1
|
Lu T, Luo L, Yang J, Cheng X, Sun J. Circulating Levels of T-Cell Traits and the Risk of Amyotrophic Lateral Sclerosis: A Mendelian Randomization Study. Mol Neurobiol 2024; 61:10529-10537. [PMID: 38748065 DOI: 10.1007/s12035-024-04226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/08/2024] [Indexed: 11/24/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) represents a rare and potentially fatal neurodegenerative disease. Diverse T-cell subsets could potentially exert diametrically opposite impacts upon ALS development. A two-sample Mendelian randomization (MR) analysis was performed to investigate the correlation between 244 T-cell subsets and ALS risk. Genetic instrumental variables were procured from a standard genome-wide association study (GWAS) that encompassed 244 T-cell subsets in 3757 individuals of European lineage. ALS-related data were collected from a GWAS comprising 20,806 ALS instances and 59,804 European control participants. Multiple sensitivity analyses were performed to verify the robustness of the significant results. Reverse MR analysis was used for delineating the effects of ALS on the characteristics of T-cells. After multiple comparison corrections, 24 out of the 244 subtypes demonstrated a potential association with ALS risk. Significantly, 75% of these associations encompassed the expression of the CD3 on diverse T-cell subtypes, revealing a highly consistent inverse relation to ALS risk. The proportion of T regulatory cells (Tregs) in CD4+ T cells and secreting Tregs in CD4+ T cells demonstrated negative associations with the risk of ALS. CCR7 expression on naive CD4+ T cells and CCR7 expression on naive CD8+ T cells showed positive associations with ALS risk. Certain T-cell subsets, particularly those identified by CD3 expression on terminally differentiated CD8+ T cells, proportions of Tregs, and CCR7 expression, indicated an association with ALS risk. These findings harmonize with and extend previous observational studies investigating the involvement of T lymphocyte subset-induced immunological processes in ALS.
Collapse
Affiliation(s)
- Ting Lu
- The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Lijun Luo
- Department of Neurology, Wuhan No.1 Hospital, Wuhan, 430033, China
| | - Jie Yang
- Department of Neurology, Wuhan No.1 Hospital, Wuhan, 430033, China
| | - Xiao Cheng
- The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China.
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, 510120, China.
| | - Jingbo Sun
- The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China.
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, 510120, China.
| |
Collapse
|
2
|
Jiang Z, Chen L, Liu A, Qi J, Wang J, Li Y, Jiang H, Zhang J, Huang S, Mao C, Ying Z. Rheumatoid arthritis and the risk of chronic kidney diseases: a Mendelian randomization study. Front Med (Lausanne) 2024; 11:1360026. [PMID: 38818388 PMCID: PMC11137270 DOI: 10.3389/fmed.2024.1360026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/01/2024] [Indexed: 06/01/2024] Open
Abstract
Background The extra-articular lesions of rheumatoid arthritis (RA) are reported to involve multiple organs and systems throughout the body, including the heart, kidneys, liver, and lungs. This study assessed the potential causal relationship between RA and the risk of chronic kidney diseases (CKDs) using the Mendelian randomization (MR) analysis. Method Independent genetic instruments related to RA and CKD or CKD subtypes at the genome-wide significant level were chosen from the publicly shared summary-level data of genome-wide association studies (GWAS). Then, we obtained some single-nucleotide polymorphisms (SNPs) as instrumental variables (IVs), which are associated with RA in individuals of European origin, and had genome-wide statistical significance (p5 × 10-8). The inverse-variance weighted (IVW) method was the main analysis method in MR analysis. The other methods, such as weighted median, MR-Egger, simple mode, and weighted mode were used as supplementary sensitivity analyses. Furthermore, the levels of pleiotropy and heterogeneity were assessed using Cochran's Q test and leave-one-out analysis. Furthermore, the relevant datasets were obtained from the Open GWAS database. Results Using the IVW method, the main method in MR analysis, the results showed that genetically determined RA was associated with higher risks of CKD [odds ratio (OR): 1.22, 95% confidence interval (CI) 1.13-1.31; p < 0.001], glomerulonephritis (OR: 1.23, 95% CI 1.15-1.31; p < 0.000), amyloidosis (OR = 1.43, 95% CI 1.10-1.88, p < 0.001), and renal failure (OR = 1.18, 95% CI 1.00-1.38, p < 0.001). Then, using multiple MR methods, it was confirmed that the associations persisted in sensitivity analyses, and no pleiotropy was detected. Conclusion The findings revealed a causal relationship between RA and CKD, including glomerulonephritis, amyloidosis, and renal failure. Therefore, RA patients should pay more attention to monitoring their kidney function, thus providing the opportunity for earlier intervention and lower the risk of progression to CKDs.
Collapse
Affiliation(s)
- Zhaoyu Jiang
- Zhejiang Province People’s Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Department of Rheumatology and Immunology of Zhejiang Provincial People's Hospital, Center for General Practice Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Arthritis Diagnosis and Treatment, Hangzhou, China
| | - Lin Chen
- Zhejiang Province People’s Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Department of Rheumatology and Immunology of Zhejiang Provincial People's Hospital, Center for General Practice Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Arthritis Diagnosis and Treatment, Hangzhou, China
| | - Aihui Liu
- Zhejiang Province People’s Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Department of Rheumatology and Immunology of Zhejiang Provincial People's Hospital, Center for General Practice Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Arthritis Diagnosis and Treatment, Hangzhou, China
| | - Jiaping Qi
- Zhejiang Province People’s Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Department of Rheumatology and Immunology of Zhejiang Provincial People's Hospital, Center for General Practice Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Arthritis Diagnosis and Treatment, Hangzhou, China
| | - Jing Wang
- Zhejiang Province People’s Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Department of Rheumatology and Immunology of Zhejiang Provincial People's Hospital, Center for General Practice Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Arthritis Diagnosis and Treatment, Hangzhou, China
| | - Yixuan Li
- Zhejiang Province People’s Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Department of Rheumatology and Immunology of Zhejiang Provincial People's Hospital, Center for General Practice Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Arthritis Diagnosis and Treatment, Hangzhou, China
| | - Huan Jiang
- Zhejiang Province People’s Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Department of Rheumatology and Immunology of Zhejiang Provincial People's Hospital, Center for General Practice Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Arthritis Diagnosis and Treatment, Hangzhou, China
| | - Ju Zhang
- Zhejiang Province People’s Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Department of Rheumatology and Immunology of Zhejiang Provincial People's Hospital, Center for General Practice Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Arthritis Diagnosis and Treatment, Hangzhou, China
| | - Shan Huang
- Zhejiang Province People’s Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Department of Rheumatology and Immunology of Zhejiang Provincial People's Hospital, Center for General Practice Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Arthritis Diagnosis and Treatment, Hangzhou, China
| | - Chengliang Mao
- Zhejiang Province People’s Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Department of Rheumatology and Immunology of Zhejiang Provincial People's Hospital, Center for General Practice Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Arthritis Diagnosis and Treatment, Hangzhou, China
| | - Zhenhua Ying
- Zhejiang Province People’s Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Department of Rheumatology and Immunology of Zhejiang Provincial People's Hospital, Center for General Practice Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Arthritis Diagnosis and Treatment, Hangzhou, China
| |
Collapse
|
3
|
Din Abdul Jabbar MA, Guo L, Nag S, Guo Y, Simmons Z, Pioro EP, Ramasamy S, Yeo CJJ. Predicting amyotrophic lateral sclerosis (ALS) progression with machine learning. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:242-255. [PMID: 38052485 DOI: 10.1080/21678421.2023.2285443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/14/2023] [Indexed: 12/07/2023]
Abstract
OBJECTIVE To predict ALS progression with varying observation and prediction window lengths, using machine learning (ML). METHODS We used demographic, clinical, and laboratory parameters from 5030 patients in the Pooled Resource Open-Access ALS Clinical Trials (PRO-ACT) database to model ALS disease progression as fast (at least 1.5 points decline in ALS Functional Rating Scale-Revised (ALSFRS-R) per month) or non-fast, using Extreme Gradient Boosting (XGBoost) and Bayesian Long Short Term Memory (BLSTM). XGBoost identified predictors of progression while BLSTM provided a confidence level for each prediction. RESULTS ML models achieved area under receiver-operating-characteristics curve (AUROC) of 0.570-0.748 and were non-inferior to clinician assessments. Performance was similar with observation lengths of a single visit, 3, 6, or 12 months and on a holdout validation dataset, but was better for longer prediction lengths. 21 important predictors were identified, with the top 3 being days since disease onset, past ALSFRS-R and forced vital capacity. Nonstandard predictors included phosphorus, chloride and albumin. BLSTM demonstrated higher performance for the samples about which it was most confident. Patient screening by models may reduce hypothetical Phase II/III clinical trial sizes by 18.3%. CONCLUSION Similar accuracies across ML models using different observation lengths suggest that a clinical trial observation period could be shortened to a single visit and clinical trial sizes reduced. Confidence levels provided by BLSTM gave additional information on the trustworthiness of predictions, which could aid decision-making. The identified predictors of ALS progression are potential biomarkers and therapeutic targets for further research.
Collapse
Affiliation(s)
- Muzammil Arif Din Abdul Jabbar
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ling Guo
- Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Sonakshi Nag
- Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yang Guo
- Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Zachary Simmons
- Department of Neurology, Pennsylvania State University College of Medicine, State College, PA, USA
| | - Erik P Pioro
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Savitha Ramasamy
- Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Crystal Jing Jing Yeo
- Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Lee Kong Chien School of Medicine, Imperial College London and Nanyang Technological University Singapore, Singapore, Singapore
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
4
|
Xu CZ, Huan X, Luo SS, Zhong HH, Zhao CB, Chen Y, Zou ZY, Chen S. Serum cytokines profile changes in amyotrophic lateral sclerosis. Heliyon 2024; 10:e28553. [PMID: 38596011 PMCID: PMC11002056 DOI: 10.1016/j.heliyon.2024.e28553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/11/2024] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder, characterized by progressive limb weakness, dysphagia, dysphonia, and respiratory failure due to degeneration of upper and lower motor neurons. The pathogenesis of ALS is still unclear. Neuroinflammation has been found to be involved in its development and progression. Cytokines play a significant role in the inflammatory process. This study aims to identify novel biomarkers that may assist in the diagnosis of ALS. Methods In Fujian Medical University Union Hospital and Huashan Hospital Fudan University, two independent centers, we prospectively recruited 50 ALS patients, and 41 healthy controls (25 ALS and 26 controls in the first stage and 25 ALS and 15 controls in the validation stage). An 18-plex Luminex kit was used to screen the serum cytokines levels in the first stage. Commercial ELISA kits were used to measure the levels of target cytokines in the validation stage. A single-molecule array HD-X platform was applied to assess the levels of serum neurofilament light chain (NFL). Results The levels of serum IL-18 were markedly increased in patients with ALS in the first stage (p = 0.016). The ROC curve showed an area under the curve at 0.695 (95% CI 0.50-0.84) in distinguishing ALS patients from healthy controls. The IL-21 was decreased in elderly patients when grouped by 55 years old (the medium age). Furthermore, the IL-5, IL-13, IL-18, and NFL had a positive relationship with the disease progression of ALS. We also found that serum IL-18 was markedly increased in ALS patients in the validation stage (167.67 [148.25-175.59] vs 116.44 [102.43-122.19]pg/ml, p < 0.0015). Conclusion In this study, we identified systemic cytokine profile changes in the serum of ALS patients, especially the elevated IL-18, as well as the decreased IL-21 in elder patients. These changes in serum cytokine profiles may shed new light on an in-depth understanding of the immunopathogenic characteristics of ALS.
Collapse
Affiliation(s)
- Chun-Zuan Xu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Xiao Huan
- Department of Neurology, Fudan University Huashan Hospital, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Su-Shan Luo
- Department of Neurology, Fudan University Huashan Hospital, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Hua-Hua Zhong
- Department of Neurology, Fudan University Huashan Hospital, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Chong-Bo Zhao
- Department of Neurology, Fudan University Huashan Hospital, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Yan Chen
- Department of Neurology, Fudan University Huashan Hospital, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Zhang-Yu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Sheng Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
5
|
Pu K, Li L, Qiu Y, Song H. Lipids and sudden sensorineural hearing loss: A bidirectional two-sample Mendelian randomization analysis. Auris Nasus Larynx 2024; 51:365-370. [PMID: 37993362 DOI: 10.1016/j.anl.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/23/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
OBJECTIVE While numerous observational studies have indicated an association between lipids and Sudden Sensorineural Hearing Loss (SSNHL), it remains uncertain whether dyslipidemia serves as a causal risk factor for SSNHL. Our objective is to elucidate the potential causal relationship between lipid levels and SSNHL through Mendelian randomization analysis. METHODS The primary and secondary lipid data used in this study were sourced from the UK Biobank (UKBB) and the Global Lipid Genetics Consortium results (GLGC), respectively. These datasets were obtained from large, publicly available genome-wide association studies (GWAS). The outcome data for sudden sensorineural hearing loss (SSNHL) were acquired from the Finnegan Biobank, consisting of 1491 cases and 196,592 controls. Subsequently, both single-variable Mendelian randomization (SVMR) and multivariate Mendelian randomization (MVMR) methods were employed to evaluate the causal relationship between lipids and the occurrence of SSNHL. RESULTS Among the primary lipid data, SVMR analysis showed a significant correlation between high density lipoprotein cholesterol (HDL-C) (OR: 0.822, 95 %CI: 0.694-0.974, p = 0.023) and SSNHL, and triglycerides (TG) (OR: 0.997, 95 %CI: 0.836-1.188, p = 0.975), low density lipoprotein cholesterol (LDL-C) (OR: 1.067, 95 %CI: 0.861-1.322, p = 0.552) did not correlate with SSNHL. In the secondary lipid data, SVMR analysis showed that HDL-C (OR: 0.987, 95 %CI: 0.805-1.210, p = 0.903), TG (OR: 0.991, 95 %CI: 0.787-1.246, p = 0.937) and LDL-C (OR: 1.092, 95 % CI: 0.926-1.287, p = 0.294) did not correlate with SSNHL. MVMR analysis of the primary lipid data showed that HDL-cholesterol (OR: 0.755, 95 % CI: 0.596-0.956, p = 0.019) was significantly associated with SSNHL, while TG (OR: 0.808, 95 %CI: 0.611-1.068, p = 0.134) and LDL-C (OR: 1.146, 95 %CI: 0.869-1.511, p = 0.333) did not correlate with SSNHL, consistent with the results of SVMR. Inverse MR results showed that SSNHL did not correlate with TG (OR: 0.999, 95 %CI: 0.997-1.001, p = 0.835), HDL-C (OR: 1.001, 95 %CI: 0.998-1.003), LDL-C (OR: 0.999, 95 %CI: 0.997-1.002, p = 0.863). CONCLUSIONS Mendelian randomization (MR) results suggest that decreased serum HDL-C levels are an independent risk factor for SSNHL. Monitoring and focusing on lipid levels may be of value in the prevention and treatment of SSNHL.
Collapse
Affiliation(s)
- Kunlin Pu
- Department of Otorhinolaryngology, Pengzhou Hospital of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Li Li
- Department of Otorhinolaryngology, Pengzhou Hospital of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yan Qiu
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hongmei Song
- Department of Otorhinolaryngology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Liu K, Guo Q, Ding Y, Luo L, Huang J, Zhang Q. Alterations in nasal microbiota of patients with amyotrophic lateral sclerosis. Chin Med J (Engl) 2024; 137:162-171. [PMID: 37482646 PMCID: PMC10798702 DOI: 10.1097/cm9.0000000000002701] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Links between alterations in gut microbiota composition and amyotrophic lateral sclerosis (ALS) have previously been reported. This study aimed to examine the microbiota in the nasal cavity of ALS. METHODS Sixty-six ALS patients and 40 healthy caregivers who live in close proximity with patients were enrolled. High throughput metagenomic sequencing of the 16S ribosomal deoxyribonucleic acid (rDNA) gene V3-V4 region of nasal microbiota was used to characterize the alpha and beta diversity and relative abundance of bacterial taxa, predict function, and conduct correlation analysis between specific taxa and clinical features. RESULTS The nasal microbiome of ALS patients showed lower alpha diversity than that of corresponding healthy family members. Genera Gaiella , Sphingomonas , Polaribacter _1, Lachnospiraceae _NK4A136_group, Klebsiella , and Alistipes were differentially enriched in ALS patients compared to controls. Nasal microbiota composition in ALS patients significantly differed from that in healthy subjects (unweighted UniFrac P = 0.001), while Linear discriminant analysis Effect Size (LEfSe) analysis indicated that Bacteroidetes and Firmicutes dominated healthy nasal communities at the phylum level, whereas Actinobacteria was the predominant phylum and Thermoleophilia was the predominant class in ALS patients. Genus Faecalibacterium and Alistipes were positively correlated with ALS functional rating scale revised (ALSFRS-R; rs = 0.349, P = 0.020 and rs = 0.393, P = 0.008), while Prevotella -9 and Bacteroides operational taxonomic units (OTUs) were positively associated with lung function (FVC) in ALS patients ( rs = 0.304, P = 0.045, and rs = 0.300, P = 0.048, respectively). Prevotella -1 was positively correlated with white blood cell counts (WBC, rs = 0.347, P = 0.021), neutrophil percentage (Neu%, rs = 0.428, P = 0.004), and neutrophil-to-lymphocyte ratio (NLR, rs = 0.411, P = 0.006), but negatively correlated with lymphocyte percentage (Lym%, rs = -0.408, P = 0.006). In contrast, Streptococcus was negatively associated with Neu% ( rs = -0.445, P = 0.003) and NLR ( rs = -0.436, P = 0.003), while positively associated with Lym% ( rs = 0.437, P = 0.003). No significant differences in nasal microbiota richness and evenness were detected among the severe and mild ALS patients. CONCLUSIONS ALS is accompanied by altered nasal microbial community composition and diversity. The findings presented here highlight the need to understand how dysbiosis of nasal microbiota may contribute to the development of ALS.
Collapse
Affiliation(s)
- Kaixiong Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
- Department of Respiratory and Critical Care Medicine, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Qifu Guo
- Department of Neurology, Fujian Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Ying Ding
- Department of Neurology, Fujian Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Li Luo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
- Department of Respiratory and Critical Care Medicine, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Jianchai Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
- Department of Respiratory and Critical Care Medicine, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| | - Qijie Zhang
- Department of Neurology, Fujian Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China
| |
Collapse
|
7
|
Hu Z, Zuo C, Mao C, Shi C, Xu Y. Peripheral immune markers and amyotrophic lateral sclerosis: a Mendelian randomization study. Front Neurosci 2023; 17:1269354. [PMID: 38188028 PMCID: PMC10768049 DOI: 10.3389/fnins.2023.1269354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction The peripheral immune system changes in amyotrophic lateral sclerosis (ALS), but the causal relationship between the two is still controversial. Methods In this study, we aimed to estimate the causal relationship between peripheral immune markers and ALS using a two-sample Mendelian randomization method. Genome-wide association study (GWAS) data on peripheral blood immune traits from European populations were used for exposure, and ALS summary statistics were used as the outcome. The causal relationship was evaluated by inverse variance weighting, MR-Egger, and weighted median methods and verified by multiple sensitivity analysis. Results We found that the increase of one standard deviation of lymphocyte count is related to reducing ALS risk. CD3 on effector memory CD4+ T cell, HLA DR+ CD4+ T cell, effector memory CD8+ T cell, terminally differentiated CD8+ T cell and CD28- CD8+ T cell is also a protective factor for ALS. Among the circulating immune protein, the increase of one standard deviation of α-2-macroglobulin receptor-associated protein (α-2-MRAP) and C4b showed associated with low risk of ALS, while Interleukin-21 (IL-21) increases the risk of ALS. Discussion Our study further reveals the important role of peripheral immune activity in ALS.
Collapse
Affiliation(s)
- Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Chunyan Zuo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Cao W, Fan D. Neutrophils: a subgroup of neglected immune cells in ALS. Front Immunol 2023; 14:1246768. [PMID: 37662922 PMCID: PMC10468589 DOI: 10.3389/fimmu.2023.1246768] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a chronic, progressive neurodegenerative disease characterized by the loss of motor neurons. Dysregulated peripheral immunity has been identified as a hallmark of ALS. Neutrophils, as the front-line responders of innate immunity, contribute to host defense through pathogen clearance. However, they can concurrently play a detrimental role in chronic inflammation. With the unveiling of novel functions of neutrophils in neurodegenerative diseases, it becomes essential to review our current understanding of neutrophils and to recognize the gap in our knowledge about their role in ALS. Thus, a detailed comprehension of the biological processes underlying neutrophil-induced pathogenesis in ALS may assist in identifying potential cell-based therapeutic strategies to delay disease progression.
Collapse
Affiliation(s)
- Wen Cao
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Disorders, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Disorders, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
9
|
Wei C, Zhu Y, Li S, Chen W, Li C, Jiang S, Xu R. Identification of an immune-related gene prognostic index for predicting prognosis, immunotherapeutic efficacy, and candidate drugs in amyotrophic lateral sclerosis. Front Cell Neurosci 2022; 16:993424. [PMID: 36589282 PMCID: PMC9798295 DOI: 10.3389/fncel.2022.993424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Rationale and objectives Considering the great insufficiency in the survival prediction and therapy of amyotrophic lateral sclerosis (ALS), it is fundamental to determine an accurate survival prediction for both the clinical practices and the design of treatment trials. Therefore, there is a need for more accurate biomarkers that can be used to identify the subtype of ALS which carries a high risk of progression to guide further treatment. Methods The transcriptome profiles and clinical parameters of a total of 561 ALS patients in this study were analyzed retrospectively by analysis of four public microarray datasets. Based on the results from a series of analyses using bioinformatics and machine learning, immune signatures are able to be used to predict overall survival (OS) and immunotherapeutic response in ALS patients. Apart from other comprehensive analyses, the decision tree and the nomogram, based on the immune signatures, were applied to guide individual risk stratification. In addition, molecular docking methodology was employed to screen potential small molecular to which the immune signatures might response. Results Immune was determined as a major risk factor contributing to OS among various biomarkers of ALS patients. As compared with traditional clinical features, the immune-related gene prognostic index (IRGPI) had a significantly higher capacity for survival prediction. The determination of risk stratification and assessment was optimized by integrating the decision tree and the nomogram. Moreover, the IRGPI may be used to guide preventative immunotherapy for patients at high risks for mortality. The administration of 2MIU IL2 injection in the short-term was likely to be beneficial for the prolongment of survival time, whose dosage should be reduced to 1MIU if the long-term therapy was required. Besides, a useful clinical application for the IRGPI was to screen potential compounds by the structure-based molecular docking methodology. Conclusion Ultimately, the immune-derived signatures in ALS patients were favorable biomarkers for the prediction of survival probabilities and immunotherapeutic responses, and the promotion of drug development.
Collapse
Affiliation(s)
- Caihui Wei
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Yu Zhu
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shu Li
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Wenzhi Chen
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Cheng Li
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, Jiangxi, China,Department of Neurology, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Shishi Jiang
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, Jiangxi, China,Department of Neurology, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China,*Correspondence: Renshi Xu, ;
| |
Collapse
|
10
|
Zhu Y, Li M, Zhang J, Huang X. Association Between C-Reactive Protein and Risk of Amyotrophic Lateral Sclerosis: A Mendelian Randomization Study. Front Genet 2022; 13:919031. [PMID: 35669191 PMCID: PMC9164009 DOI: 10.3389/fgene.2022.919031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Until now, the relationship between C-reactive protein (CRP) levels and amyotrophic lateral sclerosis (ALS) risk has not been fully established. It is necessary to assess whether there is a causal relationship between C-reactive protein levels and ALS risk. Objective and Methods: We aimed to determine whether CRP has causal effects on risk of ALS. In this present study, summary-level data for ALS (20,806 cases and 59,804 controls) was obtained from large analyses of genome-wide association studies. For instrumental variables, 37 single nucleotide polymorphisms that had been previously identified to be related to CRP levels were used, including 4 SNPs of conservative CRP genetic variants and 33 SNPs of liberal CRP genetic variants. MR estimates were calculated using the inverse-variance weighted method, supplemented by MR-Egger, weighted median, and MR-PRESSO methods. Results: There was no significant causal relationship between genetically predicted CRP levels and ALS risk (OR = 1.123, 95% CI = 0.963-1.309, p = 0.139) and results for the conservative CRP instruments were consistent (OR = 0.964, 95% CI = 0.830-1.119, p = 0.628). Pleiotropic bias was not observed in this study. Conclusions: This study suggests that genetically predicted CRP levels may not be a causal risk factor for ALS.
Collapse
Affiliation(s)
- Yahui Zhu
- Medical School of Chinese PLA, Beijing, China
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Mao Li
- Medical School of Chinese PLA, Beijing, China
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jinghong Zhang
- Medical School of Chinese PLA, Beijing, China
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xusheng Huang
- Medical School of Chinese PLA, Beijing, China
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
11
|
Goutman SA, Hardiman O, Al-Chalabi A, Chió A, Savelieff MG, Kiernan MC, Feldman EL. Emerging insights into the complex genetics and pathophysiology of amyotrophic lateral sclerosis. Lancet Neurol 2022; 21:465-479. [PMID: 35334234 PMCID: PMC9513754 DOI: 10.1016/s1474-4422(21)00414-2] [Citation(s) in RCA: 208] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/21/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis is a fatal neurodegenerative disease. The discovery of genes associated with amyotrophic lateral sclerosis, commencing with SOD1 in 1993, started fairly gradually. Recent advances in genetic technology have led to the rapid identification of multiple new genes associated with the disease, and to a new understanding of oligogenic and polygenic disease risk. The overlap of genes associated with amyotrophic lateral sclerosis with those of other neurodegenerative diseases is shedding light on the phenotypic spectrum of neurodegeneration, leading to a better understanding of genotype-phenotype correlations. A deepening knowledge of the genetic architecture is allowing the characterisation of the molecular steps caused by various mutations that converge on recurrent dysregulated pathways. Of crucial relevance, mutations associated with amyotrophic lateral sclerosis are amenable to novel gene-based therapeutic options, an approach in use for other neurological illnesses. Lastly, the exposome-the summation of lifetime environmental exposures-has emerged as an influential component for amyotrophic lateral sclerosis through the gene-time-environment hypothesis. Our improved understanding of all these aspects will lead to long-awaited therapies and the identification of modifiable risks factors.
Collapse
Affiliation(s)
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, and Department of Neurology, King's College London, London, UK
| | - Adriano Chió
- Rita Levi Montalcini Department of Neurosciences, University of Turin, Turin, Italy
| | | | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia; Department of Neurology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
12
|
Julian TH, Boddy S, Islam M, Kurz J, Whittaker KJ, Moll T, Harvey C, Zhang S, Snyder MP, McDermott C, Cooper-Knock J, Shaw PJ. A review of Mendelian randomization in amyotrophic lateral sclerosis. Brain 2022; 145:832-842. [PMID: 34791088 PMCID: PMC9050546 DOI: 10.1093/brain/awab420] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/02/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic lateral sclerosis is a relatively common and rapidly progressive neurodegenerative disease that, in the majority of cases, is thought to be determined by a complex gene-environment interaction. Exponential growth in the number of performed genome-wide association studies combined with the advent of Mendelian randomization is opening significant new opportunities to identify environmental exposures that increase or decrease the risk of amyotrophic lateral sclerosis. Each of these discoveries has the potential to shape new therapeutic interventions. However, to do so, rigorous methodological standards must be applied in the performance of Mendelian randomization. We have reviewed Mendelian randomization studies performed in amyotrophic lateral sclerosis to date. We identified 20 Mendelian randomization studies, including evaluation of physical exercise, adiposity, cognitive performance, immune function, blood lipids, sleep behaviours, educational attainment, alcohol consumption, smoking and type 2 diabetes mellitus. We have evaluated each study using gold standard methodology supported by the Mendelian randomization literature and the STROBE-Mendelian randomization checklist. Where discrepancies exist between Mendelian randomization studies, we suggest the underlying reasons. A number of studies conclude that there is a causal link between blood lipids and risk of amyotrophic lateral sclerosis; replication across different datasets and even different populations adds confidence. For other putative risk factors, such as smoking and immune function, Mendelian randomization studies have provided cause for doubt. We highlight the use of positive control analyses in choosing exposure single nucleotide polymorphisms (SNPs) to make up the Mendelian randomization instrument, use of SNP clumping to avoid false positive results due to SNPs in linkage and the importance of multiple testing correction. We discuss the implications of survival bias for study of late age of onset diseases such as amyotrophic lateral sclerosis and make recommendations to mitigate this potentially important confounder. For Mendelian randomization to be useful to the amyotrophic lateral sclerosis field, high methodological standards must be applied to ensure reproducibility. Mendelian randomization is already an impactful tool, but poor-quality studies will lead to incorrect interpretations by a field that includes non-statisticians, wasted resources and missed opportunities.
Collapse
Affiliation(s)
- Thomas H Julian
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Sarah Boddy
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Mahjabin Islam
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Julian Kurz
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Katherine J Whittaker
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Tobias Moll
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Calum Harvey
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Sai Zhang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Christopher McDermott
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Johnathan Cooper-Knock
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Pamela J Shaw
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| |
Collapse
|
13
|
Wang M, Huang S, Lin X, Wen C, He Z, Huang L. The Causal Relationship Between Blood Lipids and Systemic Lupus Erythematosus Risk: A Bidirectional Two-Sample Mendelian Randomization Study. Front Genet 2022; 13:858653. [PMID: 35495122 PMCID: PMC9043646 DOI: 10.3389/fgene.2022.858653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Although observational studies have demonstrated that blood lipids were associated with systemic lupus erythematosus (SLE), the causality of this association remains elusive as traditional observational studies were prone to confounding and reverse causality biases. Here, this study attempted to reveal the potential causal link between SLE and the levels of four blood lipids (HDL cholesterol, LDL cholesterol, TG, and TC).Methods: Bidirectional two-sample Mendelian randomization (MR) was employed to explore the unconfounded causal associations between the four blood lipids and SLE. In addition, regression-based Multivariate MR (MVMR) to quantify the possible mediation effects of blood lipids on SLE. After a rigorous evaluation of the quality of studies, the single-nucleotide polymorphisms (SNPs) associated with the four blood lipids were selected from the Global Lipids Genetic Consortium (GLGC) consisted of 188,577 individuals of European ancestry, and the SNPs related to SLE were selected from a large-scale genome-wide association study (GWAS) database named IEU GWAS. Subsequently, MR analyses were conducted with inverse-variance weighted (IVW), weighted median, weighted mode, simple mode, and MR-Egger regression. Sensitivity analyses were performed to verify whether heterogeneity and pleiotropy led to bias in the MR results.Results: Bidirectional two-sample MR results demonstrated that there was no significant causal association between SLE and the four blood lipids (When setting SLE as outcome, HDL cholesterol and SLE, IVW OR: 1.32, 95% CI: 1.05∼1.66, p = 1.78E-02; LDL cholesterol and SLE, IVW OR: 1.26, 95% CI: 1.04∼1.53, p = 2.04E-02; TG and SLE, IVW OR: 1.04, 95% CI: 0.71∼1.51, p = 8.44E-01; TC and SLE, IVW OR: 1.07, 95% CI: 0.89∼1.29, p = 4.42E-01; When setting SLE as exposure, SLE and HDL cholesterol, IVW OR: 1.00, 95% CI: 0.99∼1.01, p = 9.51E-01; SLE and LDL cholesterol, IVW OR: 0.99, 95% CI: 0.98∼1.00, p = 3.14E-01; SLE and TG, IVW OR: 0.99, 95% CI: 0.98∼1.00, p = 1.30E-02; SLE and TC, IVW OR: 0.99, 95% CI: 0.98∼1.00, p = 1.56E-01). Our MVMR analysis also provided little evidence that genetically determined lipid traits were significantly associated with the risk of SLE (HDL cholesterol and SLE, p = 9.63E-02; LDL cholesterol and SLE, p = 9.63E-02; TG and SLE, p = 8.44E-01; TC and SLE, p = 4.42E-01).Conclusion: In conclusion, these data provide evidence that genetic changes in lipid traits are not significantly associated with SLE risk in the European population.
Collapse
Affiliation(s)
| | | | | | | | - Zhixing He
- *Correspondence: Zhixing He, ; Lin Huang,
| | - Lin Huang
- *Correspondence: Zhixing He, ; Lin Huang,
| |
Collapse
|
14
|
Sun J, Huang T, Debelius JW, Fang F. Gut microbiome and amyotrophic lateral sclerosis: A systematic review of current evidence. J Intern Med 2021; 290:758-788. [PMID: 34080741 DOI: 10.1111/joim.13336] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS), characterized by a loss of motor neurons in the brain and spinal cord, is a relatively rare but currently incurable neurodegenerative disease. The global incidence of ALS is estimated as 1.75 per 100,000 person-years and the global prevalence is estimated as 4.1-8.4 per 100,000 individuals. Contributions from outside the central nervous system to the etiology of ALS have been increasingly recognized. Gut microbiome is one of the most quickly growing fields of research for ALS. In this article, we performed a comprehensive review of the results from existing animal and human studies, to provide an up-to-date summary of the current research on gut microbiome and ALS. In brief, we found relatively consistent results from animal studies, suggesting an altered gut microbiome composition in experimental ALS. Publication bias might however be a concern. Findings from human studies are largely inconclusive. A few animal and human studies demonstrated the usefulness of intervention with microbial-derived metabolites in modulating the disease progression of ALS. We discussed potential methodological concerns in these studies, including study design, statistical power, handling process of biospecimens and sequencing data, as well as statistical methods and interpretation of results. Finally, we made a few proposals for continued microbiome research in ALS, with the aim to provide valid, reproducible, and translatable findings.
Collapse
Affiliation(s)
- Jiangwei Sun
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tingting Huang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Justine W Debelius
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fang Fang
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Rheumatoid arthritis decreases risk for Parkinson's disease: a Mendelian randomization study. NPJ PARKINSONS DISEASE 2021; 7:17. [PMID: 33654087 PMCID: PMC7925660 DOI: 10.1038/s41531-021-00166-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/25/2021] [Indexed: 02/05/2023]
Abstract
Epidemiological and clinical studies have suggested comorbidity between rheumatoid arthritis and Parkinson’s disease (PD), but whether there exists a causal association and the effect direction of rheumatoid arthritis on PD is controversial and elusive. To evaluate the causal relationship, we first estimated the genetic correlation between rheumatoid arthritis and PD, and then performed a two-sample Mendelian randomization analysis based on summary statistics from large genome-wide association studies of rheumatoid arthritis (N = 47,580) and PD (N = 482,703). We identified negative and significant correlation between rheumatoid arthritis and PD (genetic correlation: −0.10, P = 0.0033). Meanwhile, one standard deviation increase in rheumatoid arthritis risk was associated with a lower risk of PD (OR: 0.904, 95% CI: 0.866–0.943, P: 2.95E–06). The result was robust under all sensitivity analyses. Our results provide evidence supporting a protective role of rheumatoid arthritis on PD. A deeper understanding of the inflammation and immune response is likely to elucidate the potential pathogenesis of PD and identify therapeutic targets for PD.
Collapse
|