1
|
Agnello L, Masucci A, Tamburello M, Vassallo R, Massa D, Giglio RV, Midiri M, Gambino CM, Ciaccio M. The Role of Killer Ig-like Receptors in Diseases from A to Z. Int J Mol Sci 2025; 26:3242. [PMID: 40244151 PMCID: PMC11989319 DOI: 10.3390/ijms26073242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/26/2025] [Accepted: 03/29/2025] [Indexed: 04/18/2025] Open
Abstract
Killer Ig-like Receptors (KIRs) regulate immune responses, maintaining the balance between activation and inhibition of the immune system. KIRs are expressed on natural killer cells and some CD8 T cells and interact with HLA class I molecules, influencing various physiological and pathological processes. KIRs' polymorphism creates a variability in immune responses among individuals. KIRs are involved in autoimmune disorders, cancer, infections, neurological diseases, and other diseases. Specific combinations of KIRs and HLA are linked to several diseases' susceptibility, progression, and outcomes. In particular, the balance between inhibitory and activating KIRs can determine how the immune system responds to pathogens and tumors. An imbalance can lead to an excessive response, contributing to autoimmune diseases, or an inadequate response, allowing immune evasion by pathogens or cancer cells. The increasing number of studies on KIRs highlights their essential role as diagnostic and prognostic biomarkers and potential therapeutic targets. This review provides a comprehensive overview of the role of KIRs in all clinical conditions and diseases, listed alphabetically, where they are analyzed.
Collapse
Affiliation(s)
- Luisa Agnello
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
| | - Anna Masucci
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
| | - Martina Tamburello
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
| | - Roberta Vassallo
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
| | - Davide Massa
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
| | - Rosaria Vincenza Giglio
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
- Department of Laboratory Medicine, University Hospital “P. Giaccone”, 90127 Palermo, Italy
| | - Mauro Midiri
- Institute of Legal Medicine, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90133 Palermo, Italy;
| | - Caterina Maria Gambino
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
- Department of Laboratory Medicine, University Hospital “P. Giaccone”, 90127 Palermo, Italy
| | - Marcello Ciaccio
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
- Department of Laboratory Medicine, University Hospital “P. Giaccone”, 90127 Palermo, Italy
| |
Collapse
|
2
|
Wiśniewska A, Kijak A, Nowak K, Lulek M, Skwarek A, Małecka-Giełdowska M, Śmiarowski M, Wąsik S, Ciepiela O. Organ-Dysfunction Markers in Mild-to-Moderate COVID-19 Convalescents. J Clin Med 2024; 13:2241. [PMID: 38673514 PMCID: PMC11050795 DOI: 10.3390/jcm13082241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Background: A coronavirus disease 2019 (COVID-19) outbreak led to a worldwide pandemic. COVID-19 not only caused acute symptoms during the severe phase of the disease, but also induced long-term side effects on the functioning of many organs and systems. Symptoms that were associated with the disease and present at least 3 months after recovery were named long COVID. The aim of this study was to assess if mild-to-moderate COVID-19 may lead to the dysfunction of respiratory, cardiovascular, neural, and renal systems in healthy blood donors who recovered from the disease at least 6 months earlier. Methods: Here, we examined 294 adults among volunteer blood donors divided into convalescents (n = 215) and healthy controls (n = 79). Concentrations of soluble CD163, TGF beta, Lp-PLA2, NCAM-1, S100, NGAL, and creatinine were measured either by ELISA or automated methods. The probability value p < 0.05 was considered as statistically significant. Results: We found significant differences in Lp-PLA2, S100, and NCAM-1 between convalescents and never-infected subjects. Lp-PLA2 and NCAM-1 were lower, and S100 higher, in convalescents than in the control group. Conclusion: Mild-to-moderate COVID-19 convalescents are at a low risk of developing lung fibrosis or chronic kidney disease. However, they should regularly carry out their prophylaxis examinations for early detection of possible negative outcomes of COVID-19.
Collapse
Affiliation(s)
- Aleksandra Wiśniewska
- Students Scientific Group of Laboratory Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland (M.L.); (A.S.); (M.Ś.); (S.W.)
| | - Aleksandra Kijak
- Students Scientific Group of Laboratory Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland (M.L.); (A.S.); (M.Ś.); (S.W.)
| | - Karolina Nowak
- Students Scientific Group of Laboratory Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland (M.L.); (A.S.); (M.Ś.); (S.W.)
| | - Michalina Lulek
- Students Scientific Group of Laboratory Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland (M.L.); (A.S.); (M.Ś.); (S.W.)
- Clinical Laboratory of Central Teaching Hospital, University Clinical Center of Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Agata Skwarek
- Students Scientific Group of Laboratory Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland (M.L.); (A.S.); (M.Ś.); (S.W.)
| | - Milena Małecka-Giełdowska
- Clinical Laboratory of Central Teaching Hospital, University Clinical Center of Medical University of Warsaw, 02-097 Warsaw, Poland;
- Department of Laboratory Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Marcin Śmiarowski
- Students Scientific Group of Laboratory Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland (M.L.); (A.S.); (M.Ś.); (S.W.)
| | - Szczepan Wąsik
- Students Scientific Group of Laboratory Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland (M.L.); (A.S.); (M.Ś.); (S.W.)
| | - Olga Ciepiela
- Clinical Laboratory of Central Teaching Hospital, University Clinical Center of Medical University of Warsaw, 02-097 Warsaw, Poland;
- Department of Laboratory Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
3
|
Baek IC, Choi EJ, Kim HJ, Choi H, Shin HS, Lim DG, Kim TG. Association of KIR Genes with Middle East Respiratory Syndrome Coronavirus Infection in South Koreans. J Clin Med 2024; 13:258. [PMID: 38202265 PMCID: PMC10779705 DOI: 10.3390/jcm13010258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/08/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Middle East respiratory syndrome (MERS) is a lower respiratory tract disease caused by a beta coronavirus (CoV) called MERS-CoV, characterized by a high mortality rate. We aimed to evaluate the association between genetic variation in killer cell immunoglobulin-like receptors (KIRs) and the risk of MERS in South Koreans. METHODS KIR genes were genotyped by multiplex polymerase chain reaction with sequence-specific primers (PCR-SSP). A case-control study was performed to identify the odds ratios (OR) of KIR genes for MERS and the association of KIR genes and their ligands, human leukocyte antigens (HLA) genes. RESULTS KIR2DS4D and KIR3DP1F showed higher frequencies in the group of all patients infected with MERS-CoV than in the control group (p = 0.023, OR = 2.4; p = 0.039, OR = 2.7). KIR2DL1, KIR2DP1, and KIR3DP1D were significantly associated with moderate/mild (Mo/Mi) cases. KIR2DL2, KIR2DS1, and KIR3DP1F were affected in severe cases. When we investigated the association between KIR genes and their ligands in MERS patient and control groups, KIR3DL1+/Bw4(80I)+, KIR3DL1+/Bw6+, KIR3DL1+/Bw6-, KIR2DS1+/C2+, and KIR3DS+/Bw4(80I)+ were associated with MERS. KIR3DL1+/Bw6- was found in Mo/Mi cases. KIR2DS1+/C2+ and KIR2DS2+/C1+ were found in severe cases. CONCLUSION Further investigations are needed to prove the various immune responses of MERS-CoV-infected cells according to variations in the KIR gene and ligand gene. A treatment strategy based on current research on the KIR gene and MERS-CoV will suggest potential treatment targets.
Collapse
Affiliation(s)
- In-Cheol Baek
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (I.-C.B.); (E.-J.C.); (H.-J.K.); (H.C.)
| | - Eun-Jeong Choi
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (I.-C.B.); (E.-J.C.); (H.-J.K.); (H.C.)
| | - Hyoung-Jae Kim
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (I.-C.B.); (E.-J.C.); (H.-J.K.); (H.C.)
| | - Haeyoun Choi
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (I.-C.B.); (E.-J.C.); (H.-J.K.); (H.C.)
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hyoung-Shik Shin
- Department of Infectious Diseases, College of Medicine, Eulji University, Daejeon 34824, Republic of Korea;
| | - Dong-Gyun Lim
- Translational Research Center, Research Institute of Public Health, National Medical Center, Seoul 04564, Republic of Korea
| | - Tai-Gyu Kim
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (I.-C.B.); (E.-J.C.); (H.-J.K.); (H.C.)
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
4
|
An H, Yan C, Ma J, Gong J, Gao F, Ning C, Wang F, Zhang M, Li B, Su Y, Liu P, Wei H, Jiang X, Yu Q. Immune inhibitory receptor-mediated immune response, metabolic adaptation, and clinical characterization in patients with COVID-19. Sci Rep 2023; 13:19221. [PMID: 37932287 PMCID: PMC10628246 DOI: 10.1038/s41598-023-45883-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023] Open
Abstract
Immune inhibitory receptors (IRs) play a critical role in the regulation of immune responses to various respiratory viral infections. However, in coronavirus disease 2019 (COVID-19), the roles of these IRs in immune modulation, metabolic reprogramming, and clinical characterization remain to be determined. Through consensus clustering analysis of IR transcription in the peripheral blood of patients with COVID-19, we identified two distinct IR patterns in patients with COVID-19, which were named IR_cluster1 and IR_cluster2. Compared to IR_cluster1 patients, IR_cluster2 patients with lower expressions of immune inhibitory receptors presented with a suppressed immune response, lower nutrient metabolism, and worse clinical manifestations or prognosis. Considering the critical influence of the integrated regulation of multiple IRs on disease severity, we established a scoring system named IRscore, which was based on principal component analysis, to evaluate the combined effect of multiple IRs on the disease status of individual patients with COVID-19. Similar to IR_cluster2 patients, patients with high IRscores had longer hospital-free days at day 45, required ICU admission and mechanical ventilatory support, and presented higher Charlson comorbidity index and SOFA scores. A high IRscore was also linked to acute infection phase and absence of drug intervention. Our investigation comprehensively elucidates the potential role of IR patterns in regulating the immune response, modulating metabolic processes, and shaping clinical manifestations of COVID-19. All of this evidence suggests the essential role of prognostic stratification and biomarker screening based on IR patterns in the clinical management and drug development of future emerging infectious diseases such as COVID-19.
Collapse
Affiliation(s)
- Huaying An
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Congrui Yan
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Jun Ma
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Jiayuan Gong
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Fenghua Gao
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Changwen Ning
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Fei Wang
- Department of Cardiology, Chinese People's Liberation Army Lanzhou General Hospital Anning Branch, Lanzhou, China
| | - Meng Zhang
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Baoyi Li
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Yunqi Su
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Pengyu Liu
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Hanqi Wei
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Xingwei Jiang
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China.
| | - Qun Yu
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China.
| |
Collapse
|
5
|
Lee MJ, Blish CA. Defining the role of natural killer cells in COVID-19. Nat Immunol 2023; 24:1628-1638. [PMID: 37460639 PMCID: PMC10538371 DOI: 10.1038/s41590-023-01560-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/08/2023] [Indexed: 09/20/2023]
Abstract
Natural killer (NK) cells are critical effectors of antiviral immunity. Researchers have therefore sought to characterize the NK cell response to coronavirus disease 2019 (COVID-19) and the virus that causes it, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The NK cells of patients with severe COVID-19 undergo extensive phenotypic and functional changes. For example, the NK cells from critically ill patients with COVID-19 are highly activated and exhausted, with poor cytotoxic function and cytokine production upon stimulation. The NK cell response to SARS-CoV-2 is also modulated by changes induced in virally infected cells, including the ability of a viral peptide to bind HLA-E, preventing NK cells from receiving inhibitory signals, and the downregulation of major histocompatibility complex class I and ligands for the activating receptor NKG2D. These changes have important implications for the ability of infected cells to escape NK cell killing. The implications of these findings for antibody-dependent NK cell activity in COVID-19 are also reviewed. Despite these advances in the understanding of the NK cell response to SARS-CoV-2, there remain critical gaps in our current understanding and a wealth of avenues for future research on this topic.
Collapse
Affiliation(s)
- Madeline J Lee
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Catherine A Blish
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
6
|
Perdalkar S, Basthi Mohan P, Musunuri B, Rajpurohit S, Shetty S, Bhat K, Pai CG. Thiopurine therapy in inflammatory bowel disease in the pandemic era: Safe or unsafe? Int Immunopharmacol 2023; 116:109597. [PMID: 36702073 DOI: 10.1016/j.intimp.2022.109597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/03/2022] [Accepted: 12/11/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract. Crohn's disease (CD) and Ulcerative colitis (UC) are the two major types affecting millions across the globe. Various immunomodulatory drugs consisting of small molecules (thiopurines, methotrexate and tofacitinib) and biologics are used to treat IBD. Thiopurines (TP) are widely used in the treatment of IBD and it plays an important role both alone and in combination with anti-TNF agents as IBD maintenance therapy. Although the advent of biologics therapy has significantly advanced the management of IBD, TP remains the mainstay of treatment in resource-limited and low economic settings. However, the recently commenced pandemic has raised uncertainty over the safety of the use of immunosuppressant drugs such as TP among healthcare care providers and patients, as there is a scarcity of data on whether IBD patients are at higher risk of COVID-19 infection or more prone to its severe outcomes. AIM This review aims to encapsulate evidence on the risk of COVID-19 infection and its severe prognosis in IBD patients on TP. Additionally, it also evaluates the role of TP in inhibiting the viral protease, a potential drug target, essential for the replication and pathogenesis of the virus. CONCLUSION Emerging evidence suggests that TP therapy is safe during the current pandemic and does not carry an elevated risk when used as monotherapy or in combination with other IBD drugs. In-vitro studies demonstrate that TP is a potential therapeutic for present and future betacoronavirus pandemics.
Collapse
Affiliation(s)
- Shailesh Perdalkar
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India
| | - Pooja Basthi Mohan
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India
| | - Balaji Musunuri
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India
| | - Siddheesh Rajpurohit
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India
| | - Shiran Shetty
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India
| | - Krishnamurthy Bhat
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Cannanore Ganesh Pai
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India.
| |
Collapse
|
7
|
Ligotti ME, Aiello A, Accardi G, Calabrò A, Ciaccio M, Colomba C, Di Bona D, Lo Sasso B, Pojero F, Tuttolomondo A, Caruso C, Candore G, Duro G. Distribution of KIR Genes and Their HLA Ligands in Different Viral Infectious Diseases: Frequency Study in Sicilian Population. Int J Mol Sci 2022; 23:15466. [PMID: 36555106 PMCID: PMC9779783 DOI: 10.3390/ijms232415466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells play a role in defence against viral infections by killing infected cells or by producing cytokines and interacting with adaptive immune cells. Killer immunoglobulin-like receptors (KIRs) regulate the activation of NK cells through their interaction with human leucocyte antigens (HLA). Ninety-six Sicilian patients positive to Human Immunodeficiency Virus-1 (HIV) and ninety-two Sicilian patients positive to SARS-CoV-2 were genotyped for KIRs and their HLA ligands. We also included fifty-six Sicilian patients with chronic hepatitis B (CHB) already recruited in our previous study. The aim of this study was to compare the distribution of KIR-HLA genes/groups of these three different infected populations with healthy Sicilian donors from the literature. We showed that the inhibitory KIR3DL1 gene and the KIR3DL1/HLA-B Bw4 pairing were more prevalent in individual CHB. At the same time, the frequency of HLA-C2 was increased in CHB compared to other groups. In contrast, the HLA-C1 ligand seems to have no contribution to CHB progression whereas it was significantly higher in COVID-19 and HIV-positive than healthy controls. These results suggest that specific KIR-HLA combinations can predict the outcome/susceptibility of these viral infections and allows to plan successful customized therapeutic strategies.
Collapse
Affiliation(s)
- Mattia Emanuela Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy
| | - Anna Calabrò
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy
| | - Marcello Ciaccio
- Section of Clinical Biochemistry and Clinical Molecular Medicine, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| | - Claudia Colomba
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| | - Danilo Di Bona
- Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Bruna Lo Sasso
- Section of Clinical Biochemistry and Clinical Molecular Medicine, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| | - Fanny Pojero
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy
| | - Antonino Tuttolomondo
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy
| | - Giovanni Duro
- Institute for Biomedical Research and Innovation, National Research Council of Italy, 90146 Palermo, Italy
| |
Collapse
|
8
|
Saresella M, Piancone F, Marventano I, Hernis A, Trabattoni D, Invernizzi M, La Rosa F, Clerici M. Innate immune responses to three doses of the BNT162b2 mRNA SARS-CoV-2 vaccine. Front Immunol 2022; 13:947320. [PMID: 36072604 PMCID: PMC9443429 DOI: 10.3389/fimmu.2022.947320] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
To explore the effects of SARS-CoV-2-mRNA vaccines on innate immune responses we enrolled 58 individuals who received 3 doses of the BNT162b2 vaccine in a longitudinal study; 45 of these individuals had never been SARS-CoV-2 infected. Results showed that vaccination significantly increased: 1) classical and intermediate inflammatory monocytes, 2) CD56bright, CD56dim, and CD56dim/CD16dim NK cells, and 3) IFN-γ+ ;production as well as perforin and granzyme content by NK cells. Vaccination also reduced expression of the NK inhibitory receptor ILT-2, increasing that of the stimulatory molecule 2DS2. These effects were long-lasting and were boosted by every vaccine dose. Notably, ILT-2 expressing NK cells were reduced even more robustly in COVID-19-recovereed vaccines. BNT162b1 mRNA vaccine is known to induce potent adaptive immune responses; results herein show its ability to modulate innate immune responses as well, offering further support to the indication to proceed with worldwide vaccination efforts to end the SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Marina Saresella
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
- *Correspondence: Marina Saresella,
| | | | | | - Ambra Hernis
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Daria Trabattoni
- Departments of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | | | | | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
- Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
9
|
Exploring the Utility of NK Cells in COVID-19. Biomedicines 2022; 10:biomedicines10051002. [PMID: 35625739 PMCID: PMC9138257 DOI: 10.3390/biomedicines10051002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) can manifest as acute respiratory distress syndrome and is associated with substantial morbidity and mortality. Extensive data now indicate that immune responses to SARS-CoV-2 infection determine the COVID-19 disease course. A wide range of immunomodulatory agents have been tested for the treatment of COVID-19. Natural killer (NK) cells play an important role in antiviral innate immunity, and anti-SARS-CoV-2 activity and antifibrotic activity are particularly critical for COVID-19 control. Notably, SARS-CoV-2 clearance rate, antibody response, and disease progression in COVID-19 correlate with NK cell status, and NK cell dysfunction is linked with increased SARS-CoV-2 susceptibility. Thus, NK cells function as the key element in the switch from effective to harmful immune responses in COVID-19. However, dysregulation of NK cells has been observed in COVID-19 patients, exhibiting depletion and dysfunction, which correlate with COVID-19 severity; this dysregulation perhaps contributes to disease progression. Given these findings, NK-cell-based therapies with anti-SARS-CoV-2 activity, antifibrotic activity, and strong safety profiles for cancers may encourage the rapid application of functional NK cells as a potential therapeutic strategy to eliminate SARS-CoV-2-infected cells at an early stage, facilitate immune–immune cell interactions, and favor inflammatory processes that prevent and/or reverse over-inflammation and inhibit fibrosis progression, thereby helping in the fight against COVID-19. However, our understanding of the role of NK cells in COVID-19 remains incomplete, and further research on the involvement of NK cells in the pathogenesis of COVID-19 is needed. The rationale of NK-cell-based therapies for COVID-19 has to be based on the timing of therapeutic interventions and disease severity, which may be determined by the balance between beneficial antiviral and potential detrimental pathologic actions. NK cells would be more effective early in SARS-CoV-2 infection and prevent the progression of COVID-19. Immunomodulation by NK cells towards regulatory functions could be useful as an adjunct therapy to prevent the progression of COVID-19.
Collapse
|
10
|
Innate Immune Response in SARS-CoV-2 Infection. Microorganisms 2022; 10:microorganisms10030501. [PMID: 35336077 PMCID: PMC8950297 DOI: 10.3390/microorganisms10030501] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 01/08/2023] Open
Abstract
An efficient host immune response is crucial in controlling viral infections. Despite most studies focused on the implication of T and B cell response in COVID-19 (Corona Virus Disease-19) patients or in their activation after vaccination against SARS-CoV-2, host innate immune response has raised even more interest as well. In fact, innate immunity, including Natural Killer (NK) cells, monocytes/macrophages and neutrophils, represent the first line of defense against the virus and it is essential to determine the correct activation of an efficient and specific acquired immune response. In this perspective, we will report an overview on the main findings concerning SARS-CoV-2 interaction with innate host immune system, in correlation with pathogenesis and viral immune escape mechanisms.
Collapse
|