1
|
Zhou LY, Liu ZG, Sun YQ, Li YZ, Teng ZQ, Liu CM. Preserving blood-retinal barrier integrity: a path to retinal ganglion cell protection in glaucoma and traumatic optic neuropathy. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:13. [PMID: 40172766 PMCID: PMC11965071 DOI: 10.1186/s13619-025-00228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/25/2025] [Accepted: 03/09/2025] [Indexed: 04/04/2025]
Abstract
Retinal ganglion cells (RGCs) are the visual gateway of the brain, with their axons converging to form the optic nerve, making them the most vulnerable target in diseases such as glaucoma and traumatic optic neuropathy (TON). In both diseases, the disruption of the blood-retinal barrier(BRB) is considered an important mechanism that accelerates RGC degeneration and hinders axon regeneration. The BRB consists of the inner blood-retinal barrier (iBRB) and the outer blood-retinal barrier (oBRB), which are maintained by endothelial cells(ECs), pericytes(PCs), and retinal pigment epithelial (RPE), respectively. Their functions include regulating nutrient exchange, oxidative stress, and the immune microenvironment. However, in glaucoma and TON, the structural and functional integrity of the BRB is severely damaged due to mechanical stress, inflammatory reactions, and metabolic disorders. Emerging evidence highlights that BRB disruption leads to heightened vascular permeability, immune cell infiltration, and sustained chronic inflammation, creating a hostile microenvironment for RGC survival. Furthermore, the dynamic interplay and imbalance among ECs, PCs, and glial cells within the neurovascular unit (NVU) are pivotal drivers of BRB destruction, exacerbating RGC apoptosis and limiting optic nerve regeneration. The intricate molecular and cellular mechanisms underlying these processes underscore the BRB's critical role in glaucoma and TON pathophysiology while offering a compelling foundation for therapeutic strategies targeting BRB repair and stabilization. This review provides crucial insights and lays a robust groundwork for advancing research on neural regeneration and innovative optic nerve protective strategies.
Collapse
Affiliation(s)
- Lai-Yang Zhou
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zhen-Gang Liu
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Yong-Quan Sun
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yan-Zhong Li
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zhao-Qian Teng
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Chang-Mei Liu
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| |
Collapse
|
2
|
Yang E, Xu R, Zhang H, Xia W, Huang X, Zan T. Deciphering Pain and Pruritus in Keloids from the Perspective of Neurological Dysfunction: Where Are We Now? Biomedicines 2025; 13:663. [PMID: 40149639 PMCID: PMC11940183 DOI: 10.3390/biomedicines13030663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
Keloids are a typical skin fibroproliferative disease that can cause severe aesthetic and functional concerns. Pain and pruritus are the most common clinical symptoms of keloids, but the mechanisms underlying these symptoms remain unclear. The peripheral nervous system plays a pivotal role in the transmission of superficial sensation signals. Mounting evidence has shown potential correlations between disturbance in the peripheral nervous system and pain and pruritus in keloids. Here, we summarize the role of neurological dysfunction in the development of pain and pruritus, with a specific focus on neuroanatomical alterations, the dysfunction of sensory nerves, and neurogenic inflammation.
Collapse
Affiliation(s)
| | | | | | | | - Xin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200021, China; (E.Y.); (R.X.); (H.Z.); (W.X.)
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200021, China; (E.Y.); (R.X.); (H.Z.); (W.X.)
| |
Collapse
|
3
|
Zhou X, Lin JM, Wang H, Gong Y, Lin J, Wu W, Huang J. The Causal Role of Uterine Fibroid in Keloid and Hypertrophic Scar: A Bidirectional Mendelian Randomization Study on European Populations. Curr Pharm Biotechnol 2025; 26:754-768. [PMID: 39318216 DOI: 10.2174/0113892010326633240911062613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND The relationship between uterine fibroids and keloid/hypertrophic scars has been contradictory. Our research employs a bidirectional Mendelian Randomization (MR) approach to establish a clearer understanding of this potential causal link. OBJECTIVE This study aimed to determine the effect of uterine fibroids on keloid/hypertrophic scars and the effect of keloid/hypertrophic scars on uterine fibroids. PURPOSE We aimed to demonstrate the relationship between uterine fibroids and keloid/ hypertrophic scars. METHODS Our bidirectional MR study utilized summarized data from genome-wide association studies (GWAS) focused on European populations. Our primary tool for establishing causality was the Inverse-Variance Weighted (IVW) method. To reinforce the IVW findings, we also applied four alternative MR methods: MR-Egger, Maximum Likelihood, Weighted Mode, and Weighted Median. RESULTS The IVW method indicated a significant causal link, with uterine fibroids greatly raising the likelihood of developing keloids (Odds Ratio [OR] = 1.202, 95% Confidence Interval [CI]: 1.045-1.381; P=0.010) and hypertrophic scars (OR = 1.256, 95% CI: 1.039-1.519; P=0.018). Parallel results were observed with the MR-Egger, Maximum Likelihood, Weighted Mode, and Weighted Median methods. Sensitivity analyses indicated robustness in these findings, with no evidence of heterogeneity or horizontal pleiotropy. Conversely, the reverse MR analysis did not demonstrate an increased risk of uterine fibroids due to keloids or hypertrophic scars. CONCLUSION This study elucidates a significant causal effect of uterine fibroids on the development of keloid and hypertrophic scars, offering valuable insights into their pathogenesis and potential therapeutic targets.
Collapse
Affiliation(s)
- Xiaobo Zhou
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jui-Ming Lin
- Department of Dermatology, Huashan Hospital, Fudan University School of Medicine, Shanghai, China
| | - Hui Wang
- Department of Plastic Surgery, Gongli Hospital of Pudong District, Shanghai, China
| | - Yiyi Gong
- Department of Dermatology, Huashan Hospital, Fudan University School of Medicine, Shanghai, China
| | - Jinran Lin
- Department of Dermatology, Huashan Hospital, Fudan University School of Medicine, Shanghai, China
| | - Wenyu Wu
- Department of Dermatology, Huashan Hospital, Fudan University School of Medicine, Shanghai, China
| | - Jia Huang
- Department of Dermatology, Huashan Hospital, Fudan University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Lukomska A, Rheaume BA, Frost MP, Theune WC, Xing J, Damania A, Trakhtenberg EF. Augmenting fibronectin levels in injured adult CNS promotes axon regeneration in vivo. Exp Neurol 2024; 379:114877. [PMID: 38944331 PMCID: PMC11283980 DOI: 10.1016/j.expneurol.2024.114877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
In an attempt to repair injured central nervous system (CNS) nerves/tracts, immune cells are recruited into the injury site, but endogenous response in adult mammals is insufficient for promoting regeneration of severed axons. Here, we found that a portion of retinal ganglion cell (RGC) CNS projection neurons that survive after optic nerve crush (ONC) injury are enriched for and upregulate fibronectin (Fn)-interacting integrins Itga5 and ItgaV, and that Fn promotes long-term survival and long-distance axon regeneration of a portion of axotomized adult RGCs in culture. We then show that, Fn is developmentally downregulated in the axonal tracts of optic nerve and spinal cord, but injury-activated macrophages/microglia upregulate Fn while axon regeneration-promoting zymosan augments their recruitment (and thereby increases Fn levels) in the injured optic nerve. Finally, we found that Fn's RGD motif, established to interact with Itga5 and ItgaV, promotes long-term survival and long-distance axon regeneration of adult RGCs after ONC in vivo, with some axons reaching the optic chiasm when co-treated with Rpl7a gene therapy. Thus, experimentally augmenting Fn levels in the injured CNS is a promising approach for therapeutic neuroprotection and axon regeneration of at least a portion of neurons.
Collapse
Affiliation(s)
- Agnieszka Lukomska
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Bruce A Rheaume
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Matthew P Frost
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - William C Theune
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Jian Xing
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Ashiti Damania
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Ephraim F Trakhtenberg
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA..
| |
Collapse
|
5
|
Liu Y, Liu X, Dorizas CA, Hao Z, Lee RK. Macrophages Modulate Optic Nerve Crush Injury Scar Formation and Retinal Ganglion Cell Function. Invest Ophthalmol Vis Sci 2024; 65:22. [PMID: 39140963 PMCID: PMC11328886 DOI: 10.1167/iovs.65.10.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Purpose Optic nerve (ON) injuries can result in vision loss via structural damage and cellular injury responses. Understanding the immune response, particularly the role of macrophages, in the cellular response to ON injury is crucial for developing therapeutic approaches which affect ON injury repair. The present study investigates the role of macrophages in ON injury response, fibrotic scar formation, and retinal ganglion cell (RGC) function. Methods The study utilizes macrophage Fas-induced apoptosis (MaFIA) mice to selectively deplete hematogenous macrophages and explores the impact macrophages have on ON injury responses. Histological and immunofluorescence analyses were used to evaluate macrophage expression levels and fibrotic scar formation. Pattern electroretinogram (PERG) recordings were used to assess RGC function as result of ON injury. Results Successful macrophage depletion was induced in MaFIA mice, which led to reduced fibrotic scar formation in the ON post-injury. Despite an increase in activated macrophages in the retina, RGC function was preserved, as demonstrated by normal PERG waveforms for up to 2 months post-injury. The study suggests a neuroprotective role for macrophage depletion in ON damage repair and highlights the complex immune response to ON injury. Conclusions To our knowledge, this study is the first to use MaFIA mice to demonstrate that targeted depletion of hematogenous macrophages leads to a significant reduction in scar size and the preservation of RGC functionality after ON injury. These findings highlight the key role of hematogenous macrophages in the response to ON injury and opens new avenues for therapeutic interventions in ON injuries. Future research should focus on investigating the distinct roles of macrophage subtypes in ON injury and potential macrophage-associated molecular targets to improve ON regeneration and repair.
Collapse
Affiliation(s)
- Yuan Liu
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Xiangxiang Liu
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Christopher A Dorizas
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Zixuan Hao
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Richard K Lee
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| |
Collapse
|
6
|
Xiao X, Liao Z, Zou J. Genetic and epigenetic regulators of retinal Müller glial cell reprogramming. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2023; 3:126-133. [PMID: 37846362 PMCID: PMC10577857 DOI: 10.1016/j.aopr.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 10/18/2023]
Abstract
Background Retinal diseases characterized with irreversible loss of retinal nerve cells, such as optic atrophy and retinal degeneration, are the main causes of blindness. Current treatments for these diseases are very limited. An emerging treatment strategy is to induce the reprogramming of Müller glial cells to generate new retinal nerve cells, which could potentially restore vision. Main text Müller glial cells are the predominant glial cells in retinae and play multiple roles to maintain retinal homeostasis. In lower vertebrates, such as in zebrafish, Müller glial cells can undergo cell reprogramming to regenerate new retinal neurons in response to various damage factors, while in mammals, this ability is limited. Interestingly, with proper treatments, Müller glial cells can display the potential for regeneration of retinal neurons in mammalian retinae. Recent studies have revealed that dozens of genetic and epigenetic regulators play a vital role in inducing the reprogramming of Müller glial cells in vivo. This review summarizes these critical regulators for Müller glial cell reprogramming and highlights their differences between zebrafish and mammals. Conclusions A number of factors have been identified as the important regulators in Müller glial cell reprogramming. The early response of Müller glial cells upon acute retinal injury, such as the regulation in the exit from quiescent state, the initiation of reactive gliosis, and the re-entry of cell cycle of Müller glial cells, displays significant difference between mouse and zebrafish, which may be mediated by the diverse regulation of Notch and TGFβ (transforming growth factor-β) isoforms and different chromatin accessibility.
Collapse
Affiliation(s)
- Xueqi Xiao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Zhiyong Liao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Jian Zou
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- The Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Ma R, Hao L, Tao Y, Mendoza X, Khodeiry M, Liu Y, Shyu ML, Lee RK. RGC-Net: An Automatic Reconstruction and Quantification Algorithm for Retinal Ganglion Cells Based on Deep Learning. Transl Vis Sci Technol 2023; 12:7. [PMID: 37140906 PMCID: PMC10166122 DOI: 10.1167/tvst.12.5.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
Purpose The purpose of this study was to develop a deep learning-based fully automated reconstruction and quantification algorithm which automatically delineates the neurites and somas of retinal ganglion cells (RGCs). Methods We trained a deep learning-based multi-task image segmentation model, RGC-Net, that automatically segments the neurites and somas in RGC images. A total of 166 RGC scans with manual annotations from human experts were used to develop this model, whereas 132 scans were used for training, and the remaining 34 scans were reserved as testing data. Post-processing techniques removed speckles or dead cells in soma segmentation results to further improve the robustness of the model. Quantification analyses were also conducted to compare five different metrics obtained by our automated algorithm and manual annotations. Results Quantitatively, our segmentation model achieves average foreground accuracy, background accuracy, overall accuracy, and dice similarity coefficient of 0.692, 0.999, 0.997, and 0.691 for the neurite segmentation task, and 0.865, 0.999, 0.997, and 0.850 for the soma segmentation task, respectively. Conclusions The experimental results demonstrate that RGC-Net can accurately and reliably reconstruct neurites and somas in RGC images. We also demonstrate our algorithm is comparable to human manually curated annotations in quantification analyses. Translational Relevance Our deep learning model provides a new tool that can trace and analyze the RGC neurites and somas efficiently and faster than manual analysis.
Collapse
Affiliation(s)
- Rui Ma
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, USA
| | - Lili Hao
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yudong Tao
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, USA
| | - Ximena Mendoza
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mohamed Khodeiry
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yuan Liu
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mei-Ling Shyu
- School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Richard K. Lee
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, USA
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
8
|
Preishuber-Pflügl J, Mayr D, Altinger V, Brunner SM, Koller A, Runge C, Ladek AM, Lenzhofer M, Rivera FJ, Tempfer H, Aigner L, Reitsamer HA, Trost A. Pericyte-derived cells participate in optic nerve scar formation. Front Physiol 2023; 14:1151495. [PMID: 37143930 PMCID: PMC10151493 DOI: 10.3389/fphys.2023.1151495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/04/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction: Pericytes (PCs) are specialized cells located abluminal of endothelial cells on capillaries, fulfilling numerous important functions. Their potential involvement in wound healing and scar formation is achieving increasing attention since years. Thus, many studies investigated the participation of PCs following brain and spinal cord (SC) injury, however, lacking in-depth analysis of lesioned optic nerve (ON) tissue. Further, due to the lack of a unique PC marker and uniform definition of PCs, contradicting results are published. Methods: In the present study the inducible PDGFRβ-P2A-CreERT2-tdTomato lineage tracing reporter mouse was used to investigate the participation and trans-differentiation of endogenous PC-derived cells in an ON crush (ONC) injury model, analyzing five different post lesion time points up to 8 weeks post lesion. Results: PC-specific labeling of the reporter was evaluated and confirmed in the unlesioned ON of the reporter mouse. After ONC, we detected PC-derived tdTomato+ cells in the lesion, whereof the majority is not associated with vascular structures. The number of PC-derived tdTomato+ cells within the lesion increased over time, accounting for 60-90% of all PDGFRβ+ cells in the lesion. The presence of PDGFRβ+tdTomato- cells in the ON scar suggests the existence of fibrotic cell subpopulations of different origins. Discussion: Our results clearly demonstrate the presence of non-vascular associated tdTomato+ cells in the lesion core, indicating the participation of PC-derived cells in fibrotic scar formation following ONC. Thus, these PC-derived cells represent promising target cells for therapeutic treatment strategies to modulate fibrotic scar formation to improve axonal regeneration.
Collapse
Affiliation(s)
- Julia Preishuber-Pflügl
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Daniela Mayr
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Veronika Altinger
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Susanne M. Brunner
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Andreas Koller
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Christian Runge
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Anja-Maria Ladek
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Markus Lenzhofer
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Francisco J. Rivera
- Laboratory of Stem Cells and Neuroregeneration, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
- Translational Regenerative Neurobiology Group, Molecular and Integrative Biosciences Research Program (MIBS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Herbert Tempfer
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria
| | - Herbert A. Reitsamer
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Austria
- Director of the Research Program for Experimental Ophthalmology and Glaucoma Research, Salzburg, Austria
| | - Andrea Trost
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, Salzburg, Austria
- *Correspondence: Andrea Trost,
| |
Collapse
|
9
|
Liu X, Liu Y, Lee RK. Optical Coherence Tomography: Imaging Visual System Structures in Mice. Methods Mol Biol 2023; 2708:107-113. [PMID: 37558964 DOI: 10.1007/978-1-0716-3409-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Optical coherence tomography (OCT) enables micron-scale resolution of structural anatomy, thereby making OCT a valuable tool for addressing ophthalmologic and neurologic inquiries. Although the murine eye and its structures are very small and offers challenges for OCT imaging, OCT can be used to monitor retinal layer thickness in healthy and diseased retinas in murine lines in vivo longitudinally. Thus, OCT can provide insights into disease severity and treatment efficacy. This chapter describes the use of OCT as a powerful non-invasive imaging technology for high-resolution retinal imaging and retinal thickness quantification in rodents.
Collapse
Affiliation(s)
- Xiangxiang Liu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yuan Liu
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Richard K Lee
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
10
|
Jin H, Liu Y, Liu X, Khodeiry MM, Lee JK, Lee RK. Hematogenous Macrophages Contribute to Fibrotic Scar Formation After Optic Nerve Crush. Mol Neurobiol 2022; 59:7393-7403. [PMID: 36181661 DOI: 10.1007/s12035-022-03052-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/24/2022] [Indexed: 01/18/2023]
Abstract
Although glial scar formation has been extensively studied after optic nerve injury, the existence and characteristics of traumatic optic nerve fibrotic scar formation have not been previously characterized. Recent evidence suggests infiltrating macrophages are involved in pathological processes after optic nerve crush (ONC), but their role in fibrotic scar formation is unknown. Using wild-type and transgenic mouse models with optic nerve crush injury, we show that macrophages infiltrate and associate with fibroblasts in the traumatic optic nerve lesion fibrotic scar. We dissected the role of hematogenous and resident macrophages, labeled with Dil liposomes intravenously administered, and observed that hematogenous macrophages (Dil+ cells) specifically accumulate in the center of traumatic fibrotic scar while Iba-1+ cells reside predominantly at the margins of optic nerve fibrotic scar. Depletion of hematogenous macrophages results in reduced fibroblast density and decreased extracellular matrix deposition within the fibrotic scar area following ONC. However, retinal ganglion cell degeneration and function loss after optic nerve crush remain unaffected after hematogenous macrophage depletion. We present new and previously not characterized evidence that hematogenous macrophages are selectively recruited into the fibrotic core of the optic nerve crush site and critical for this fibrotic scar formation.
Collapse
Affiliation(s)
- Huiyi Jin
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Yuan Liu
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Xiangxiang Liu
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Mohamed M Khodeiry
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Jae K Lee
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Richard K Lee
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
11
|
Luo J, Lian Q, Zhu D, Zhao M, Mei T, Shang B, Yang Z, Liu C, Xu W, Zhou L, Wu K, Liu X, Lai Y, Mao F, Li W, Zuo C, Zhang K, Lin M, Zhuo Y, Liu Y, Lu L, Zhao L. PLSCR1 Promotes Apoptosis and Clearance of Retinal Ganglion Cells in Glaucoma Pathogenesis. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
12
|
Fibrosis in the central nervous system: from the meninges to the vasculature. Cell Tissue Res 2022; 387:351-360. [PMID: 34189605 PMCID: PMC8717837 DOI: 10.1007/s00441-021-03491-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
Formation of a collagenous connective tissue scar after penetrating injuries to the brain or spinal cord has been described and investigated for well over 100 years. However, it was studied almost exclusively in the context of penetrating injuries that resulted in infiltration of meningeal fibroblasts, which raised doubts about translational applicability to most CNS injuries where the meninges remain intact. Recent studies demonstrating the perivascular niche as a source of fibroblasts have debunked the traditional view that a fibrotic scar only forms after penetrating lesions that tear the meninges. These studies have led to a renewed interest in CNS fibrosis not only in the context of axon regeneration after spinal cord injury, but also across a spectrum of CNS disorders. Arising with this renewed interest is some discrepancy about which perivascular cell gives rise to the fibrotic scar, but additional studies are beginning to provide some clarity. Although mechanistic studies on CNS fibrosis are still lacking, the similarities to fibrosis of other organs should provide important insight into how CNS fibrosis can be therapeutically targeted to promote functional recovery.
Collapse
|
13
|
Vanhunsel S, Bergmans S, Beckers A, Etienne I, Van Bergen T, De Groef L, Moons L. The age factor in optic nerve regeneration: Intrinsic and extrinsic barriers hinder successful recovery in the short-living killifish. Aging Cell 2022; 21:e13537. [PMID: 34927348 PMCID: PMC8761009 DOI: 10.1111/acel.13537] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/24/2021] [Accepted: 12/03/2021] [Indexed: 01/06/2023] Open
Abstract
As the mammalian central nervous system matures, its regenerative ability decreases, leading to incomplete or non-recovery from the neurodegenerative diseases and central nervous system insults that we are increasingly facing in our aging world population. Current neuroregenerative research is largely directed toward identifying the molecular and cellular players that underlie central nervous system repair, yet it repeatedly ignores the aging context in which many of these diseases appear. Using an optic nerve crush model in a novel biogerontology model, that is, the short-living African turquoise killifish, the impact of aging on injury-induced optic nerve repair was investigated. This work reveals an age-related decline in axonal regeneration in female killifish, with different phases of the repair process being affected depending on the age. Interestingly, as in mammals, both a reduced intrinsic growth potential and a non-supportive cellular environment seem to lie at the basis of this impairment. Overall, we introduce the killifish visual system and its age-dependent regenerative ability as a model to identify new targets for neurorepair in non-regenerating individuals, thereby also considering the effects of aging on neurorepair.
Collapse
Affiliation(s)
- Sophie Vanhunsel
- Neural Circuit Development and Regeneration Research GroupAnimal Physiology and Neurobiology SectionDepartment of BiologyKU LeuvenLeuvenBelgium
| | - Steven Bergmans
- Neural Circuit Development and Regeneration Research GroupAnimal Physiology and Neurobiology SectionDepartment of BiologyKU LeuvenLeuvenBelgium
| | - An Beckers
- Neural Circuit Development and Regeneration Research GroupAnimal Physiology and Neurobiology SectionDepartment of BiologyKU LeuvenLeuvenBelgium
| | | | | | - Lies De Groef
- Neural Circuit Development and Regeneration Research GroupAnimal Physiology and Neurobiology SectionDepartment of BiologyKU LeuvenLeuvenBelgium
- Leuven Brain InstituteLeuvenBelgium
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research GroupAnimal Physiology and Neurobiology SectionDepartment of BiologyKU LeuvenLeuvenBelgium
- Leuven Brain InstituteLeuvenBelgium
| |
Collapse
|