1
|
Carvalho AVS, Sanches EF, Ribeiro RT, Durán-Carabali LE, Júnior OR, Muniz BD, Wajner M, Wyse AT, Netto CA, Sizonenko SV. Maternal lactoferrin supplementation prevents mitochondrial and redox homeostasis dysfunction, and improves antioxidant defenses through Nrf2 and UCP2 signaling after neonatal hypoxia-ischemia. Free Radic Biol Med 2025; 231:68-79. [PMID: 40010517 DOI: 10.1016/j.freeradbiomed.2025.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
Neonatal hypoxia-ischemia (HI) is a major cause of mortality and neurological impairments in infants. Main HI-induced pathological mechanisms include mitochondrial dysfunction and oxidative stress due to insufficient oxygen and energetic substrates to the nervous cells. Bovine lactoferrin (Lf) has demonstrated neuroprotective effects in several experimental models of neonatal brain injury in rodents, however its mechanisms remain unclear. This study aimed to evaluate the early impact of maternal dietary supplementation with Lf on redox and hippocampal mitochondrial function following neonatal HI. From postnatal day 6 (PND6), pregnant Wistar rats were fed with a diet supplemented with Lf (1 g/kg) or with an isocaloric control diet until offspring euthanasia. At PND7, pups of both sexes were subjected to experimental HI through the occlusion of the right common carotid artery followed by 60 min of hypoxia (8 % oxygen). Lf prevented HI-induced increased levels of DCFH and lipoperoxidation in hippocampus. Furthermore, Lf enhanced antioxidant defenses including SOD, GPx, and GSH, counteracting HI-induced oxidative stress. HI injury altered the activities of enzymes in the mitochondrial respiratory chain and increased the mitochondrial membrane potential. Both effects were counteracted by Lf supplementation. Lactoferrin prevented oxidative stress and to restored mitochondrial function by upregulating Nrf2 and UCP2 expression following experimental HI. Our results show that even a shorter period of Lf delivery to rat pups is able to improve hippocampal response to neonatal hypoxia-ischemia, reversing initial mechanisms of damage in the cascade of HI injury.
Collapse
Affiliation(s)
- Andrey Vinicios S Carvalho
- Postgraduate Program in Biological Science: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Eduardo F Sanches
- Division of Child Development and Growth, Department of Pediatrics, Gynecology and Obstetrics, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Rafael T Ribeiro
- Postgraduate Program in Biological Science: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luz Elena Durán-Carabali
- Department of Physiological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Osmar Ramires Júnior
- Postgraduate Program in Biological Science: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Bruna Dutra Muniz
- Postgraduate Program in Biological Science: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Moacir Wajner
- Postgraduate Program in Biological Science: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Angela T Wyse
- Postgraduate Program in Biological Science: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carlos Alexandre Netto
- Postgraduate Program in Biological Science: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Department of Physiological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Stéphane V Sizonenko
- Division of Child Development and Growth, Department of Pediatrics, Gynecology and Obstetrics, School of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
2
|
Yang W, Wen W, Chen H, Zhang H, Lu Y, Wang P, Xu S. Zhongfeng Xingnao Liquid ameliorates post-stroke cognitive impairment through sirtuin1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway. Chin J Nat Med 2025; 23:77-89. [PMID: 39855833 DOI: 10.1016/s1875-5364(25)60808-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/26/2024] [Accepted: 06/06/2024] [Indexed: 01/27/2025]
Abstract
The activation of the sirtuin1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway has been shown to mitigate oxidative stress-induced apoptosis and mitochondrial damage by reducing reactive oxygen species (ROS) levels. Clinical trials have demonstrated that Zhongfeng Xingnao Liquid (ZFXN) ameliorates post-stroke cognitive impairment (PSCI). However, the underlying mechanism, particularly whether it involves protecting mitochondria and inhibiting apoptosis through the SIRT1/Nrf2/HO-1 pathway, remains unclear. This study employed an oxygen-glucose deprivation (OGD) cell model using SH-SY5Y cells and induced PSCI in rats through modified bilateral carotid artery ligation (2VO). The effects of ZFXN on learning and memory, neuroprotective activity, mitochondrial function, oxidative stress, and the SIRT1/Nrf2/HO-1 pathway were evaluated both in vivo and in vitro. Results indicated that ZFXN significantly increased the B-cell lymphoma 2 (Bcl2)/Bcl2-associated X (Bax) ratio, reduced terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling (TUNEL)+ cells, and markedly improved cognition, synaptic plasticity, and neuronal function in the hippocampus and cortex. Furthermore, ZFXN exhibited potent antioxidant activity, evidenced by decreased ROS and malondialdehyde (MDA) content and increased superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) levels. ZFXN also demonstrated considerable enhancement of mitochondrial membrane potential (MMP), Tom20 fluorescence intensity, adenosine triphosphate (ATP) and energy charge (EC) levels, and mitochondrial complex I and III activity, thereby inhibiting mitochondrial damage. Additionally, ZFXN significantly increased SIRT1 activity and elevated SIRT1, nuclear Nrf2, and HO-1 levels. Notably, these effects were substantially counteracted when SIRT1 was suppressed by the inhibitor EX-527 in vitro. In conclusion, ZFXN alleviates PSCI by activating the SIRT1/Nrf2/HO-1 pathway and preventing mitochondrial damage.
Collapse
Affiliation(s)
- Wenqin Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wen Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hao Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Haijun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yun Lu
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Ping Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Shijun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
3
|
Butler B, Renney M, Bennett K, Charpentier G, Nance E. A rotenone organotypic whole hemisphere slice model of mitochondrial abnormalities in the neonatal brain. J Biol Eng 2024; 18:67. [PMID: 39543609 PMCID: PMC11566268 DOI: 10.1186/s13036-024-00465-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
Mitochondrial abnormalities underscore a variety of neurologic injuries and diseases and are well-studied in adult populations. Clinical studies identify critical roles of mitochondria in a wide range of developmental brain injuries, but models that capture mitochondrial abnormalities in systems representative of the neonatal brain environment are lacking. Here, we develop an organotypic whole-hemisphere (OWH) brain slice model of mitochondrial dysfunction in the neonatal brain. We extended the utility of complex I inhibitor rotenone (ROT), canonically used in models of adult neurodegenerative diseases, to inflict mitochondrial damage in OWH slices from term-equivalent rats. We quantified whole-slice health over 6 days of exposure for a range of doses represented in ROT literature. We identified 50 nM ROT as a suitable exposure level for OWH slices to inflict injury without compromising viability. At the selected exposure level, we confirmed exposure- and time-dependent mitochondrial responses showing differences in mitochondrial fluorescence and nuclear localization using MitoTracker imaging in live OWH slices and dysregulated mitochondrial markers via RT-qPCR screening. We leveraged the regional structures present in OWH slices to quantify cell density and cell death in the cortex and the midbrain regions, observing higher susceptibilities to damage in the midbrain as a function of exposure and culture time. We supplemented these findings with analysis of microglia and mature neurons showing time-, region-, and exposure-dependent differences in microglial responses. We demonstrated changes in tissue microstructure as a function of region, culture time, and exposure level using live-video epifluorescence microscopy of extracellularly diffusing nanoparticle probes in live OWH slices. Our results highlight severity-, time-, and region-dependent responses and establish a complimentary model system of mitochondrial abnormalities for high-throughput or live-tissue experimental needs.
Collapse
Affiliation(s)
- Brendan Butler
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Malcolm Renney
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Kristin Bennett
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Gisele Charpentier
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Elizabeth Nance
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA.
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
4
|
Cwerman-Thibault H, Malko-Baverel V, Le Guilloux G, Ratcliffe E, Mouri D, Torres-Cuevas I, Millán I, Saubaméa B, Mignon V, Boespflug-Tanguy O, Gressens P, Corral-Debrinski M. Neuroglobin overexpression in cerebellar neurons of Harlequin mice improves mitochondrial homeostasis and reduces ataxic behavior. Mol Ther 2024; 32:2150-2175. [PMID: 38796706 PMCID: PMC11286817 DOI: 10.1016/j.ymthe.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/22/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024] Open
Abstract
Neuroglobin, a member of the globin superfamily, is abundant in the brain, retina, and cerebellum of mammals and localizes to mitochondria. The protein exhibits neuroprotective capacities by participating in electron transfer, oxygen supply, and protecting against oxidative stress. Our objective was to determine whether neuroglobin overexpression can be used to treat neurological disorders. We chose Harlequin mice, which harbor a retroviral insertion in the first intron of the apoptosis-inducing factor gene resulting in the depletion of the corresponding protein essential for mitochondrial biogenesis. Consequently, Harlequin mice display degeneration of the cerebellum and suffer from progressive blindness and ataxia. Cerebellar ataxia begins in Harlequin mice at the age of 4 months and is characterized by neuronal cell disappearance, bioenergetics failure, and motor and cognitive impairments, which aggravated with aging. Mice aged 2 months received adeno-associated viral vectors harboring the coding sequence of neuroglobin or apoptosis-inducing factor in both cerebellar hemispheres. Six months later, Harlequin mice exhibited substantial improvements in motor and cognitive skills; probably linked to the preservation of respiratory chain function, Purkinje cell numbers and connectivity. Thus, without sharing functional properties with apoptosis-inducing factor, neuroglobin was efficient in reducing ataxia in Harlequin mice.
Collapse
Affiliation(s)
- Hélène Cwerman-Thibault
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France
| | - Vassilissa Malko-Baverel
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France
| | - Gwendoline Le Guilloux
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France
| | - Edward Ratcliffe
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France
| | - Djmila Mouri
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France
| | - Isabel Torres-Cuevas
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France; Neonatal Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Ivan Millán
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France; Neonatal Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Bruno Saubaméa
- Université Paris Cité, Platform of Cellular and Molecular Imaging (PICMO), US25 Inserm, UAR3612 CNRS, 75006 Paris, France; Université Paris Cité, Optimisation Thérapeutique en Neuropsychopharmacologie, UMR-S 1144 Inserm, 75006 Paris, France
| | - Virginie Mignon
- Université Paris Cité, Platform of Cellular and Molecular Imaging (PICMO), US25 Inserm, UAR3612 CNRS, 75006 Paris, France
| | - Odile Boespflug-Tanguy
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France; Service de Neurologie et Maladies métaboliques, CHU Paris - Hôpital Robert Debré, F-75019 Paris, France
| | - Pierre Gressens
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France
| | - Marisol Corral-Debrinski
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France.
| |
Collapse
|
5
|
Machado DN, Durán-Carabali LE, Odorcyk FK, Carvalho AVS, Martini APR, Schlemmer LM, de Mattos MDM, Bernd GP, Dalmaz C, Netto CA. Bumetanide Attenuates Cognitive Deficits and Brain Damage in Rats Subjected to Hypoxia-Ischemia at Two Time Points of the Early Postnatal Period. Neurotox Res 2023; 41:526-545. [PMID: 37378827 DOI: 10.1007/s12640-023-00654-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/24/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Neonatal hypoxia-ischemia (HI) is one of the main causes of tissue damage, cell death, and imbalance between neuronal excitation and inhibition and synaptic loss in newborns. GABA, the major inhibitory neurotransmitter of the central nervous system (CNS) in adults, is excitatory at the onset of neurodevelopment and its action depends on the chloride (Cl-) cotransporters NKCC1 (imports Cl-) and KCC2 (exports Cl-) expression. Under basal conditions, the NKCC1/KCC2 ratio decreases over neurodevelopment. Thus, changes in this ratio caused by HI may be related to neurological disorders. The present study evaluated the effects of bumetanide (NKCC cotransporters inhibitor) on HI impairments in two neurodevelopmental periods. Male Wistar rat pups, 3 (PND3) and 11 (PND11) days old, were submitted to the Rice-Vannucci model. Animals were divided into 3 groups: SHAM, HI-SAL, and HI-BUM, considering each age. Bumetanide was administered intraperitoneally at 1, 24, 48, and 72 h after HI. NKCC1, KCC2, PSD-95, and synaptophysin proteins were analyzed after the last injection by western blot. Negative geotaxis, righting reflex, open field, object recognition test, and Morris water maze task were performed to assess neurological reflexes, locomotion, and memory function. Tissue atrophy and cell death were evaluated by histology. Bumetanide prevented neurodevelopmental delay, hyperactivity, and declarative and spatial memory deficits. Furthermore, bumetanide reversed HI-induced brain tissue damage, reduced neuronal death and controlled GABAergic tone, maintained the NKCC1/KCC2 ratio, and synaptogenesis close to normality. Thereby, bumetanide appears to play an important therapeutic role in the CNS, protecting the animals against HI damage and improving functional performance.
Collapse
Affiliation(s)
- Diorlon Nunes Machado
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre, RS, CEP: 90035-003, Brazil.
| | - Luz Elena Durán-Carabali
- Graduate Program in Biological Sciences: Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Felipe Kawa Odorcyk
- Graduate Program in Biological Sciences: Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Andrey Vinicios Soares Carvalho
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre, RS, CEP: 90035-003, Brazil
| | - Ana Paula Rodrigues Martini
- Graduate Program in Biological Sciences: Neuroscience, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Livia Machado Schlemmer
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre, RS, CEP: 90035-003, Brazil
| | - Marcel de Medeiros de Mattos
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre, RS, CEP: 90035-003, Brazil
| | - Gabriel Pereira Bernd
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre, RS, CEP: 90035-003, Brazil
| | - Carla Dalmaz
- Departament of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Carlos Alexandre Netto
- Departament of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Departament of Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
6
|
Dietz RM, Dingman AL, Herson PS. Cerebral ischemia in the developing brain. J Cereb Blood Flow Metab 2022; 42:1777-1796. [PMID: 35765984 PMCID: PMC9536116 DOI: 10.1177/0271678x221111600] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/29/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022]
Abstract
Brain ischemia affects all ages, from neonates to the elderly population, and is a leading cause of mortality and morbidity. Multiple preclinical rodent models involving different ages have been developed to investigate the effect of ischemia during different times of key brain maturation events. Traditional models of developmental brain ischemia have focused on rodents at postnatal day 7-10, though emerging models in juvenile rodents (postnatal days 17-25) indicate that there may be fundamental differences in neuronal injury and functional outcomes following focal or global cerebral ischemia at different developmental ages, as well as in adults. Here, we consider the timing of injury in terms of excitation/inhibition balance, oxidative stress, inflammatory responses, blood brain barrier integrity, and white matter injury. Finally, we review translational strategies to improve function after ischemic brain injury, including new ideas regarding neurorestoration, or neural repair strategies that restore plasticity, at delayed time points after ischemia.
Collapse
Affiliation(s)
- Robert M Dietz
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, USA
- Neuronal Injury Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Andra L Dingman
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
- Neuronal Injury Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Paco S Herson
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
7
|
Plinia trunciflora Extract Administration Prevents HI-Induced Oxidative Stress, Inflammatory Response, Behavioral Impairments, and Tissue Damage in Rats. Nutrients 2022; 14:nu14020395. [PMID: 35057576 PMCID: PMC8779767 DOI: 10.3390/nu14020395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 12/14/2022] Open
Abstract
The disruption of redox homeostasis and neuroinflammation are key mechanisms in the pathogenesis of brain hypoxia–ischemia (HI); medicinal plants have been studied as a therapeutic strategy, generally associated with the prevention of oxidative stress and inflammatory response. This study evaluates the neuroprotective role of the Plinia trunciflora fruit extract (PTE) in neonatal rats submitted to experimental HI. The HI insult provoked a marked increase in the lipoperoxidation levels and glutathione peroxidase (GPx) activity, accompanied by a decrease in the brain concentration of glutathione (GSH). Interestingly, PTE was able to prevent most of the HI-induced pro-oxidant effects. It was also observed that HI increased the levels of interleukin-1β in the hippocampus, and that PTE-treatment prevented this effect. Furthermore, PTE was able to prevent neuronal loss and astrocyte reactivity induced by HI, as demonstrated by NeuN and GFAP staining, respectively. PTE also attenuated the anxiety-like behavior and prevented the spatial memory impairment caused by HI. Finally, PTE prevented neural tissue loss in the brain hemisphere, the hippocampus, cerebral cortex, and the striatum ipsilateral to the HI. Taken together our results provide good evidence that the PTE extract has the potential to be investigated as an adjunctive therapy in the treatment of brain insult caused by neonatal hypoxia–ischemia.
Collapse
|
8
|
Durán-Carabali LE, Odorcyk FK, Sanches EF, de Mattos MM, Anschau F, Netto CA. Effect of environmental enrichment on behavioral and morphological outcomes following neonatal hypoxia-ischemia in rodent models: A systematic review and meta-analysis. Mol Neurobiol 2022; 59:1970-1991. [PMID: 35040041 DOI: 10.1007/s12035-022-02730-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/02/2022] [Indexed: 02/06/2023]
Abstract
Neonatal hypoxia-ischemia (HI) is a major cause of mortality and morbidity in newborns and, despite recent advances in neonatal intensive care, there is no definitive treatment for this pathology. Once preclinical studies have shown that environmental enrichment (EE) seems to be a promising therapy for children with HI, the present study conducts a systematic review and meta-analysis of articles with EE in HI rodent models focusing on neurodevelopmental reflexes, motor and cognitive function as well as brain damage. The protocol was registered a priori at PROSPERO. The search was conducted in PubMed, Embase and PsycINFO databases, resulting in the inclusion of 22 articles. Interestingly, EE showed a beneficial impact on neurodevelopmental reflexes (SMD= -0.73, CI= [-0.98; -0.47], p< 0.001, I2= 0.0%), motor function (SMD= -0.55, CI= [-0.81; -0.28], p< 0.001, I2= 62.6%), cognitive function (SMD= -0.93, CI= [-1.14; -0.72], p< 0.001, I2= 27.8%) and brain damage (SMD= -0.80, CI= [-1.03; -0.58], p< 0.001, I2= 10.7%). The main factors that potentiate EE positive effects were enhanced study quality, earlier age at injury as well as earlier start and longer duration of EE exposure. Overall, EE was able to counteract the behavioral and histological damage induced by the lesion, being a promising therapeutic strategy for HI.
Collapse
Affiliation(s)
- L E Durán-Carabali
- Graduate Program in Biological Sciences: Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - F K Odorcyk
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - E F Sanches
- Division of Child Development and Growth, Department of Pediatrics, Gynecology and Obstetrics, School of Medicine, University of Geneva, Geneva, Switzerland
| | - M M de Mattos
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, anexo, Porto Alegre, RS, CEP 90035-003, Brazil
| | - F Anschau
- Medicine school, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Graduation Program on Evaluation and Production of Technologies for the Brazilian National Health System, Porto Alegre, Brazil
| | - C A Netto
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, anexo, Porto Alegre, RS, CEP 90035-003, Brazil. .,Department of Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
9
|
Zou Z, Li L, Schäfer N, Huang Q, Maegele M, Gu Z. Endothelial glycocalyx in traumatic brain injury associated coagulopathy: potential mechanisms and impact. J Neuroinflammation 2021; 18:134. [PMID: 34126995 PMCID: PMC8204552 DOI: 10.1186/s12974-021-02192-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury (TBI) remains one of the leading causes of death and disability worldwide; more than 10 million people are hospitalized for TBI every year around the globe. While the primary injury remains unavoidable and not accessible to treatment, the secondary injury which includes oxidative stress, inflammation, excitotoxicity, but also complicating coagulation abnormalities, is potentially avoidable and profoundly affects the therapeutic process and prognosis of TBI patients. The endothelial glycocalyx, the first line of defense against endothelial injury, plays a vital role in maintaining the delicate balance between blood coagulation and anticoagulation. However, this component is highly vulnerable to damage and also difficult to examine. Recent advances in analytical techniques have enabled biochemical, visual, and computational investigation of this vascular component. In this review, we summarize the current knowledge on (i) structure and function of the endothelial glycocalyx, (ii) its potential role in the development of TBI associated coagulopathy, and (iii) the options available at present for detecting and protecting the endothelial glycocalyx.
Collapse
Affiliation(s)
- Zhimin Zou
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China.,Department of Treatment Center for Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China.,Guangdong Provincial Key Lab of Shock and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Li Li
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China.,Department of Treatment Center for Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China
| | - Nadine Schäfer
- Institute for Research in Operative Medicine (IFOM), University Witten/Herdecke (UW/H), Campus Cologne-Merheim, Ostmerheimerstr. 200, D-51109, Köln, Germany
| | - Qiaobing Huang
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China.,Department of Treatment Center for Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China.,Guangdong Provincial Key Lab of Shock and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Marc Maegele
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China. .,Department of Treatment Center for Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China. .,Institute for Research in Operative Medicine (IFOM), University Witten/Herdecke (UW/H), Campus Cologne-Merheim, Ostmerheimerstr. 200, D-51109, Köln, Germany. .,Department for Trauma and Orthopedic Surgery, Cologne-Merheim Medical Center (CMMC), University Witten/Herdecke (UW/H), Campus Cologne-Merheim, Ostmerheimerstr. 200, D-51109, Köln, Germany.
| | - Zhengtao Gu
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China. .,Department of Treatment Center for Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 515630, China.
| |
Collapse
|