1
|
Ai Z, Li H, Xu S, Cai C, Wang X, Guan Y, Guo R, Wang Y. Overexpression of TAFA4 in the Dorsal Root Ganglion Ameliorates Neuropathic Pain in Male Rats Through Promoting Macrophage M2-Skewing. Neurochem Int 2025:105993. [PMID: 40381955 DOI: 10.1016/j.neuint.2025.105993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 05/03/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Neuro-immune interactions between macrophages and primary sensory neurons have been implicated in nerve injury and associated pain. This study aims to explore the function of the TAFA4 as a crucial neuroimmune regulator in modulating macrophage states within the context of neuropathic pain. To elucidate the role of TAFA4 in dorsal root ganglia (DRG) following a chronic constriction injury (CCI) model in male rats, immunofluorescent staining, western blot, flow cytometry analysis and enzyme-linked immunosorbent assay were performed. Microinjection of self-complementary adeno-associated virus expressing TAFA4 mRNA into the L4 and L5 DRGs was conducted to overexpress TAFA4 in the DRGs. Following peripheral nerve injury, we observed a downregulation of TAFA4 in ipsilateral DRG neurons. Restoring this downregulation effectively alleviated the mechanical and thermal nociceptive hypersensitivity by inhibiting pro-inflammatory mediators while promoting the secretion of anti-inflammatory cytokines on day 14 post-CCI. Notably, scAAV-TAFA4 microinjection also facilitated the polarization of macrophages in the DRGs towards the M2 phenotype. Mechanistically, TAFA4 modulates the functions of macrophages in a lipoprotein receptor-related protein 1-dependent manner. Our findings revealed the role of TAFA4 in shifting macrophages in favor of an anti-inflammatory phenotype and enhancing interleukin 10 concentrations in the DRG, suggesting it is a potential analgesic target for alleviating neuropathic pain.
Collapse
Affiliation(s)
- Zhangran Ai
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Huili Li
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Songchao Xu
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Chenghui Cai
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Xuejuan Wang
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ruijuan Guo
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | - Yun Wang
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
2
|
Mansor NI, Balqis TN, Lani MN, Lye KL, Nor Muhammad NA, Ismail WIW, Abidin SZ. Nature's Secret Neuro-Regeneration Pathway in Axolotls, Polychaetes and Planarians for Human Therapeutic Target Pathways. Int J Mol Sci 2024; 25:11904. [PMID: 39595973 PMCID: PMC11593954 DOI: 10.3390/ijms252211904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Despite significant improvements in the comprehension of neuro-regeneration, restoring nerve injury in humans continues to pose a substantial therapeutic difficulty. In the peripheral nervous system (PNS), the nerve regeneration process after injury relies on Schwann cells. These cells play a crucial role in regulating and releasing different extracellular matrix proteins, including laminin and fibronectin, which are essential for facilitating nerve regeneration. However, during regeneration, the nerve is required to regenerate for a long distance and, subsequently, loses its capacity to facilitate regeneration during this progression. Meanwhile, it has been noted that nerve regeneration has limited capabilities in the central nervous system (CNS) compared to in the PNS. The CNS contains factors that impede the regeneration of axons following injury to the axons. The presence of glial scar formation results from this unfavourable condition, where glial cells accumulate at the injury site, generating a physical and chemical barrier that hinders the regeneration of neurons. In contrast to humans, several species, such as axolotls, polychaetes, and planarians, possess the ability to regenerate their neural systems following amputation. This ability is based on the vast amount of pluripotent stem cells that have the remarkable capacity to differentiate and develop into any cell within their body. Although humans also possess these cells, their numbers are extremely limited. Examining the molecular pathways exhibited by these organisms has the potential to offer a foundational understanding of the human regeneration process. This review provides a concise overview of the molecular pathways involved in axolotl, polychaete, and planarian neuro-regeneration. It has the potential to offer a new perspective on therapeutic approaches for neuro-regeneration in humans.
Collapse
Affiliation(s)
- Nur Izzati Mansor
- Department of Nursing, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Kuala Lumpur, Malaysia;
| | - Tengku Nabilatul Balqis
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia; (T.N.B.); (W.I.W.I.)
| | - Mohd Nizam Lani
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia;
| | - Kwan Liang Lye
- ME Scientifique Sdn Bhd, Taman Universiti Indah, Seri Kembangan 43300, Selangor, Malaysia;
| | - Nor Azlan Nor Muhammad
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Wan Iryani Wan Ismail
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia; (T.N.B.); (W.I.W.I.)
- Research Interest Group Biological Security and Sustainability (BIOSES), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Shahidee Zainal Abidin
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia; (T.N.B.); (W.I.W.I.)
- Research Interest Group Biological Security and Sustainability (BIOSES), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| |
Collapse
|
3
|
Bolívar S, Sanz E, Ovelleiro D, Zochodne DW, Udina E. Neuron-specific RNA-sequencing reveals different responses in peripheral neurons after nerve injury. eLife 2024; 12:RP91316. [PMID: 38742628 PMCID: PMC11093584 DOI: 10.7554/elife.91316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
Peripheral neurons are heterogeneous and functionally diverse, but all share the capability to switch to a pro-regenerative state after nerve injury. Despite the assumption that the injury response is similar among neuronal subtypes, functional recovery may differ. Understanding the distinct intrinsic regenerative properties between neurons may help to improve the quality of regeneration, prioritizing the growth of axon subpopulations to their targets. Here, we present a comparative analysis of regeneration across four key peripheral neuron populations: motoneurons, proprioceptors, cutaneous mechanoreceptors, and nociceptors. Using Cre/Ai9 mice that allow fluorescent labeling of neuronal subtypes, we found that nociceptors showed the greater regeneration after a sciatic crush, followed by motoneurons, mechanoreceptors, and, finally, proprioceptors. By breeding these Cre mice with Ribotag mice, we isolated specific translatomes and defined the regenerative response of these neuronal subtypes after axotomy. Only 20% of the regulated genes were common, revealing a diverse response to injury among neurons, which was also supported by the differential influence of neurotrophins among neuron subtypes. Among differentially regulated genes, we proposed MED12 as a specific regulator of the regeneration of proprioceptors. Altogether, we demonstrate that the intrinsic regenerative capacity differs between peripheral neuron subtypes, opening the door to selectively modulate these responses.
Collapse
Affiliation(s)
- Sara Bolívar
- Institute of Neurosciences, and Department Cell Biology, Physiology and Immunology, Universitat Autònoma de BarcelonaBellaterraSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos IIIMadridSpain
| | - Elisenda Sanz
- Institute of Neurosciences, and Department Cell Biology, Physiology and Immunology, Universitat Autònoma de BarcelonaBellaterraSpain
| | - David Ovelleiro
- Peripheral Nervous System, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital CampusBarcelonaSpain
| | - Douglas W Zochodne
- Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of AlbertaEdmontonCanada
| | - Esther Udina
- Institute of Neurosciences, and Department Cell Biology, Physiology and Immunology, Universitat Autònoma de BarcelonaBellaterraSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
4
|
Jeon SM, Pradeep A, Chang D, McDonough L, Chen Y, Latremoliere A, Crawford LK, Caterina MJ. Skin Reinnervation by Collateral Sprouting Following Spared Nerve Injury in Mice. J Neurosci 2024; 44:e1494232024. [PMID: 38471780 PMCID: PMC11007315 DOI: 10.1523/jneurosci.1494-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/15/2024] [Accepted: 02/03/2024] [Indexed: 03/14/2024] Open
Abstract
Following peripheral nerve injury, denervated tissues can be reinnervated via regeneration of injured neurons or collateral sprouting of neighboring uninjured afferents into denervated territory. While there has been substantial focus on mechanisms underlying regeneration, collateral sprouting has received less attention. Here, we used immunohistochemistry and genetic neuronal labeling to define the subtype specificity of sprouting-mediated reinnervation of plantar hindpaw skin in the mouse spared nerve injury (SNI) model, in which productive regeneration cannot occur. Following initial loss of cutaneous afferents in the tibial nerve territory, we observed progressive centripetal reinnervation by multiple subtypes of neighboring uninjured fibers into denervated glabrous and hairy plantar skin of male mice. In addition to dermal reinnervation, CGRP-expressing peptidergic fibers slowly but continuously repopulated denervated epidermis, Interestingly, GFRα2-expressing nonpeptidergic fibers exhibited a transient burst of epidermal reinnervation, followed by a trend towards regression. Presumptive sympathetic nerve fibers also sprouted into denervated territory, as did a population of myelinated TrkC lineage fibers, though the latter did so inefficiently. Conversely, rapidly adapting Aβ fiber and C fiber low threshold mechanoreceptor (LTMR) subtypes failed to exhibit convincing sprouting up to 8 weeks after nerve injury in males or females. Optogenetics and behavioral assays in male mice further demonstrated the functionality of collaterally sprouted fibers in hairy plantar skin with restoration of punctate mechanosensation without hypersensitivity. Our findings advance understanding of differential collateral sprouting among sensory neuron subpopulations and may guide strategies to promote the progression of sensory recovery or limit maladaptive sensory phenomena after peripheral nerve injury.
Collapse
Affiliation(s)
- Sang-Min Jeon
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Aishwarya Pradeep
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Dennis Chang
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Leah McDonough
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Yijia Chen
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Alban Latremoliere
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - LaTasha K Crawford
- Department of Pathological Sciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, Wisconsin 53706
| | - Michael J Caterina
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
5
|
Yousif A, Ebeid A, Kacsoh B, Bazzaro M, Chefetz I. The Ovary-Brain Connection. Cells 2024; 13:94. [PMID: 38201298 PMCID: PMC10778337 DOI: 10.3390/cells13010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
The brain and the ovaries are in a state of continuous communication [...].
Collapse
Affiliation(s)
- Abdelrahman Yousif
- Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
| | - Ahmed Ebeid
- Department of Obstetrics and Gynecology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Balint Kacsoh
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA
| | - Martina Bazzaro
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biomedical and Clinical Science, Linköping University, SE-581 85 Linköping, Sweden
| | - Ilana Chefetz
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA
| |
Collapse
|
6
|
Kim HW, Shim SW, Zhao AM, Roh D, Han HM, Middleton SJ, Kim W, Chung S, Johnson E, Prentice J, Tacon M, Koel-Simmelink MJ, Wieske L, Teunissen CE, Bae YC, Bennett DL, Rinaldi S, Davies AJ, Oh SB. Long-term tactile hypersensitivity after nerve crush injury in mice is characterized by the persistence of intact sensory axons. Pain 2023; 164:2327-2342. [PMID: 37366595 PMCID: PMC10502897 DOI: 10.1097/j.pain.0000000000002937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 06/28/2023]
Abstract
ABSTRACT Traumatic peripheral nerve injuries are at high risk of neuropathic pain for which novel effective therapies are urgently needed. Preclinical models of neuropathic pain typically involve irreversible ligation and/or nerve transection (neurotmesis). However, translation of findings to the clinic has so far been unsuccessful, raising questions on injury model validity and clinically relevance. Traumatic nerve injuries seen in the clinic commonly result in axonotmesis (ie, crush), yet the neuropathic phenotype of "painful" nerve crush injuries remains poorly understood. We report the neuropathology and sensory symptoms of a focal nerve crush injury using custom-modified hemostats resulting in either complete ("full") or incomplete ("partial") axonotmesis in adult mice. Assays of thermal and mechanically evoked pain-like behavior were paralleled by transmission electron microscopy, immunohistochemistry, and anatomical tracing of the peripheral nerve. In both crush models, motor function was equally affected early after injury; by contrast, partial crush of the nerve resulted in the early return of pinprick sensitivity, followed by a transient thermal and chronic tactile hypersensitivity of the affected hind paw, which was not observed after a full crush injury. The partially crushed nerve was characterized by the sparing of small-diameter myelinated axons and intraepidermal nerve fibers, fewer dorsal root ganglia expressing the injury marker activating transcription factor 3, and lower serum levels of neurofilament light chain. By day 30, axons showed signs of reduced myelin thickness. In summary, the escape of small-diameter axons from Wallerian degeneration is likely a determinant of chronic pain pathophysiology distinct from the general response to complete nerve injury.
Collapse
Affiliation(s)
- Hyoung Woo Kim
- Department of Neurobiology and Physiology, School of Dentistry, and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Sang Wook Shim
- Department of Neurobiology and Physiology, School of Dentistry, and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Anna Mae Zhao
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Dahee Roh
- Department of Neurobiology and Physiology, School of Dentistry, and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Hye Min Han
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Steven J. Middleton
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Wheedong Kim
- Department of Neurobiology and Physiology, School of Dentistry, and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sena Chung
- Department of Neurobiology and Physiology, School of Dentistry, and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Errin Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - John Prentice
- Oxford Institute for Radiation Oncology, Old Road Campus Research Building, University of Oxford, Oxford, United Kingdom
| | - Mike Tacon
- Department of Physics, Denys Wilkinson Building, University of Oxford, Oxford, United Kingdom
| | - Marleen J.A. Koel-Simmelink
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Luuk Wieske
- Department of Neurology and Neurophysiology, Amsterdam UMC, Academisch Medisch Centrum, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - David L.H. Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Simon Rinaldi
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Alexander J. Davies
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Seog Bae Oh
- Department of Neurobiology and Physiology, School of Dentistry, and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Jeon SM, Pradeep A, Chang D, McDonough L, Chen Y, Latremoliere A, Crawford LK, Caterina MJ. SKIN REINNERVATION BY COLLATERAL SPROUTING FOLLOWING SPARED NERVE INJURY IN MICE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557420. [PMID: 37745384 PMCID: PMC10515828 DOI: 10.1101/2023.09.12.557420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Following peripheral nerve injury, denervated tissues can be reinnervated via regeneration of injured neurons or via collateral sprouting of neighboring uninjured afferents into the denervated territory. While there has been substantial focus on mechanisms underlying regeneration, collateral sprouting has received relatively less attention. In this study, we used immunohistochemistry and genetic neuronal labeling to define the subtype specificity of sprouting-mediated reinnervation of plantar hind paw skin in the mouse spared nerve injury (SNI) model, in which productive regeneration cannot occur. Following an initial loss of cutaneous afferents in the tibial nerve territory, we observed progressive centripetal reinnervation by multiple subtypes of neighboring uninjured fibers into denervated glabrous and hairy plantar skin. In addition to dermal reinnervation, CGRP-expressing peptidergic fibers slowly but continuously repopulated the denervated epidermis, Interestingly, GFRα2-expressing nonpeptidergic fibers exhibited a transient burst of epidermal reinnervation, followed by trend towards regression. Presumptive sympathetic nerve fibers also sprouted into the denervated territory, as did a population of myelinated TrkC lineage fibers, though the latter did so less efficiently. Conversely, rapidly adapting Aβ fiber and C fiber low threshold mechanoreceptor (LTMR) subtypes failed to exhibit convincing collateral sprouting up to 8 weeks after nerve injury. Optogenetics and behavioral assays further demonstrated the functionality of collaterally sprouted fibers in hairy plantar skin with restoration of punctate mechanosensation without hypersensitivity. Our findings advance understanding of differential collateral sprouting among sensory neuron subpopulations and may guide strategies to promote the progression of sensory recovery or limit maladaptive sensory phenomena after peripheral nerve injury. Significance Statement Following nerve injury, whereas one mechanism for tissue reinnervation is regeneration of injured neurons, another, less well studied mechanism is collateral sprouting of nearby uninjured neurons. In this study, we examined collateral sprouting in denervated mouse skin and showed that it involves some, but not all neuronal subtypes. Despite such heterogeneity, a significant degree of restoration of punctate mechanical sensitivity is achieved. These findings highlight the diversity of collateral sprouting among peripheral neuron subtypes and reveal important differences between pre- and post-denervation skin that might be appealing targets for therapeutic correction to enhance functional recovery from denervation and prevent unwanted sensory phenomena such as pain or numbness.
Collapse
|
8
|
Ma P, Zhang G, Chen S, Miao C, Cao Y, Wang M, Liu W, Shen J, Tang PMK, Men Y, Ye L, Li C. Promotion effect of TGF-β-Zfp423-ApoD pathway on lip sensory recovery after nerve sacrifice caused by nerve collateral compensation. Int J Oral Sci 2023; 15:23. [PMID: 37286538 DOI: 10.1038/s41368-023-00230-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/09/2023] Open
Abstract
Resection of oral and maxillofacial tumors is often accompanied by the inferior alveolar nerve neurectomy, resulting in abnormal sensation in lower lip. It is generally believed that spontaneous sensory recovery in this nerve injury is difficult. However, during our follow-up, patients with inferior alveolar nerve sacrifice showed different degrees of lower lip sensory recovery. In this study, a prospective cohort study was conducted to demonstrate this phenomenon and analyze the factors influencing sensory recovery. A mental nerve transection model of Thy1-YFP mice and tissue clearing technique were used to explore possible mechanisms in this process. Gene silencing and overexpression experiments were then conducted to detect the changes in cell morphology and molecular markers. In our follow-up, 75% of patients with unilateral inferior alveolar nerve neurectomy had complete sensory recovery of the lower lip 12 months postoperatively. Patients with younger age, malignant tumors, and preservation of ipsilateral buccal and lingual nerves had a shorter recovery time. The buccal nerve collateral sprouting compensation was observed in the lower lip tissue of Thy1-YFP mice. ApoD was demonstrated to be involved in axon growth and peripheral nerve sensory recovery in the animal model. TGF-β inhibited the expression of STAT3 and the transcription of ApoD in Schwann cells through Zfp423. Overall, after sacrificing the inferior alveolar nerve, the collateral compensation of the ipsilateral buccal nerve could innervate the sensation. And this process was regulated by TGF-β-Zfp423-ApoD pathway.
Collapse
Affiliation(s)
- Pingchuan Ma
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Gaowei Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Su Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cheng Miao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yubin Cao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Meng Wang
- Department of Medical Record, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenwen Liu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Jiefei Shen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Patrick Ming-Kuen Tang
- Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine & Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yi Men
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Chunjie Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Liu K, Ma W, Yang J, Liu W, Zhang S, Zhu K, Liu J, Xiang X, Wang G, Wu H, Guo J, Li L. Integrative Analysis Reveals the Expression Pattern of SOX9 in Satellite Glial Cells after Sciatic Nerve Injury. Brain Sci 2023; 13:brainsci13020281. [PMID: 36831824 PMCID: PMC9954651 DOI: 10.3390/brainsci13020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/10/2022] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Several complex cellular and gene regulatory processes are involved in peripheral nerve repair. This study uses bioinformatics to analyze the differentially expressed genes (DEGs) in the satellite glial cells of mice following sciatic nerve injury. METHODS R software screens differentially expressed genes, and the WebGestalt functional enrichment analysis tool conducts Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomics (KEGG) pathway analysis. The Search Tool for the Retrieval of Interacting Genes/Proteins constructs protein interaction networks, and the cytoHubba plug-in in the Cytoscape software predicts core genes. Subsequently, the sciatic nerve injury model of mice was established and the dorsal root ganglion satellite glial cells were isolated and cultured. Satellite glial cells-related markers were verified by immunofluorescence staining. Real-time polymerase chain reaction assay and Western blotting assay were used to detect the mRNA and protein expression of Sox9 in satellite glial cells. RESULTS A total of 991 DEGs were screened, of which 383 were upregulated, and 508 were downregulated. The GO analysis revealed the processes of biosynthesis, negative regulation of cell development, PDZ domain binding, and other biological processes were enriched in DEGs. According to the KEGG pathway analysis, DEGs are primarily involved in steroid biosynthesis, hedgehog signaling pathway, terpenoid backbone biosynthesis, American lateral skeleton, and melanoma pathways. According to various cytoHubba algorithms, the common core genes in the protein-protein interaction network are Atf3, Mmp2, and Sox9. Among these, Sox9 was reported to be involved in the central nervous system and the generation and development of astrocytes and could mediate the transformation between neurogenic and glial cells. The experimental results showed that satellite glial cell marker GS were co-labeled with Sox9; stem cell characteristic markers Nestin and p75NTR were labeled satellite glial cells. The mRNA and protein expression of Sox9 in satellite glial cells were increased after sciatic nerve injury. CONCLUSIONS In this study, bioinformatics was used to analyze the DEGs of satellite glial cells after sciatic nerve injury, and transcription factors related to satellite glial cells were screened, among which Sox9 may be associated with the fate of satellite glial cells.
Collapse
Affiliation(s)
- Kuangpin Liu
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Wei Ma
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Jinwei Yang
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
- Second Department of General Surgery, First People’s Hospital of Yunnan Province, Kunming 650032, China
| | - Wei Liu
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Sijia Zhang
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Kewei Zhu
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Jie Liu
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Xianglin Xiang
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Guodong Wang
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Hongjie Wu
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Jianhui Guo
- Second Department of General Surgery, First People’s Hospital of Yunnan Province, Kunming 650032, China
| | - Liyan Li
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
- Correspondence: ; Tel.: +86-137-5940-6017
| |
Collapse
|
10
|
Negro S, Lauria F, Stazi M, Tebaldi T, D’Este G, Pirazzini M, Megighian A, Lessi F, Mazzanti CM, Sales G, Romualdi C, Fillo S, Lista F, Sleigh JN, Tosolini AP, Schiavo G, Viero G, Rigoni M. Hydrogen peroxide induced by nerve injury promotes axon regeneration via connective tissue growth factor. Acta Neuropathol Commun 2022; 10:189. [PMID: 36567321 PMCID: PMC9791753 DOI: 10.1186/s40478-022-01495-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/12/2022] [Indexed: 12/26/2022] Open
Abstract
Regeneration of the neuromuscular junction (NMJ) leverages on extensive exchange of factors released from motor axon terminals (MATs), muscle fibers and perisynaptic Schwann cells (PSCs), among which hydrogen peroxide (H2O2) is a major pro-regenerative signal. To identify critical determinants of NMJ remodeling in response to injury, we performed temporal transcriptional profiling of NMJs from 2 month-old mice during MAT degeneration/regeneration, and cross-referenced the differentially expressed genes with those elicited by H2O2 in SCs. We identified an enrichment in extracellular matrix (ECM) transcripts, including Connective Tissue Growth Factor (Ctgf), which is usually expressed during development. We discovered that Ctgf levels are increased in a Yes-associated protein (YAP)-dependent fashion in response to rapid, local H2O2 signaling generated by stressed mitochondria in the injured sciatic nerve, a finding highlighting the importance of signals triggered by mechanical force to motor nerve repair. Through sequestration of Ctgf or inactivation of H2O2, we delayed the recovery of neuromuscular function by impairing SC migration and, in turn, axon-oriented re-growth. These data indicate that H2O2 and its downstream effector Ctgf are pro-regenerative factors that enable axonal growth, and reveal a striking ECM remodeling process during nerve regeneration upon local H2O2 signaling. Our study identifies key transcriptomic changes at the regenerating NMJ, providing a rich source of pro-regenerative factors with potential for alleviating the consequences of peripheral nerve injuries.
Collapse
Affiliation(s)
- Samuele Negro
- grid.5608.b0000 0004 1757 3470Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy ,grid.5608.b0000 0004 1757 3470U.O.C. Clinica Neurologica, Azienda Ospedale, University of Padua, 35128 Padua, Italy
| | - Fabio Lauria
- grid.419463.d0000 0004 1756 3731Institute of Biophysics, CNR Unit at Trento, 38123 Povo, Italy
| | - Marco Stazi
- grid.5608.b0000 0004 1757 3470Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Toma Tebaldi
- grid.11696.390000 0004 1937 0351Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Povo, Italy ,grid.47100.320000000419368710Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Giorgia D’Este
- grid.5608.b0000 0004 1757 3470Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Marco Pirazzini
- grid.5608.b0000 0004 1757 3470Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy ,grid.5608.b0000 0004 1757 3470Myology Center (CIR-Myo), University of Padua, 35129 Padua, Italy
| | - Aram Megighian
- grid.5608.b0000 0004 1757 3470Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy ,grid.5608.b0000 0004 1757 3470Padua Neuroscience Center, University of Padua, 35131 Padua, Italy
| | - Francesca Lessi
- Laboratory of Genomics, Pisa Science Foundation, 56017 San Giuliano Terme, Italy
| | - Chiara M. Mazzanti
- Laboratory of Genomics, Pisa Science Foundation, 56017 San Giuliano Terme, Italy
| | - Gabriele Sales
- grid.5608.b0000 0004 1757 3470Department of Biology, University of Padua, 35131 Padua, Italy
| | - Chiara Romualdi
- grid.5608.b0000 0004 1757 3470Department of Biology, University of Padua, 35131 Padua, Italy
| | - Silvia Fillo
- grid.470599.60000 0004 1760 920XCenter of Medical and Veterinary Research of the Ministry of Defence, 00184 Rome, Italy
| | - Florigio Lista
- grid.470599.60000 0004 1760 920XCenter of Medical and Veterinary Research of the Ministry of Defence, 00184 Rome, Italy
| | - James N. Sleigh
- grid.83440.3b0000000121901201Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG UK ,grid.83440.3b0000000121901201UCL Queen Square Motor Neuron Disease Centre, University College London, London, WC1N 3BG UK ,grid.83440.3b0000000121901201UK Dementia Research Institute, University College London, London, WC1E 6BT UK
| | - Andrew P. Tosolini
- grid.83440.3b0000000121901201Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG UK ,grid.83440.3b0000000121901201UCL Queen Square Motor Neuron Disease Centre, University College London, London, WC1N 3BG UK
| | - Giampietro Schiavo
- grid.83440.3b0000000121901201Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG UK ,grid.83440.3b0000000121901201UCL Queen Square Motor Neuron Disease Centre, University College London, London, WC1N 3BG UK ,grid.83440.3b0000000121901201UK Dementia Research Institute, University College London, London, WC1E 6BT UK
| | - Gabriella Viero
- grid.419463.d0000 0004 1756 3731Institute of Biophysics, CNR Unit at Trento, 38123 Povo, Italy
| | - Michela Rigoni
- Department of Biomedical Sciences, University of Padua, 35131, Padua, Italy. .,Myology Center (CIR-Myo), University of Padua, 35129, Padua, Italy.
| |
Collapse
|
11
|
Perineural Capsaicin Treatment Inhibits Collateral Sprouting of Intact Cutaneous Nociceptive Afferents. Biomedicines 2022; 10:biomedicines10061326. [PMID: 35740347 PMCID: PMC9220090 DOI: 10.3390/biomedicines10061326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 02/01/2023] Open
Abstract
Perineural treatment of peripheral nerves with capsaicin produces a long-lasting selective regional thermo- and chemo-analgesia and elimination of the neurogenic inflammatory response involving degeneration of nociceptive afferent fibers. In this study, we examined longitudinal changes in mustard oil–induced sensory neurogenic vasodilatation and plasma extravasation following perineural capsaicin treatment of the rat saphenous nerve utilizing scanning laser Doppler imaging and vascular labeling with colloidal silver. Capsaicin treatment resulted in a marked decrease in mustard oil–induced vasodilatation in the skin area served by the saphenous nerve. Repeated imaging of the vasodilatatory response showed no recovery for at least 7 weeks. However, following transection and ligation of the capsaicin-treated saphenous nerve, a substantial recovery of the vasodilatatory response was observed, suggesting a reinnervation of the chemodenervated skin area by collateral sprouting of neighboring intact sciatic nerve afferents. Elimination of the recovered vascular reaction by capsaicin treatment of the sciatic nerve supported this conclusion. Similar results have been obtained by using the vascular labeling technique. These findings indicate an inhibitory effect of persisting cutaneous nerve fibers on the collateral sprouting of intact nerve fibers into the chemodenervated skin area. These observations may bear implications for the development of sensory disturbances following peripheral nerve injuries.
Collapse
|
12
|
Sensory Neurotization of the Ulnar Nerve, Surgical Techniques and Functional Outcomes: A Review. J Clin Med 2022; 11:jcm11071903. [PMID: 35407511 PMCID: PMC8999486 DOI: 10.3390/jcm11071903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 11/17/2022] Open
Abstract
When ulnar nerve lesions happen above the wrist level, sensation recovery after acute repair or nerve grafting is often challenging. Distal sensory nerve transfers may be an option for overcoming these sequelae. However, little data has been published on this topic. This study aims to review the surgical procedures currently proposed, along with their functional results. Six donor nerves have been described at the wrist level: the palmar branch of the median nerve, the cutaneous branch of the median nerve to the palm with or without fascicles of the ulnar digital nerve of the index finger, the posterior interosseous nerve, the third palmar digital nerve, the radial branch of the superficial radial nerve, the median nerve, and the fascicule for the third web space. Three donor nerves have been reported at the hand level: the ulnar digital nerves of the index, and the radial or ulnar digital nerves of the long finger. Three target sites were used: the superficial branch of the ulnar nerve, the dorsal branch of the ulnar nerve, and the ulnar digital branch of the fifth digit. All the technical points have been illustrated with anatomical dissection pictures. After assessing sensory recovery using the British Medical Research Council scale, a majority of excellent recoveries scaled S3+ or S4 have been reported in the targeted territory for each technique.
Collapse
|
13
|
Does hyperbaric oxygen therapy facilitate peripheral nerve recovery in upper extremity injuries? A prospective study of 74 patients. Eur J Trauma Emerg Surg 2022; 48:3997-4003. [DOI: 10.1007/s00068-022-01920-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 02/12/2022] [Indexed: 11/03/2022]
|
14
|
Barr JL, Kruse A, Restaino AC, Tulina N, Stuckelberger S, Vermeer SJ, Williamson CS, Vermeer DW, Madeo M, Stamp J, Bell M, Morgan M, Yoon JY, Mitchell MA, Budina A, Omran DK, Schwartz LE, Drapkin R, Vermeer PD. Intra-Tumoral Nerve-Tracing in a Novel Syngeneic Model of High-Grade Serous Ovarian Carcinoma. Cells 2021; 10:3491. [PMID: 34944001 PMCID: PMC8699855 DOI: 10.3390/cells10123491] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
Dense tumor innervation is associated with enhanced cancer progression and poor prognosis. We observed innervation in breast, prostate, pancreatic, lung, liver, ovarian, and colon cancers. Defining innervation in high-grade serous ovarian carcinoma (HGSOC) was a focus since sensory innervation was observed whereas the normal tissue contains predominantly sympathetic input. The origin, specific nerve type, and the mechanisms promoting innervation and driving nerve-cancer cell communications in ovarian cancer remain largely unknown. The technique of neuro-tracing enhances the study of tumor innervation by offering a means for identification and mapping of nerve sources that may directly and indirectly affect the tumor microenvironment. Here, we establish a murine model of HGSOC and utilize image-guided microinjections of retrograde neuro-tracer to label tumor-infiltrating peripheral neurons, mapping their source and circuitry. We show that regional sensory neurons innervate HGSOC tumors. Interestingly, the axons within the tumor trace back to local dorsal root ganglia as well as jugular-nodose ganglia. Further manipulations of these tumor projecting neurons may define the neuronal contributions in tumor growth, invasion, metastasis, and responses to therapeutics.
Collapse
Affiliation(s)
- Jeffrey L. Barr
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St. North, Sioux Falls, SD 57104, USA; (J.L.B.); (A.K.); (A.C.R.); (C.S.W.); (D.W.V.); (M.M.); (J.S.)
| | - Allison Kruse
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St. North, Sioux Falls, SD 57104, USA; (J.L.B.); (A.K.); (A.C.R.); (C.S.W.); (D.W.V.); (M.M.); (J.S.)
| | - Anthony C. Restaino
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St. North, Sioux Falls, SD 57104, USA; (J.L.B.); (A.K.); (A.C.R.); (C.S.W.); (D.W.V.); (M.M.); (J.S.)
- Sanford School of Medicine, University of South Dakota, 414 East Clark St., Vermillion, SD 57069, USA
| | - Natalia Tulina
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, Philadelphia, PA 19104, USA; (N.T.); (S.S.); (M.M.); (M.A.M.); (D.K.O.); (R.D.)
| | - Sarah Stuckelberger
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, Philadelphia, PA 19104, USA; (N.T.); (S.S.); (M.M.); (M.A.M.); (D.K.O.); (R.D.)
| | - Samuel J. Vermeer
- Lincoln High School, 2900 South Cliff Avenue, Sioux Falls, SD 57105, USA;
| | - Caitlin S. Williamson
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St. North, Sioux Falls, SD 57104, USA; (J.L.B.); (A.K.); (A.C.R.); (C.S.W.); (D.W.V.); (M.M.); (J.S.)
| | - Daniel W. Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St. North, Sioux Falls, SD 57104, USA; (J.L.B.); (A.K.); (A.C.R.); (C.S.W.); (D.W.V.); (M.M.); (J.S.)
| | - Marianna Madeo
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St. North, Sioux Falls, SD 57104, USA; (J.L.B.); (A.K.); (A.C.R.); (C.S.W.); (D.W.V.); (M.M.); (J.S.)
| | - Jillian Stamp
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St. North, Sioux Falls, SD 57104, USA; (J.L.B.); (A.K.); (A.C.R.); (C.S.W.); (D.W.V.); (M.M.); (J.S.)
| | - Maria Bell
- Sanford Gynecologic Oncology, Sanford Health, 1309 West 17th St., Sioux Falls, SD 57104, USA;
| | - Mark Morgan
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, Philadelphia, PA 19104, USA; (N.T.); (S.S.); (M.M.); (M.A.M.); (D.K.O.); (R.D.)
| | - Ju-Yoon Yoon
- Laboratory Medicine, Department of Pathology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St., Philadelphia, PA 19104, USA; (J.-Y.Y.); (A.B.); (L.E.S.)
| | - Marilyn A. Mitchell
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, Philadelphia, PA 19104, USA; (N.T.); (S.S.); (M.M.); (M.A.M.); (D.K.O.); (R.D.)
| | - Anna Budina
- Laboratory Medicine, Department of Pathology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St., Philadelphia, PA 19104, USA; (J.-Y.Y.); (A.B.); (L.E.S.)
| | - Dalia K. Omran
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, Philadelphia, PA 19104, USA; (N.T.); (S.S.); (M.M.); (M.A.M.); (D.K.O.); (R.D.)
| | - Lauren E. Schwartz
- Laboratory Medicine, Department of Pathology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St., Philadelphia, PA 19104, USA; (J.-Y.Y.); (A.B.); (L.E.S.)
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd, Philadelphia, PA 19104, USA; (N.T.); (S.S.); (M.M.); (M.A.M.); (D.K.O.); (R.D.)
| | - Paola D. Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St. North, Sioux Falls, SD 57104, USA; (J.L.B.); (A.K.); (A.C.R.); (C.S.W.); (D.W.V.); (M.M.); (J.S.)
- Sanford School of Medicine, University of South Dakota, 414 East Clark St., Vermillion, SD 57069, USA
| |
Collapse
|
15
|
MicroRNAs 21 and 199a-3p Regulate Axon Growth Potential through Modulation of Pten and mTor mRNAs. eNeuro 2021; 8:ENEURO.0155-21.2021. [PMID: 34326064 PMCID: PMC8362682 DOI: 10.1523/eneuro.0155-21.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/11/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022] Open
Abstract
Increased mTOR activity has been shown to enhance regeneration of injured axons by increasing neuronal protein synthesis, while PTEN signaling can block mTOR activity to attenuate protein synthesis. MicroRNAs (miRs) have been implicated in regulation of PTEN and mTOR expression, and previous work in spinal cord showed an increase in miR-199a-3p after spinal cord injury (SCI) and increase in miR-21 in SCI animals that had undergone exercise. Pten mRNA is a target for miR-21 and miR-199a-3p is predicted to target mTor mRNA. Here, we show that miR-21 and miR-199a-3p are expressed in adult dorsal root ganglion (DRG) neurons, and we used culture preparations to test functions of the rat miRs in adult DRG and embryonic cortical neurons. miR-21 increases and miR-199a-3p decreases in DRG neurons after in vivo axotomy. In both the adult DRG and embryonic cortical neurons, miR-21 promotes and miR-199a-3p attenuates neurite growth. miR-21 directly bound to Pten mRNA and miR-21 overexpression decreased Pten mRNA levels. Conversely, miR-199a-3p directly bound to mTor mRNA and miR-199a-3p overexpression decreased mTor mRNA levels. Overexpressing miR-21 increased both overall and intra-axonal protein synthesis in cultured DRGs, while miR-199a-3p overexpression decreased this protein synthesis. The axon growth phenotypes seen with miR-21 and miR-199a-3p overexpression were reversed by co-transfecting PTEN and mTOR cDNA expression constructs with the predicted 3′ untranslated region (UTR) miR target sequences deleted. Taken together, these studies indicate that injury-induced alterations in miR-21 and miR-199a-3p expression can alter axon growth capacity by changing overall and intra-axonal protein synthesis through regulation of the PTEN/mTOR pathway.
Collapse
|
16
|
Lemaitre D, Court FA. New insights on the molecular mechanisms of collateral sprouting after peripheral nerve injury. Neural Regen Res 2021; 16:1760-1761. [PMID: 33510065 PMCID: PMC8328757 DOI: 10.4103/1673-5374.306069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Dominique Lemaitre
- Universidad del Desarrollo, Facultad de Medicina, Centro de Fisiología Celular e Integrativa, Santiago, Chile
| | - Felipe A Court
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor; Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile; The Buck Institute for Research on Aging, Novato, CA, USA
| |
Collapse
|