1
|
Noruzi M, Behmadi H, Sabzevari O, Foroumadi A, Ghahremani MH, Pourahmad J, Hassani S, Baeeri M, Gholami M, Ghahremanian A, Seyfi S, Taghizadeh G, Sharifzadeh M. Liraglutide alleviated alpha-pyrrolidinovalerophenone (α-PVP) induced cognitive deficits in rats by modifying brain mitochondrial impairment. Eur J Pharmacol 2024; 978:176776. [PMID: 38936451 DOI: 10.1016/j.ejphar.2024.176776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
The use of NPS compounds is increasing, and impairment in spatial learning and memory is a growing concern. Alpha-pyrrolidinovalerophenone (α-PVP) consumption, as a commonly used NPS, can impair spatial learning and memory via the brain mitochondrial dysfunction mechanism. Liraglutide isone of the most well-known Glucagon-Like Peptide 1 (GLP-1) agonists that is used as an anti-diabetic and anti-obesity drug. According to current research, Liraglutide likely ameliorates cognitive impairment in neurodegenerative conditions and substance use disorders. Hence, the purpose of this study is examining the effect of Liraglutide on α-PVP-induced spatial learning and memory problems due to brain mitochondrial dysfunction. Wistar rats (8 in each group) received α-PVP (20 mg/kg/d for 10 consecutive days, intraperitoneally (I.P.)). Then, Liraglutide was administered at 47 and 94 μg/kg/d, I.P., for 4 weeks following the α-PVP administration. The Morris Water Maze (MWM) task evaluated spatial learning and memory 24 h after Liraglutide treatment. Bedside, brain mitochondrial activity parameters, including reactive oxygen species (ROS) level, mitochondrial membrane potential (MMP), cytochrome c release, mitochondrial outer membrane damage and swelling, and brain ADP/ATP ratio, were studied. Our results showed that Liraglutide ameliorated α-PVP-induced spatial learning and memory impairments through alleviating brain mitochondrial dysfunction (which is indicated by increasing ROS formation, collapsed MMP, mitochondrial outer membrane damage, cytochrome c release, mitochondrial swelling, and increased brain ADP/ATP ratio). This study could be used as a starting point for future studies about the possible role of Liraglutide in ameliorating mitochondrial dysfunction leading to substance use disorder- induced cognitive impairment.
Collapse
Affiliation(s)
- Marzieh Noruzi
- School of Pharmacy, Semnan University of Medical Sciences, Semnan, Iran
| | - Homayoon Behmadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Sabzevari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, and Toxicology & Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Jalal Pourahmad
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shokoufeh Hassani
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Baeeri
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholami
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, and Toxicology & Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhosein Ghahremanian
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Drug and Poision Information Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Seyfi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Ghorban Taghizadeh
- Rehabilitation Research Center, Department of Occupational Therapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Sharifzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Sagarkar S, Bhat N, Rotti D, Subhedar NK. AMPA and NMDA receptors in dentate gyrus mediate memory for sucrose in two port discrimination task. Hippocampus 2024; 34:342-356. [PMID: 38780087 DOI: 10.1002/hipo.23609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 03/30/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024]
Abstract
Although the phenomenon of memory formation and recall associated with the use of psychotropic drugs has been extensively studied, mechanisms underlying memories for natural reward have not been clarified. Herein, we test the hypothesis that glutamatergic receptors in the dentate gyrus play a role in memories associated with sucrose. We used pellet self-administration protocol to generate memories in two-port nose-poke discrimination task using male Wistar rats. During non-rewarded probe trial, the conditioned animals readily discriminated the active port versus inactive port and showed massive increase in mRNA expression of AMPA receptor subunit genes (gria2, gria3) as well as c-Fos protein in the DG. Access to sweet pellet further enhanced c-Fos expression in the DG. However, animals pre-treated with AMPA receptor antagonist CNQX (intra-DG), on exposure to operant chamber (no pellet), showed decreased discrimination as well as c-Fos expression. We suggest that AMPA receptors in DG mediate recall and consolidation of memories associated with sucrose consumption. CNQX pre-treated animals, if presented with sweet pellet on nose poke, exhibited high discrimination index coupled with increased c-Fos expression. In these CNQX treated rats, the DI was again decreased following administration of NMDA receptor antagonist AP5. We suggest that, although AMPA receptors are blocked, the access to sweet pellet may induce surge of glutamate in the DG, which in turn may reinstate memories via activation of erstwhile silent synapses in NMDA dependant manner.
Collapse
MESH Headings
- Animals
- Male
- Rats
- 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology
- Conditioning, Operant/drug effects
- Conditioning, Operant/physiology
- Dentate Gyrus/drug effects
- Dentate Gyrus/metabolism
- Discrimination Learning/drug effects
- Discrimination Learning/physiology
- Discrimination, Psychological/drug effects
- Discrimination, Psychological/physiology
- Excitatory Amino Acid Antagonists/pharmacology
- Memory/physiology
- Memory/drug effects
- Proto-Oncogene Proteins c-fos/metabolism
- Rats, Wistar
- Receptors, AMPA/metabolism
- Receptors, AMPA/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/metabolism
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- RNA, Messenger/metabolism
- Self Administration
- Sucrose/administration & dosage
Collapse
Affiliation(s)
- Sneha Sagarkar
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Nagashree Bhat
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Deepa Rotti
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| | | |
Collapse
|
3
|
Chen S, Zhou W, Lai M. Synthetic Cathinones: Epidemiology, Toxicity, Potential for Abuse, and Current Public Health Perspective. Brain Sci 2024; 14:334. [PMID: 38671986 PMCID: PMC11048581 DOI: 10.3390/brainsci14040334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Synthetic cathinones, derived from cathinone found in the plant Catha edulis, represent the second largest and most frequently seized group of new psychoactive substances. They are considered as β-keto analogs of amphetamine, sharing pharmacological effects with amphetamine and cocaine. This review describes the neurotoxic properties of synthetic cathinones, encompassing their capacity to induce neuroinflammation, dysregulate neurotransmitter systems, and alter monoamine transporters and receptors. Additionally, it discusses the rewarding and abuse potential of synthetic cathinones drawing from findings obtained through various preclinical animal models, contextualized with other classical psychostimulants. The review also offers an overview of current abuse trends of synthetic cathinones on the illicit drug market, specifying the aspects covered, and underscores the risks they pose to public health. Finally, the review discusses public health initiatives and efforts to reduce the hazards of synthetic cathinones, including harm reduction methods, education, and current clinical management strategies.
Collapse
Affiliation(s)
- Shanshan Chen
- Zhejiang Provincial Key Laboratory of Addiction Research, The Affiliated Kangning Hospital of Ningbo University, Ningbo 315201, China; (S.C.); (W.Z.)
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo 315201, China
| | - Wenhua Zhou
- Zhejiang Provincial Key Laboratory of Addiction Research, The Affiliated Kangning Hospital of Ningbo University, Ningbo 315201, China; (S.C.); (W.Z.)
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo 315201, China
| | - Miaojun Lai
- Zhejiang Provincial Key Laboratory of Addiction Research, The Affiliated Kangning Hospital of Ningbo University, Ningbo 315201, China; (S.C.); (W.Z.)
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo 315201, China
| |
Collapse
|
4
|
Wronikowska-Denysiuk O, Michalak A, Pankowska A, Kurach Ł, Kozioł P, Łazorczyk A, Kochalska K, Targowska-Duda K, Boguszewska-Czubara A, Budzyńska B. Relationship between GABA-Ergic System and the Expression of Mephedrone-Induced Reward in Rats-Behavioral, Chromatographic and In Vivo Imaging Study. Int J Mol Sci 2023; 24:9958. [PMID: 37373105 DOI: 10.3390/ijms24129958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Mephedrone is a psychoactive drug that increases dopamine, serotonin and noradrenaline levels in the central nervous system via interaction with transporters or monoamines. The aim of the presented study was to assess the role of the GABA-ergic system in the expression of mephedrone-induced reward. For this purpose, we conducted (a) a behavioral evaluation of the impact of baclofen (a GABAB receptors agonist) and GS39783 (a positive allosteric modulator of GABAB receptors) on the expression of mephedrone-induced conditioned place preference (CPP) in rats, (b) an ex vivo chromatographic determination of the GABA level in the hippocampi of rats subchronically treated with mephedrone and (c) an in vivo evaluation of GABA hippocampal concentration in rats subchronically administered with mephedrone using magnetic resonance spectroscopy (MRS). The results show that GS39783 (but not baclofen) blocked the expression of CPP induced by (20 mg/kg of) mephedrone. The behavioral effect was consistent with chromatographic analysis, which showed that mephedrone (5 and 20 mg/kg) led to a decrease in GABA hippocampal concentration. Altogether, the presented study provides a new insight into the involvement of the GABA-ergic system in the rewarding effects of mephedrone, implying that those effects are at least partially mediated through GABAB receptors, which suggests their potential role as new targets for the pharmacological management of mephedrone use disorder.
Collapse
Affiliation(s)
- Olga Wronikowska-Denysiuk
- Independent Laboratory of Behavioral Studies, Chair of Biomedical Sciences, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland
| | - Agnieszka Michalak
- Independent Laboratory of Behavioral Studies, Chair of Biomedical Sciences, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland
| | - Anna Pankowska
- Department of Radiography, Medical University of Lublin, Staszica 16 Street, 20-081 Lublin, Poland
| | - Łukasz Kurach
- Independent Laboratory of Behavioral Studies, Chair of Biomedical Sciences, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland
| | - Paulina Kozioł
- Department of Radiography, Medical University of Lublin, Staszica 16 Street, 20-081 Lublin, Poland
| | - Artur Łazorczyk
- Department of Radiography, Medical University of Lublin, Staszica 16 Street, 20-081 Lublin, Poland
| | - Katarzyna Kochalska
- Department of Radiography, Medical University of Lublin, Staszica 16 Street, 20-081 Lublin, Poland
| | - Katarzyna Targowska-Duda
- Department of Biopharmacy, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland
| | - Anna Boguszewska-Czubara
- Department of Medical Chemistry, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland
| | - Barbara Budzyńska
- Independent Laboratory of Behavioral Studies, Chair of Biomedical Sciences, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland
| |
Collapse
|
5
|
Holden JM. Memantine decreases measures of sign-tracking and increases measures of goal-tracking in male Sprague Dawley rats. LEARNING AND MOTIVATION 2022. [DOI: 10.1016/j.lmot.2022.101851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Marszalek-Grabska M, Zakrocka I, Budzynska B, Marciniak S, Kaszubska K, Lemieszek MK, Winiarczyk S, Kotlinska JH, Rzeski W, Turski WA. Binge-like mephedrone treatment induces memory impairment concomitant with brain kynurenic acid reduction in mice. Toxicol Appl Pharmacol 2022; 454:116216. [PMID: 36057403 DOI: 10.1016/j.taap.2022.116216] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/02/2022] [Accepted: 08/26/2022] [Indexed: 10/31/2022]
Abstract
While mephedrone (4-methylmethcathinone), a synthetic cathinone derivative, is widely abused by adolescents and young adults, the knowledge about its long-term effects on memory processes is limited. Kynurenic acid (KYNA) is a neuroactive metabolite of the kynurenine pathway of tryptophan degradation. KYNA is considered an important endogenous modulator influencing physiological and pathological processes, including learning and memory processes. The aim of this study was to determine whether (A) binge-like mephedrone administration (10.0 and 30.0 mg/kg, intraperitoneally, in 4 doses separated by 2 h) induces memory impairments, assessed 2, 8 and 15 days after mephedrone cessation in the passive avoidance test in mice, and whether (B) KYNA is involved in these memory processes. To clarify the role of KYNA in the mephedrone effects, its level in the murine brain in vivo, and in cortical slices in vitro, as well as the activities of kynurenine aminotransferases (KATs) I and II were assessed. Furthermore, cell line experiments were conducted to investigate the effects of mephedrone on normal human brain cells. Our results showed memory impairments 8 and 15 days after binge-like mephedrone administration. At the same time, reduction in the KYNA level in the murine brain was noted. In vitro studies showed no effect of mephedrone on the production of KYNA in cortical slices or on the activity of the KAT I and II enzymes. Finally, exposure of normal cells to mephedrone in vitro resulted in a modest reduction of cell viability and proliferation.
Collapse
Affiliation(s)
- Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University, Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - Izabela Zakrocka
- Department of Nephrology, Medical University, Jaczewskiego 8, 20-090 Lublin, Poland
| | - Barbara Budzynska
- Independent Laboratory of Behavioral Studies, Medical University, Chodzki 4a, 20-090 Lublin, Poland
| | - Sebastian Marciniak
- Department of Pharmacology, Medical University, Chodźki 4a, 20-093 Lublin, Poland
| | - Katarzyna Kaszubska
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4a, 20-093 Lublin, Poland
| | - Marta Kinga Lemieszek
- Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Sylwia Winiarczyk
- Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Jolanta H Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4a, 20-093 Lublin, Poland
| | - Wojciech Rzeski
- Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; Department of Functional Anatomy and Cytobiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Waldemar A Turski
- Department of Experimental and Clinical Pharmacology, Medical University, Jaczewskiego 8b, 20-090 Lublin, Poland
| |
Collapse
|