeva E, Pershin V, Mukhina I. Genetic and Epigenetic Sexual Dimorphism of Brain Cells during Aging. Brain Sci 2023; 13:brainsci13020195. [PMID: 36831738 PMCID: PMC9954625 DOI: 10.3390/brainsci13020195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
In recent years, much of the attention paid to theoretical and applied biomedicine, as well as neurobiology, has been drawn to various aspects of sexual dimorphism due to the differences that male and female brain cells demonstrate during aging: (a) a dimorphic pattern of response to therapy for neurodegenerative disorders, (b) different age of onset and different degrees of the prevalence of such disorders, and (c) differences in their symptomatic manifestations in men and women. The purpose of this review is to outline the genetic and epigenetic differences in brain cells during aging in males and females. As a result, we hereby show that the presence of brain aging patterns in males and females is due to a complex of factors associated with the effects of sex chromosomes, which subsequently entails a change in signal cascades in somatic cells.
Collapse
Affiliation(s)
- Olesya Shirokova
- Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603950, Russia
- Correspondence:
| | - Olga Zaborskaya
- Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603950, Russia
| | - Pavel Pchelin
- Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603950, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University, 23 Gagarin Avenue, Nizhny Novgorod 603002, Russia
| | - Elizaveta Kozliaeva
- Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603950, Russia
| | - Vladimir Pershin
- Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603950, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University, 23 Gagarin Avenue, Nizhny Novgorod 603002, Russia
| | - Irina Mukhina
- Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603950, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University, 23 Gagarin Avenue, Nizhny Novgorod 603002, Russia
| |
Collapse
|
7
|
De Laurentiis A, Ciaccio C, Erbetta A, Pinelli M, Nigro V, Pantaleoni C, D'Arrigo S. Periventricular heterotopia in a male child with USP9X missense variant. Am J Med Genet A 2023; 191:1350-1354. [PMID: 36680497 DOI: 10.1002/ajmg.a.63123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 01/22/2023]
Abstract
The ubiquitin-specific protease USP9X has been found to play a role in multiple aspects of neural development including processes of neuronal migrations. In males, hemizygous partial loss of function variants in USP9X lead to a clinical phenotype primarily characterized by intellectual disability, hypotonia, speech and language impairment, behavioral disturbances accompanied by additional clinical features with variable expressivity. Structural brain abnormalities are reported in all cases where neuro-imaging was performed. The most common radiological features described include hypoplasia/agenesis of the corpus callosum, widened ventricles, white matter disturbances, and cerebellar hypoplasia. Here we report a child harboring a missense variant in USP9X presenting with the classical neurodevelopmental phenotype and a previously unreported radiological picture of periventricular heterotopia. This case expands the phenotypic landscape of this emergent condition and supports the critical role of USP9X in neuronal migration processes.
Collapse
Affiliation(s)
- Arianna De Laurentiis
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,University of Milan, Milan, Italy
| | - Claudia Ciaccio
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alessandra Erbetta
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Michele Pinelli
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Chiara Pantaleoni
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefano D'Arrigo
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
8
|
Elu N, Osinalde N, Ramirez J, Presa N, Rodriguez JA, Prieto G, Mayor U. Identification of substrates for human deubiquitinating enzymes (DUBs): An up-to-date review and a case study for neurodevelopmental disorders. Semin Cell Dev Biol 2022; 132:120-131. [PMID: 35042675 DOI: 10.1016/j.semcdb.2022.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 12/15/2022]
Abstract
Similar to the reversal of kinase-mediated protein phosphorylation by phosphatases, deubiquitinating enzymes (DUBs) oppose the action of E3 ubiquitin ligases and reverse the ubiquitination of proteins. A total of 99 human DUBs, classified in 7 families, allow in this way for a precise control of cellular function and homeostasis. Ubiquitination regulates a myriad of cellular processes, and is altered in many pathological conditions. Thus, ubiquitination-regulating enzymes are increasingly regarded as potential candidates for therapeutic intervention. In this context, given the predicted easier pharmacological control of DUBs relative to E3 ligases, a significant effort is now being directed to better understand the processes and substrates regulated by each DUB. Classical studies have identified specific DUB substrate candidates by traditional molecular biology techniques in a case-by-case manner. Lately, single experiments can identify thousands of ubiquitinated proteins at a specific cellular context and narrow down which of those are regulated by a given DUB, thanks to the development of new strategies to isolate and enrich ubiquitinated material and to improvements in mass spectrometry detection capabilities. Here we present an overview of both types of studies, discussing the criteria that, in our view, need to be fulfilled for a protein to be considered as a high-confidence substrate of a given DUB. Applying these criteria, we have manually reviewed the relevant literature currently available in a systematic manner, and identified 650 high-confidence substrates of human DUBs. We make this information easily accessible to the research community through an updated version of the DUBase website (https://ehubio.ehu.eus/dubase/). Finally, in order to illustrate how this information can contribute to a better understanding of the physiopathological role of DUBs, we place a special emphasis on a subset of these enzymes that have been associated with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Nagore Elu
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Nerea Osinalde
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, UPV/EHU, Vitoria-Gasteiz 01006, Spain
| | - Juanma Ramirez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Natalia Presa
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Jose Antonio Rodriguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Gorka Prieto
- Department of Communications Engineering, University of the Basque Country (UPV/EHU), Bilbao 48013, Spain
| | - Ugo Mayor
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain; Ikerbasque, Basque Foundation for Science, Bilbao 48013, Spain.
| |
Collapse
|
9
|
Jolly LA, Kumar R, Penzes P, Piper M, Gecz J. The DUB Club: Deubiquitinating Enzymes and Neurodevelopmental Disorders. Biol Psychiatry 2022; 92:614-625. [PMID: 35662507 PMCID: PMC10084722 DOI: 10.1016/j.biopsych.2022.03.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/28/2022] [Accepted: 03/28/2022] [Indexed: 02/08/2023]
Abstract
Protein ubiquitination is a widespread, multifunctional, posttranslational protein modification, best known for its ability to direct protein degradation via the ubiquitin proteasome system (UPS). Ubiquitination is also reversible, and the human genome encodes over 90 deubiquitinating enzymes (DUBs), many of which appear to target specific subsets of ubiquitinated proteins. This review focuses on the roles of DUBs in neurodevelopmental disorders (NDDs). We present the current genetic evidence connecting 12 DUBs to a range of NDDs and the functional studies implicating at least 19 additional DUBs as candidate NDD genes. We highlight how the study of DUBs in NDDs offers critical insights into the role of protein degradation during brain development. Because one of the major known functions of a DUB is to antagonize the UPS, loss of function of DUB genes has been shown to culminate in loss of abundance of its protein substrates. The identification and study of NDD DUB substrates in the developing brain is revealing that they regulate networks of proteins that themselves are encoded by NDD genes. We describe the new technologies that are enabling the full resolution of DUB protein networks in the developing brain, with the view that this knowledge can direct the development of new therapeutic paradigms. The fact that the abundance of many NDD proteins is regulated by the UPS presents an exciting opportunity to combat NDDs caused by haploinsufficiency, because the loss of abundance of NDD proteins can be potentially rectified by antagonizing their UPS-based degradation.
Collapse
Affiliation(s)
- Lachlan A Jolly
- University of Adelaide and Robinson Research Institute, Adelaide, South Australia, Australia.
| | - Raman Kumar
- University of Adelaide and Robinson Research Institute, Adelaide, South Australia, Australia
| | - Peter Penzes
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Michael Piper
- School of Biomedical Sciences and Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Jozef Gecz
- University of Adelaide and Robinson Research Institute, Adelaide, South Australia, Australia; South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| |
Collapse
|
10
|
Qiao H, Tian Y, Huo Y, Man HY. Role of the DUB enzyme USP7 in dendritic arborization, neuronal migration, and autistic-like behaviors in mice. iScience 2022; 25:104595. [PMID: 35800757 PMCID: PMC9253496 DOI: 10.1016/j.isci.2022.104595] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/15/2022] [Accepted: 06/08/2022] [Indexed: 12/04/2022] Open
Abstract
Duplication and haploinsufficiency of the USP7 gene are implicated in autism spectrum disorders (ASD), but the role for USP7 in neurodevelopment and contribution to ASD pathogenesis remain unknown. We find that in primary neurons, overexpression of USP7 increases dendritic branch number and total dendritic length, whereas knockdown leads to opposite alterations. Besides, USP7 deubiquitinates the X-linked inhibitor of apoptosis protein (XIAP). The USP7-induced increase in XIAP suppresses caspase 3 activity, leading to a reduction in tubulin cleavage and suppression of dendritic pruning. When USP7 is introduced into the brains of prenatal mice via in utero electroporation (IUE), it results in abnormal migration of newborn neurons and increased dendritic arborization. Importantly, intraventricular brain injection of AAV-USP7 in P0 mice leads to autistic-like phenotypes including aberrant social interactions, repetitive behaviors, as well as changes in somatosensory sensitivity. These findings provide new insights in USP7-related neurobiological functions and its implication in ASD. Overexpression of USP7 increases dendritic arborization USP7 targets XIAP for deubiquitination and regulates XIAP proteostasis in neurons USP7 regulates dendritic remodeling via the XIAP-caspase 3-tubulin pathway Prenatal overexpression of USP7 in mice leads to autistic-like behaviors
Collapse
|
11
|
On the Study of Deubiquitinases: Using the Right Tools for the Job. Biomolecules 2022; 12:biom12050703. [PMID: 35625630 PMCID: PMC9139131 DOI: 10.3390/biom12050703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
Deubiquitinases (DUBs) have been the subject of intense scrutiny in recent years. Many of their diverse enzymatic mechanisms are well characterized in vitro; however, our understanding of these enzymes at the cellular level lags due to the lack of quality tool reagents. DUBs play a role in seemingly every biological process and are central to many human pathologies, thus rendering them very desirable and challenging therapeutic targets. This review aims to provide researchers entering the field of ubiquitination with knowledge of the pharmacological modulators and tool molecules available to study DUBs. A focus is placed on small molecule inhibitors, ubiquitin variants (UbVs), and activity-based probes (ABPs). Leveraging these tools to uncover DUB biology at the cellular level is of particular importance and may lead to significant breakthroughs. Despite significant drug discovery efforts, only approximately 15 chemical probe-quality small molecule inhibitors have been reported, hitting just 6 of about 100 DUB targets. UbV technology is a promising approach to rapidly expand the library of known DUB inhibitors and may be used as a combinatorial platform for structure-guided drug design.
Collapse
|
12
|
Lasser M, Bolduc J, Murphy L, O'Brien C, Lee S, Girirajan S, Lowery LA. 16p12.1 Deletion Orthologs are Expressed in Motile Neural Crest Cells and are Important for Regulating Craniofacial Development in Xenopus laevis. Front Genet 2022; 13:833083. [PMID: 35401697 PMCID: PMC8987115 DOI: 10.3389/fgene.2022.833083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/09/2022] [Indexed: 12/03/2022] Open
Abstract
Copy number variants (CNVs) associated with neurodevelopmental disorders are characterized by extensive phenotypic heterogeneity. In particular, one CNV was identified in a subset of children clinically diagnosed with intellectual disabilities (ID) that results in a hemizygous deletion of multiple genes at chromosome 16p12.1. In addition to ID, individuals with this deletion display a variety of symptoms including microcephaly, seizures, cardiac defects, and growth retardation. Moreover, patients also manifest severe craniofacial abnormalities, such as micrognathia, cartilage malformation of the ears and nose, and facial asymmetries; however, the function of the genes within the 16p12.1 region have not been studied in the context of vertebrate craniofacial development. The craniofacial tissues affected in patients with this deletion all derive from the same embryonic precursor, the cranial neural crest, leading to the hypothesis that one or more of the 16p12.1 genes may be involved in regulating neural crest cell (NCC)-related processes. To examine this, we characterized the developmental role of the 16p12.1-affected gene orthologs, polr3e, mosmo, uqcrc2, and cdr2, during craniofacial morphogenesis in the vertebrate model system, Xenopus laevis. While the currently-known cellular functions of these genes are diverse, we find that they share similar expression patterns along the neural tube, pharyngeal arches, and later craniofacial structures. As these genes show co-expression in the pharyngeal arches where NCCs reside, we sought to elucidate the effect of individual gene depletion on craniofacial development and NCC migration. We find that reduction of several 16p12.1 genes significantly disrupts craniofacial and cartilage formation, pharyngeal arch migration, as well as NCC specification and motility. Thus, we have determined that some of these genes play an essential role during vertebrate craniofacial patterning by regulating specific processes during NCC development, which may be an underlying mechanism contributing to the craniofacial defects associated with the 16p12.1 deletion.
Collapse
Affiliation(s)
- Micaela Lasser
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Jessica Bolduc
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Luke Murphy
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Caroline O'Brien
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Sangmook Lee
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Santhosh Girirajan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, PA, United States
| | - Laura Anne Lowery
- Alfred B. Nobel Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, MA, United States
- *Correspondence: Laura Anne Lowery,
| |
Collapse
|
13
|
Pappalardo XG, Ruggieri M, Falsaperla R, Savasta S, Raucci U, Pavone P. A Novel 4q32.3 Deletion in a Child: Additional Signs and the Role of MARCH1. J Pediatr Genet 2021; 10:259-265. [PMID: 34853711 DOI: 10.1055/s-0041-1736458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/09/2021] [Indexed: 10/19/2022]
Abstract
The 4q deletion syndrome is an uncommon condition manifesting with broad clinical expression and phenotypic variability. We report a 5-year-old boy affected by 4q deletion syndrome who showed minor craniofacial features, growth failure, mild developmental delay, severe speech delay, and marked irascibility and aggressivity. Moreover, he showed precocious and crowded primary dentition, digital hyperlaxity, and congenital bilateral adducted thumbs, signs which were previously unreported in the syndrome. The array comparative genomic hybridization analysis revealed a 4q partial terminal deletion of ∼329.6 kb extending from 164.703.186 to 165.032.803 nt, which includes part of MARCH1 (membrane associated ring-CH-type finger 1) gene (OMIM#613331). Same rearrangement was found in his healthy mother. Clinical phenotype of the child and its relationship to the deleted region is presented with a revision of the cases having the same copy number losses from the literature and genomic variant databases.
Collapse
Affiliation(s)
- Xena Giada Pappalardo
- Unit of Catania, Institute for Biomedical Research and Innovation, National Council of Research, Catania, Italy.,Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Martino Ruggieri
- Section of Pediatrics and Child Neuropsychiatry, Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, AOU "Policlinico," PO "G. Rodolico," University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics, Neonatology and Neonatal Intensive Care, and Pediatric Emergency, AOU "Policlinico," PO "San Marco," University of Catania, Catania, Italy
| | - Salvatore Savasta
- Pediatric Clinic, IRCCS Policlinico S. Matteo Foundation, Pavia, Italy
| | - Umberto Raucci
- Pediatric Intensive Care Unit, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Piero Pavone
- Unit of Pediatrics, Neonatology and Neonatal Intensive Care, and Pediatric Emergency, AOU "Policlinico," PO "San Marco," University of Catania, Catania, Italy
| |
Collapse
|
14
|
Lin A, Forsyth JK, Hoftman GD, Kushan-Wells L, Jalbrzikowski M, Dokuru D, Coppola G, Fiksinski A, Zinkstok J, Vorstman J, Nachun D, Bearden CE. Transcriptomic profiling of whole blood in 22q11.2 reciprocal copy number variants reveals that cell proportion highly impacts gene expression. Brain Behav Immun Health 2021; 18:100386. [PMID: 34841284 PMCID: PMC8607166 DOI: 10.1016/j.bbih.2021.100386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 10/31/2021] [Indexed: 11/24/2022] Open
Abstract
22q11.2 reciprocal copy number variants (CNVs) offer a powerful quasi-experimental "reverse-genetics" paradigm to elucidate how gene dosage (i.e., deletions and duplications) disrupts the transcriptome to cause further downstream effects. Clinical profiles of 22q11.2 CNV carriers indicate that disrupted gene expression causes alterations in neuroanatomy, cognitive function, and psychiatric disease risk. However, interpreting transcriptomic signal in bulk tissue requires careful consideration of potential changes in cell composition. We first characterized transcriptomic dysregulation in peripheral blood from reciprocal 22q11.2 CNV carriers using differential expression analysis and weighted gene co-expression network analysis (WGCNA) to identify modules of co-expressed genes. We also assessed for group differences in cell composition and re-characterized transcriptomic differences after accounting for cell type proportions and medication usage. Finally, to explore whether CNV-related transcriptomic changes relate to downstream phenotypes associated with 22q11.2 CNVs, we tested for associations of gene expression with neuroimaging measures and behavioral traits, including IQ and psychosis or ASD diagnosis. 22q11.2 deletion carriers (22qDel) showed widespread expression changes at the individual gene as well as module eigengene level compared to 22q11.2 duplication carriers (22qDup) and controls. 22qDup showed increased expression of 5 genes within the 22q11.2 locus, and CDH6 located outside of the locus. Downregulated modules in 22qDel implicated altered immune and inflammatory processes. Celltype deconvolution analyses revealed significant differences between CNV and control groups in T-cell, mast cell, and macrophage proportions; differential expression of individual genes between groups was substantially attenuated after adjusting for cell composition. Individual gene, module eigengene, and cell proportions were not significantly associated with psychiatric or neuroanatomic traits. Our findings suggest broad immune-related dysfunction in 22qDel and highlight the importance of understanding differences in cell composition when interpreting transcriptomic changes in clinical populations. Results also suggest novel directions for future investigation to test whether 22q11.2 CNV effects on macrophages have implications for brain-related microglial function that may contribute to psychiatric phenotypes in 22q11.2 CNV carriers.
Collapse
Affiliation(s)
- Amy Lin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Neuroscience Interdepartmental Program, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jennifer K. Forsyth
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of Washington, WA, USA
| | - Gil D. Hoftman
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Leila Kushan-Wells
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Deepika Dokuru
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Giovanni Coppola
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ania Fiksinski
- Wilhelmina Children's Hospital & University Medical Center Utrecht, Brain Center, the Netherlands
- Maastricht University, Department of Psychiatry and Neuropsychology, Division of Mental Health, MHeNS, the Netherlands
| | - Janneke Zinkstok
- Department of Psychiatry and Brain Center, University Medical Center Utrecht, the Netherlands
| | - Jacob Vorstman
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Daniel Nachun
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Carrie E. Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
15
|
Use of relevancy and complementary information for discriminatory gene selection from high-dimensional gene expression data. PLoS One 2021; 16:e0230164. [PMID: 34613963 PMCID: PMC8494339 DOI: 10.1371/journal.pone.0230164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 09/21/2021] [Indexed: 12/22/2022] Open
Abstract
With the advent of high-throughput technologies, life sciences are generating a huge amount of varied biomolecular data. Global gene expression profiles provide a snapshot of all the genes that are transcribed in a cell or in a tissue under a particular condition. The high-dimensionality of such gene expression data (i.e., very large number of features/genes analyzed with relatively much less number of samples) makes it difficult to identify the key genes (biomarkers) that are truly attributing to a particular phenotype or condition, (such as cancer), de novo. For identifying the key genes from gene expression data, among the existing literature, mutual information (MI) is one of the most successful criteria. However, the correction of MI for finite sample is not taken into account in this regard. It is also important to incorporate dynamic discretization of genes for more relevant gene selection, although this is not considered in the available methods. Besides, it is usually suggested in current studies to remove redundant genes which is particularly inappropriate for biological data, as a group of genes may connect to each other for downstreaming proteins. Thus, despite being redundant, it is needed to add the genes which provide additional useful information for the disease. Addressing these issues, we proposed Mutual information based Gene Selection method (MGS) for selecting informative genes. Moreover, to rank these selected genes, we extended MGS and propose two ranking methods on the selected genes, such as MGSf—based on frequency and MGSrf—based on Random Forest. The proposed method not only obtained better classification rates on gene expression datasets derived from different gene expression studies compared to recently reported methods but also detected the key genes relevant to pathways with a causal relationship to the disease, which indicate that it will also able to find the responsible genes for an unknown disease data.
Collapse
|
16
|
Shah S, Richter JD. Do Fragile X Syndrome and Other Intellectual Disorders Converge at Aberrant Pre-mRNA Splicing? Front Psychiatry 2021; 12:715346. [PMID: 34566717 PMCID: PMC8460907 DOI: 10.3389/fpsyt.2021.715346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Abstract
Fragile X Syndrome is a neuro-developmental disorder caused by the silencing of the FMR1 gene, resulting in the loss of its protein product, FMRP. FMRP binds mRNA and represses general translation in the brain. Transcriptome analysis of the Fmr1-deficient mouse hippocampus reveals widespread dysregulation of alternative splicing of pre-mRNAs. Many of these aberrant splicing changes coincide with those found in post-mortem brain tissue from individuals with autism spectrum disorders (ASDs) as well as in mouse models of intellectual disability such as PTEN hamartoma syndrome (PHTS) and Rett Syndrome (RTT). These splicing changes could result from chromatin modifications (e.g., in FXS, RTT) and/or splicing factor alterations (e.g., PTEN, autism). Based on the identities of the RNAs that are mis-spliced in these disorders, it may be that they are at least partly responsible for some shared pathophysiological conditions. The convergence of splicing aberrations among these autism spectrum disorders might be crucial to understanding their underlying cognitive impairments.
Collapse
Affiliation(s)
| | - Joel D. Richter
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
17
|
Abstract
Autism is a common and complex neurologic disorder whose scientific underpinnings have begun to be established in the past decade. The essence of this breakthrough has been a focus on families, where genetic analyses are strongest, versus large-scale, case-control studies. Autism genetics has progressed in parallel with technology, from analyses of copy number variation to whole-exome sequencing (WES) and whole-genome sequencing (WGS). Gene mutations causing complete loss of function account for perhaps one-third of cases, largely detected through WES. This limitation has increased interest in understanding the regulatory variants of genes that contribute in more subtle ways to the disorder. Strategies combining biochemical analysis of gene regulation, WGS analysis of the noncoding genome, and machine learning have begun to succeed. The emerging picture is that careful control of the amounts of transcription, mRNA, and proteins made by key brain genes-stoichiometry-plays a critical role in defining the clinical features of autism.
Collapse
Affiliation(s)
- Robert B Darnell
- Laboratory of Molecular Neuro-Oncology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA;
| |
Collapse
|
18
|
Piergiorge RM, de Vasconcelos ATR, Gonçalves Pimentel MM, Santos-Rebouças CB. Strict network analysis of evolutionary conserved and brain-expressed genes reveals new putative candidates implicated in Intellectual Disability and in Global Development Delay. World J Biol Psychiatry 2021; 22:435-445. [PMID: 32914658 DOI: 10.1080/15622975.2020.1821916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVES Intellectual Disability (ID) and Global Development Delay (GDD) are frequent reasons for referral to genetic services and although they present overlapping phenotypes concerning cognitive, motor, language, or social skills, they are not exactly synonymous. Aiming to better understand independent or shared mechanisms related to these conditions and to identify new candidate genes, we performed a highly stringent protein-protein interaction network based on genes previously related to ID/GDD in the Human Phenotype Ontology portal. METHODS ID/GDD genes were searched for reliable interactions through STRING and clustering analysis was applied to detect biological complexes through the MCL algorithm. Six coding hub genes (TP53, CDC42, RAC1, GNB1, APP, and EP300) were recognised by the Cytoscape NetworkAnalyzer plugin, interacting with 1625 proteins not yet associated with ID or GDD. Genes encoding these proteins were explored by gene ontology, associated diseases, evolutionary conservation, and brain expression. RESULTS One hundred and seventy-two new putative genes playing a role in enriched processes/pathways previously related to ID and GDD were revealed, some of which were already postulated to be linked to ID/GDD in additional databases. CONCLUSIONS Our findings expanded the aetiological genetic landscape of ID/GDD and showed evidence that both conditions are closely related at the molecular and functional levels.
Collapse
Affiliation(s)
- Rafael Mina Piergiorge
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Márcia Mattos Gonçalves Pimentel
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cíntia Barros Santos-Rebouças
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Pradhan AK, Kandasamy G, Chatterjee U, Bharadwaj A, Mathew SJ, Dohmen RJ, Palanimurugan R. Ribosome-associated quality control mediates degradation of the premature translation termination product Orf1p of ODC antizyme mRNA. FEBS Lett 2021; 595:2015-2033. [PMID: 34109626 DOI: 10.1002/1873-3468.14147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 11/08/2022]
Abstract
Decoding of OAZ1 (Ornithine decarboxylase AntiZyme 1) mRNA, which harbours two open reading frames (ORF1 and ORF2) interrupted by a naturally occurring Premature Termination Codon (PTC), produces an 8 kDa truncated polypeptide termed Orf1p, unless the PTC is bypassed by +1 ribosomal frameshifting. In this study, we identified Orf1p as an endogenous ubiquitin-dependent substrate of the 26S proteasome both in yeast and mammalian cells. Surprisingly, we found that the ribosome-associated quality control factor Rqc1 and the ubiquitin ligase Ltn1 are critical for Orf1p degradation. In addition, the cytosolic protein quality control chaperone system Hsp70/Hsp90 and their corresponding co-chaperones Sse1, Fes1, Sti1 and Cpr7 are also required for Orf1p proteolysis. Our study finds that Orf1p, which is naturally synthesized as a result of a premature translation termination event, requires the coordinated role of both ribosome-associated and cytosolic protein quality control factors for its degradation.
Collapse
Affiliation(s)
| | | | | | - Anushree Bharadwaj
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Sam J Mathew
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - R Jürgen Dohmen
- Institute for Genetics, Faculty of Mathematics and Natural Sciences, Center of Molecular Biosciences, University of Cologne, Germany
| | - R Palanimurugan
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, India
| |
Collapse
|
20
|
Yoon S, Parnell E, Penzes P. TGF-β-Induced Phosphorylation of Usp9X Stabilizes Ankyrin-G and Regulates Dendritic Spine Development and Maintenance. Cell Rep 2021; 31:107685. [PMID: 32460012 PMCID: PMC7324065 DOI: 10.1016/j.celrep.2020.107685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/02/2020] [Accepted: 05/04/2020] [Indexed: 12/30/2022] Open
Abstract
Signaling by the cytokine transforming growth factor β (TGF-β) has been implicated in a multitude of biological functions; however, TGF-β signaling, particularly in the CNS, remains largely unexplored. ANK3 variants (encoding ankyrin-G) are associated with bipolar disorder, intellectual disability, and autism spectrum disorder, while mutations in USP9X, which encodes a deubiquitinase, are associated with X-linked intellectual disability and autism in humans. Here, we show that TGF-β signaling promotes Usp9X phosphorylation, which enhances its interaction with ankyrin-G and stabilizes ankyrin-G in spines, leading to spine enlargement. Using in situ proximity ligation combined with structured illumination superresolution microscopy, we characterize the postsynaptic spatial organization of phosphorylation-dependent regulation of Usp9X/ankyrin-G interactions in dendrites and its quantitative relationship with spine morphology and number. These data reveal a cytokine-mediated mechanism regulating protein stability in spines and suggest a role for deubiquitination and TGF-β signaling in neurodevelopmental disorder pathogenesis and treatment. Yoon et al. show that phosphorylation of a deubiquitinating enzyme by a cytokine enhances the stabilization of synaptic scaffolding protein during dendritic spine development, and its alterations result in deficient synaptic structural maintenance, with relevance for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Sehyoun Yoon
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Euan Parnell
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Northwestern University, Center for Autism and Neurodevelopment, Chicago, IL 60611, USA.
| |
Collapse
|
21
|
Kasherman MA, Currey L, Kurniawan ND, Zalucki O, Vega MS, Jolly LA, Burne THJ, Wood SA, Piper M. Abnormal Behavior and Cortical Connectivity Deficits in Mice Lacking Usp9x. Cereb Cortex 2021; 31:1763-1775. [PMID: 33188399 DOI: 10.1093/cercor/bhaa324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022] Open
Abstract
Genetic association studies have identified many factors associated with neurodevelopmental disorders such as autism spectrum disorder (ASD). However, the way these genes shape neuroanatomical structure and connectivity is poorly understood. Recent research has focused on proteins that act as points of convergence for multiple factors, as these may provide greater insight into understanding the biology of neurodevelopmental disorders. USP9X, a deubiquitylating enzyme that regulates the stability of many ASD-related proteins, is one such point of convergence. Loss of function variants in human USP9X lead to brain malformations, which manifest as a neurodevelopmental syndrome that frequently includes ASD, but the underlying structural and connectomic abnormalities giving rise to patient symptoms is unknown. Here, we analyzed forebrain-specific Usp9x knockout mice (Usp9x-/y) to address this knowledge gap. Usp9x-/y mice displayed abnormal communication and social interaction behaviors. Moreover, the absence of Usp9x culminated in reductions to the size of multiple brain regions. Diffusion tensor magnetic resonance imaging revealed deficits in all three major forebrain commissures, as well as long-range hypoconnectivity between cortical and subcortical regions. These data identify USP9X as a key regulator of brain formation and function, and provide insights into the neurodevelopmental syndrome arising as a consequence of USP9X mutations in patients.
Collapse
Affiliation(s)
- Maria A Kasherman
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia.,Griffith Institute for Drug Discovery, Griffith University, Brisbane 4111, Australia
| | - Laura Currey
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia.,Griffith Institute for Drug Discovery, Griffith University, Brisbane 4111, Australia
| | - Nyoman D Kurniawan
- Centre for Advanced Imaging, The University of Queensland, Brisbane 4072, Australia
| | - Oressia Zalucki
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia
| | | | - Lachlan A Jolly
- University of Adelaide and Robinson Research Institute, Adelaide 5005, Australia
| | - Thomas H J Burne
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia.,Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, Brisbane 4076, Australia
| | - Stephen A Wood
- Griffith Institute for Drug Discovery, Griffith University, Brisbane 4111, Australia
| | - Michael Piper
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
22
|
Yde Ohki CM, Grossmann L, Alber E, Dwivedi T, Berger G, Werling AM, Walitza S, Grünblatt E. The stress-Wnt-signaling axis: a hypothesis for attention-deficit hyperactivity disorder and therapy approaches. Transl Psychiatry 2020; 10:315. [PMID: 32948744 PMCID: PMC7501308 DOI: 10.1038/s41398-020-00999-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/27/2022] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is one of the most common psychiatric neurodevelopmental disorders in children and adolescents. Although ADHD has been studied for nearly a century, the cause and pathophysiology of ADHD is yet largely unknown. However, findings from previous studies have resulted in the formation of a new hypothesis: Apart from the well-known multifactorial etiology of ADHD, recent evidence suggests that the interaction between genetic and environmental factors and especially Wnt- and mTOR-signaling pathways might have an important role in the pathophysiology of ADHD. The Wnt-signaling pathway is known to orchestrate cellular proliferation, polarity, and differentiation, and the mTOR pathway is involved in several significant processes of neurodevelopment and synaptic plasticity. As a result, dysregulations of these pathways in a time-dependent manner could lead to neurodevelopmental delays, resulting in ADHD phenotype. This review presents further evidence supporting our hypothesis by combining results from studies on ADHD and Wnt- or mTOR-signaling and the influence of genetics, methylphenidate treatment, Omega-3 supplementation, and stress.
Collapse
Affiliation(s)
- Cristine Marie Yde Ohki
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zürich, Switzerland
| | - Leoni Grossmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zürich, Switzerland
| | - Emma Alber
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zürich, Switzerland
| | - Tanushree Dwivedi
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zürich, Switzerland
| | - Gregor Berger
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zürich, Switzerland
| | - Anna Maria Werling
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zürich, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zürich, Switzerland
- Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Zürich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zürich, Switzerland.
- Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Zürich, Switzerland.
- Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland.
| |
Collapse
|