1
|
Liu Q, Liu C, Wang S, Zhang L, Sun H, Liao X. Differing envelope composition of Gram-negative and Gram-positive bacteria controls the adhesion and bactericidal performance of nanoscale zero-valent iron. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137663. [PMID: 39987735 DOI: 10.1016/j.jhazmat.2025.137663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/18/2025] [Accepted: 02/17/2025] [Indexed: 02/25/2025]
Abstract
Zero-valent-iron (nZVI) is a candidate antimicrobial agent, and previous works revealed its varying inactivation performance on Gram-negative (G-) and Gram-positive (G+) bacteria, but the underlying mechanism remains ambiguous. Herein, we reported the easier inactivation of Escherichia coli (G-, E. coli) than Staphylococcus aureus (G+, S. aureus) by nZVI, and revealed the key role of cell-nZVI adsorption. nZVI adhered more massively on E. coli surface than on S. aureus, and subsequently led to more pronounced membrane damage of E. coli. Investigations of pH, zeta potential, and ionic strength ruled out the essential contribution of nZVI-bacteria electrostatic interaction due to the different surface charges of E. coli and S. aureus. Three-dimensional excitation emission matrix suggested that the extracellular polymeric substances of E. coli suffered more severe damage by nZVI and lead to greater exposure of membrane. Infrared spectra indicated that nZVI strongly bound with the membrane proteins of E. coli and destroyed the membrane components. By contrast, the bonding between nZVI and S. aureus was minimal because of the dominant multi-layered peptidoglycan. The enhanced nZVI adsorption and membrane disruption would result in magnified reactive oxygen species (ROS) generation and oxidative stress of E. coli. Moreover, the catalase activity normalized by ROS concentration of S. aureus was 14.9-fold higher than that of E. coli after nZVI treatment, suggesting the stronger antioxidative capability of S. aureus. Our findings highlight that the different envelope compositions and antioxidant capacities between G- and G+ bacteria were responsible for their varying susceptibility to nZVI.
Collapse
Affiliation(s)
- Qianhui Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China; Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Congcong Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Shaohui Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Lizhi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Hongwei Sun
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
| | - Xiaomei Liao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
2
|
Xu J, Shen R, Qian M, Zhou Z, Xie B, Jiang Y, Yu Y, Dong W. Ferroptosis in Alzheimer's Disease: The Regulatory Role of Glial Cells. J Integr Neurosci 2025; 24:25845. [PMID: 40302253 DOI: 10.31083/jin25845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/11/2024] [Accepted: 10/30/2024] [Indexed: 05/02/2025] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by the formation of amyloid plaques, neurofibrillary tangles and progressive cognitive decline. Amyloid-beta peptide (Aβ) monoclonal antibody therapeutic clinical trials have nearly failed, raising significant concerns about other etiological hypotheses about AD. Recent evidence suggests that AD patients also exhibit persistent neuronal loss and neuronal death accompanied by brain iron deposition or overload-related oxidative stress. Ferroptosis is a type of cell death that depends on iron, unlike autophagy and apoptosis. Inhibiting neuronal ferroptosis function is effective in improving cognitive impairment in AD. Notably, new research shows that ferroptosis in AD is crucially dependent on glial cell activation. This review examines the relationship between the imbalance of iron metabolism, the regulation of iron homeostasis in glial cells and neuronal death in AD pathology. Finally, the review summarizes some current drug research in AD targeting iron homeostasis, many novel iron-chelating compounds and natural compounds showing potential AD-modifying properties that may provide therapeutic targets for treating AD.
Collapse
Affiliation(s)
- Jingyi Xu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Rongjing Shen
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Mengting Qian
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Zhengjun Zhou
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Bingqing Xie
- Laboratory of Neurological Diseases and Brain Function, Institute of Epigenetics and Brain Science, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Yong Jiang
- Laboratory of Neurological Diseases and Brain Function, Institute of Epigenetics and Brain Science, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Yang Yu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, 646000 Luzhou, Sichuan, China
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Wei Dong
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, 646000 Luzhou, Sichuan, China
| |
Collapse
|
3
|
Akiyama N, Kanazawa M, Kasuga K, Hatakeyama M, Ikeuchi T, Onodera O. Utility of Cerebrospinal Fluid Transferrin Receptor per Ferritin Ratio in Progressive Supranuclear Palsy. Mov Disord Clin Pract 2025; 12:446-452. [PMID: 39688304 PMCID: PMC11998682 DOI: 10.1002/mdc3.14313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Progressive supranuclear palsy (PSP) is a major atypical parkinsonism. Because diagnosis based on the cardinal clinical features is often difficult, misdiagnosis with Parkinson's disease (PD) and multiple system atrophy (MSA) is common in PSP patients. Iron metabolism genes are reportedly involved in tau-accumulating neuronal cell death and ferroptosis in PSP, which is more severe than PD and MSA. The validity of transferrin receptor (TfR) expression as a biomarker of ferroptosis was also demonstrated. OBJECTIVE We investigated whether TfR and the TfR to ferritin ratio in the cerebrospinal fluid (CSF) is a diagnostic biomarker of PSP. METHODS This study included 2 independent retrospective CSF cohorts comprising patients, respectively, from Niigata University and a multicenter memory clinic, consisting of patients with PSP, PD, and MSA. All patients were classified as clinically probable or higher based on the Society of Movement Disorders Criteria. TfR and ferritin levels in the CSF were measured using Luminex assay. RESULTS The levels of TfR in patients with PSP were higher than those in patients with PD and MSA in cohort 1 (PSP: N = 16, PD: N = 13, MSA: N = 20). The TfR to ferritin ratio in patients with PSP was significantly higher than that in patients with MSA. Subsequently, we validated these results in cohort 2 (PSP: N = 23, MSA: N = 6). The TfR to ferritin ratio was significantly higher in patients with PSP than in those with MSA. CONCLUSIONS The CSF TfR to transferrin ratio was elevated in patients with PSP. These results should be validated in a larger cohort of patients.
Collapse
Affiliation(s)
- Natsuki Akiyama
- Department of Neurology, Brain Research InstituteNiigata UniversityNiigataJapan
| | - Masato Kanazawa
- Department of Neurology, Brain Research InstituteNiigata UniversityNiigataJapan
| | - Kensaku Kasuga
- Department of Molecular Genetics, Brain Research InstituteNiigata UniversityNiigataJapan
| | - Masahiro Hatakeyama
- Department of Neurology, Brain Research InstituteNiigata UniversityNiigataJapan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research InstituteNiigata UniversityNiigataJapan
| | - Osamu Onodera
- Department of Neurology, Brain Research InstituteNiigata UniversityNiigataJapan
| |
Collapse
|
4
|
Kacemi R, Campos MG. Bee Pollen Potential to Modulate Ferroptosis: Phytochemical Insights for Age-Related Diseases. Antioxidants (Basel) 2025; 14:265. [PMID: 40227202 PMCID: PMC11939620 DOI: 10.3390/antiox14030265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 04/15/2025] Open
Abstract
Bee pollen (BP) is one of the richest known natural resources of micronutrients and bioactive phytochemicals. Some captivating bioactivities of BP compounds, although being largely investigated for the latter as individual molecules, remain very scarcely investigated or completely uninvestigated in bee pollen as a whole product. Among the most intriguing of these bioactivities, we identified ferroptosis as a major one. Ferroptosis, a recently discovered form of cell death (connecting oxidative stress and inflammation), is a complex pathophysiological process and one of the most crucial and perplexing events in current challenging human diseases such as cancer, neurodegeneration, and general aging diseases. Many BP compounds were found to intricately modulate ferroptosis depending on the cellular context by inducing this cell death mechanism in malignant cells and preventing it in non-malignant cells. Since research in both fields, i.e., BP and ferroptosis, is still recent, we deemed it necessary to undertake this review to figure out the extent of BP potential in modulating ferroptosis mechanisms. Our research proved that a wide range of BP compounds (polyphenols, phenolamides, carotenoids, vitamins, minerals, and others) substantially modulate diverse ferroptosis mechanisms. Accordingly, these phytochemicals and nutrients showed interesting potential in preclinical studies to lead to ferroptosis-mediated outcomes in important pathophysiological processes, including many aging-related disorders. One of the most paramount challenges that remain to be resolved is to determine how different BP compounds act on ferroptosis in different biological and pathophysiological contexts, either through synergistic or antagonistic behaviors. We hope that our current work constitutes a valuable incentive for future investigations in this promising and very relevant research avenue.
Collapse
Affiliation(s)
- Rachid Kacemi
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, Heath Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria G. Campos
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, Heath Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra Chemistry Centre (CQC, FCT Unit 313) (FCTUC), University of Coimbra, Rua Larga, 3000-548 Coimbra, Portugal
| |
Collapse
|
5
|
Liu FX, Yang SZ, Shi KK, Li DM, Song JB, Sun L, Dang X, Li JY, Deng ZQ, Zhao M, Feng YC. The role of protein phosphorylation modifications mediated by iron metabolism regulatory networks in the pathogenesis of Alzheimer's disease. Front Aging Neurosci 2025; 17:1540019. [PMID: 40071123 PMCID: PMC11893871 DOI: 10.3389/fnagi.2025.1540019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disease characterized mainly by the formation of amyloid beta (Aβ) plaques and abnormal phosphorylation of tau. In recent years, an imbalance in iron homeostasis has been recognized to play a key role in the pathological process of AD. Abnormal iron accumulation can activate various kinases such as glycogen synthase kinase-3β, cyclin-dependent kinase 5, and mitogen-activated protein kinase, leading to abnormal phosphorylation of tau and amyloid precursor protein, and accelerating the formation of Aβ plaques and neurofibrillary tangles. In addition, iron-mediated oxidative stress not only triggers neuronal damage, but also exacerbates neuronal dysfunction by altering the phosphorylation of N-methyl-D-aspartate receptors and γ-aminobutyric acid type A receptors. Iron accumulation also affects the phosphorylation status of tyrosine hydroxylase, the rate-limiting enzyme for dopamine synthesis, interfering with the dopamine signaling pathway. On the other hand, iron affects iron transport and metabolism in the brain by regulating the phosphorylation of transferrin, further disrupting iron homeostasis. Therapeutic strategies targeting iron metabolism show promise by reducing iron accumulation, inhibiting oxidative stress, and reducing abnormal phosphorylation of key proteins. This article reviews the molecular mechanisms of phosphorylation modifications mediated by iron homeostasis imbalance in AD, and discusses the potential of interventions that regulate iron metabolism and related signaling pathways, providing a new theoretical basis for the treatment of AD.
Collapse
Affiliation(s)
- Fei-Xiang Liu
- Department of Neuropsychiatry and Psychology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- Hospital of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The First Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Shun-Zhi Yang
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Kai-Kai Shi
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ding-Ming Li
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jia-bin Song
- College of Acupuncture, Moxibustion and Tuina, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lu Sun
- The First Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xue Dang
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jin-Yao Li
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zi-qi Deng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Min Zhao
- Hospital of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The First Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yan-Chen Feng
- Hospital of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The First Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
6
|
Naderi S, Khodagholi F, Janahmadi M, Motamedi F, Torabi A, Batool Z, Heydarabadi MF, Pourbadie HG. Ferroptosis and cognitive impairment: Unraveling the link and potential therapeutic targets. Neuropharmacology 2025; 263:110210. [PMID: 39521042 DOI: 10.1016/j.neuropharm.2024.110210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases, share key characteristics, notably cognitive impairment and significant cell death in specific brain regions. Cognition, a complex mental process allowing individuals to perceive time and place, is disrupted in these conditions. This consistent disruption suggests the possibility of a shared underlying mechanism across all neurodegenerative diseases. One potential common factor is the activation of pathways leading to cell death. Despite significant progress in understanding cell death pathways, no definitive treatments have emerged. This has shifted focus towards less-explored mechanisms like ferroptosis, which holds potential due to its involvement in oxidative stress and iron metabolism. Unlike apoptosis or necrosis, ferroptosis offers a novel therapeutic avenue due to its distinct biochemical and genetic underpinnings, making it a promising target in neurodegenerative disease treatment. Ferroptosis is distinguished from other cellular death mechanisms, by distinctive characteristics such as an imbalance of iron hemostasis, peroxidation of lipids in the plasma membrane, and dysregulated glutathione metabolism. In this review, we discuss the potential role of ferroptosis in cognitive impairment. We then summarize the evidence linking ferroptosis biomarkers to cognitive impairment brought on by neurodegeneration while highlighting recent advancements in our understanding of the molecular and genetic mechanisms behind the condition. Finally, we discuss the prospective therapeutic implications of targeting ferroptosis for the treatment of cognitive abnormalities associated with neurodegeneration, including natural and synthetic substances that suppress ferroptosis via a variety of mechanisms. Promising therapeutic candidates, including antioxidants and iron chelators, are being explored to inhibit ferroptosis and mitigate cognitive decline.
Collapse
Affiliation(s)
- Soudabeh Naderi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Neuroscience Research Center, Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Motamedi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Torabi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zehra Batool
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | | | - Hamid Gholami Pourbadie
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
7
|
da Costa Caiado MJ, Dolga AM, den Dunnen WFA. Iron(ing) out parkinsonisms: The interplay of proteinopathy and ferroptosis in Parkinson's disease and tau-related parkinsonisms. Redox Biol 2025; 79:103478. [PMID: 39721496 PMCID: PMC11732237 DOI: 10.1016/j.redox.2024.103478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Parkinsonian syndromes are characterised by similar motor-related symptomology resulting from dopaminergic neuron damage. While Parkinson's disease (PD) is the most prevalent parkinsonism, we also focus on two other variants, Progressive supranuclear palsy (PSP) and Corticobasal degeneration (CBD). Due to the clinical similarities of these parkinsonisms, and since definite diagnoses are only possible post-mortem, effective therapies and novel biomarkers of disease are scarce. Thus, we explore the current findings relating to the relationship of parkinsonism proteinopathy (α-synuclein in PD, and tau in PSP/CBD) paralleled to a specific form of cell death, ferroptosis. Ferroptosis is characterised by iron-induced lipid peroxidation and several markers of this pathway have been identified to control intracellular iron fluctuations. However, in parkinsonism, these mechanisms are thought to become dysfunctional. Although both proteinopathies have been linked to ferroptosis, much less is known about ferroptotic cell death and tau in the context of PSP/CBD. Interestingly, clinical trials targeting iron have recently shown conflicting results which begs to question the complexity of the ferroptotic pathway and alludes to the need for exploring other ferroptosis-related machinery as possible therapeutic targets. Overall, we address the literature gap in parkinsonism proteinopathy and ferroptosis, and its relevance to understanding disease pathophysiology and aetiology.
Collapse
Affiliation(s)
- Maria João da Costa Caiado
- Graduate School of Medical Sciences (GSMS) and Research School of Behavioural and Cognitive Neurosciences (BCN), University of Groningen, 9713 GZ, Groningen, the Netherlands; Department of Pathology and Medical Biology, University Medical Centre Groningen (UMCG), Hanzeplein 1, 9713 GZ, Groningen, the Netherlands; Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, the Netherlands.
| | - Amalia M Dolga
- Department of Pathology and Medical Biology, University Medical Centre Groningen (UMCG), Hanzeplein 1, 9713 GZ, Groningen, the Netherlands; Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, the Netherlands
| | - Wilfred F A den Dunnen
- Department of Pathology and Medical Biology, University Medical Centre Groningen (UMCG), Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| |
Collapse
|
8
|
Ferretti S, Zanella I. The Underestimated Role of Iron in Frontotemporal Dementia: A Narrative Review. Int J Mol Sci 2024; 25:12987. [PMID: 39684697 DOI: 10.3390/ijms252312987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
The term frontotemporal dementia (FTD) comprises a group of neurodegenerative disorders characterized by the progressive degeneration of the frontal and temporal lobes of the brain with language impairment and changes in cognitive, behavioral and executive functions, and in some cases motor manifestations. A high proportion of FTD cases are due to genetic mutations and inherited in an autosomal-dominant manner with variable penetrance depending on the implicated gene. Iron is a crucial microelement that is involved in several cellular essential functions in the whole body and plays additional specialized roles in the central nervous system (CNS) mainly through its redox-cycling properties. Such a feature may be harmful under aerobic conditions, since it may lead to the generation of highly reactive hydroxyl radicals. Dysfunctions of iron homeostasis in the CNS are indeed involved in several neurodegenerative disorders, although it is still challenging to determine whether the dyshomeostasis of this essential but harmful metal is a direct cause of neurodegeneration, a contributor factor or simply a consequence of other neurodegenerative mechanisms. Unlike many other neurodegenerative disorders, evidence of the dysfunction in brain iron homeostasis in FTD is still scarce; nonetheless, the recent literature intriguingly suggests its possible involvement. The present review aims to summarize what is currently known about the contribution of iron dyshomeostasis in FTD based on clinical, imaging, histological, biochemical and molecular studies, further suggesting new perspectives and offering new insights for future investigations on this underexplored field of research.
Collapse
Affiliation(s)
- Sara Ferretti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Isabella Zanella
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Medical Genetics Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| |
Collapse
|
9
|
Wang F, Chen Z, Zhou Q, Sun Q, Zheng N, Chen Z, Lin J, Li B, Li L. Implications of liquid-liquid phase separation and ferroptosis in Alzheimer's disease. Neuropharmacology 2024; 259:110083. [PMID: 39043267 DOI: 10.1016/j.neuropharm.2024.110083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
Neuronal cell demise represents a prevalent occurrence throughout the advancement of Alzheimer's disease (AD). However, the mechanism of triggering the death of neuronal cells remains unclear. Its potential mechanisms include aggregation of soluble amyloid-beta (Aβ) to form insoluble amyloid plaques, abnormal phosphorylation of tau protein and formation of intracellular neurofibrillary tangles (NFTs), neuroinflammation, ferroptosis, oxidative stress, liquid-liquid phase separation (LLPS) and metal ion disorders. Among them, ferroptosis is an iron-dependent lipid peroxidation-driven cell death and emerging evidences have demonstrated the involvement of ferroptosis in the pathological process of AD. The sensitivity to ferroptosis is tightly linked to numerous biological processes. Moreover, emerging evidences indicate that LLPS has great impacts on regulating human health and diseases, especially AD. Soluble Aβ can undergo LLPS to form liquid-like droplets, which can lead to the formation of insoluble amyloid plaques. Meanwhile, tau has a high propensity to condensate via the mechanism of LLPS, which can lead to the formation of NFTs. In this review, we summarize the most recent advancements pertaining to LLPS and ferroptosis in AD. Our primary focus is on expounding the influence of Aβ, tau protein, iron ions, and lipid oxidation on the intricate mechanisms underlying ferroptosis and LLPS within the domain of AD pathology. Additionally, we delve into the intricate cross-interactions that occur between LLPS and ferroptosis in the context of AD. Our findings are expected to serve as a theoretical and experimental foundation for clinical research and targeted therapy for AD.
Collapse
Affiliation(s)
- Fuwei Wang
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Zihao Chen
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Qiong Zhou
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Qiang Sun
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Nan Zheng
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Ziwen Chen
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Jiantao Lin
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| | - Baohong Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| | - Li Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
10
|
Benghanem S, Mesli F, Fatima Zohra HA, Nacereddine C, Hadjer C, Abdellatif M. Discovery of novel and highly potential inhibitors of glycogen synthase kinase 3-beta (GSK-3β) through structure-based pharmacophore modeling, virtual computational screening, docking and in silico ADMET analysis. J Biomol Struct Dyn 2024; 42:7091-7106. [PMID: 37498130 DOI: 10.1080/07391102.2023.2238062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
The protein Glycogen Synthase Kinase 3-Beta (GSK-3β), is a promising therapeutic target for treating various diseases such as neurodegenerative disorders, diabetes, inflammation and cancer. This study aims to investigate the potential of compounds targeting inflammation or carbohydrate metabolism to selectively inhibit GSK3β by binding to its ATP site. To achieve this goal, we filtered a database of 49367 molecules involved in carbohydrate metabolism or targeting inflammation using various computational analyses, including pharmacophore modeling, molecular docking, dynamic simulation, prime MM-GBSA calculation, and in silico ADME studies. We generated a pharmacophore model (hypo S: AADDHRR) using two different crystallographic complexes of GSK3β and evaluated the model's performance in identifying hits using various parameters, including EF, GH, ROC, AUC and BEDROC. Subsequently, we performed various dockings (HTVS, SP, XP and IFD) for the retrieved hits and found that, 5 out of the top 10 ranked compounds had the scaffold of pyrazolidine 3,5-dione, which has never been reported to inhibit kinases. We also conducted ADMET studies to and concluded that compound N6 exhibited the best pharmacokinetic profile passing the blood-brain barrier, possessing high lipophilicity and a high coefficient of skin permeability in the intestines, along with good bioavailability and low toxicity risk assessment. Dynamic simulation were also performed indicating that compounds N6 derived from pyrazolidine 3,5-dione demonstrated better binding potential for GSK3β during the simulation period. Therefore, we propose that compounds derived from pyrazolidine-3,5-dione, which modulate the activity of lysosomal alpha-glucosidase could serve as a novel scaffold for the selective inhibition of GSK-3β.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Soumia Benghanem
- Faculty of Medicine, Laboratory of Therapeutic Chemistry, Tlemcen University, Tlemcen, Algeria
| | - Fouzia Mesli
- Faculty of Science, Laboratory of Natural and Bio-Actives Substances, Tlemcen University, Tlemcen, Algeria
| | - Hadjadj Aoul Fatima Zohra
- Faculty of Pharmacy, Laboratory of Therapeutic Chemistry, Benyoucef Benkhadda University, Tlemcen, Algeria
| | - Chaida Nacereddine
- Faculty of Medicine, Laboratory of Therapeutic Chemistry, Tlemcen University, Tlemcen, Algeria
| | - Chenaffa Hadjer
- Faculty of Medicine, Laboratory of Therapeutic Chemistry, Tlemcen University, Tlemcen, Algeria
| | | |
Collapse
|
11
|
Qiang RR, Xiang Y, Zhang L, Bai XY, Zhang D, Li YJ, Yang YL, Liu XL. Ferroptosis: A new strategy for targeting Alzheimer's disease. Neurochem Int 2024; 178:105773. [PMID: 38789042 DOI: 10.1016/j.neuint.2024.105773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a complex pathogenesis, which involves the formation of amyloid plaques and neurofibrillary tangles. Many recent studies have revealed a close association between ferroptosis and the pathogenesis of AD. Factors such as ferroptosis-associated iron overload, lipid peroxidation, disturbances in redox homeostasis, and accumulation of reactive oxygen species have been found to contribute to the pathological progression of AD. In this review, we explore the mechanisms underlying ferroptosis, describe the link between ferroptosis and AD, and examine the reported efficacy of ferroptosis inhibitors in treating AD. Finally, we discuss the potential challenges to ferroptosis inhibitors use in the clinic, enabling their faster use in clinical treatment.
Collapse
Affiliation(s)
| | - Yang Xiang
- College of Physical Education, Yan'an University, Shaanxi, 716000, China
| | - Lei Zhang
- School of Medicine, Yan'an University, Yan'an, China
| | - Xin Yue Bai
- School of Medicine, Yan'an University, Yan'an, China
| | - Die Zhang
- School of Medicine, Yan'an University, Yan'an, China
| | - Yang Jing Li
- School of Medicine, Yan'an University, Yan'an, China
| | - Yan Ling Yang
- School of Medicine, Yan'an University, Yan'an, China
| | - Xiao Long Liu
- School of Medicine, Yan'an University, Yan'an, China.
| |
Collapse
|
12
|
Chai B, Wu Y, Yang H, Fan B, Cao S, Zhang X, Xie Y, Hu Z, Ma Z, Zhang Y, Pan W, Meng W, Meng J, Tian W, Zhang J, Li Y, Shao Y, Wang S. Tau Aggregation-Dependent Lipid Peroxide Accumulation Driven by the hsa_circ_0001546/14-3-3/CAMK2D/Tau Complex Inhibits Epithelial Ovarian Cancer Peritoneal Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310134. [PMID: 38634567 PMCID: PMC11186043 DOI: 10.1002/advs.202310134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/28/2024] [Indexed: 04/19/2024]
Abstract
Intraperitoneal dissemination is the main method of epithelial ovarian cancer (EOC) metastasis, which is related to poor prognosis and a high recurrence rate. Circular RNAs (circRNAs) are a novel class of endogenous RNAs with covalently closed loop structures that are implicated in the regulation of tumor development. In this study, hsa_circ_0001546 is downregulated in EOC primary and metastatic tissues vs. control tissues and this phenotype has a favorable effect on EOC OS and DFS. hsa_circ_0001546 can directly bind with 14-3-3 proteins to act as a chaperone molecule and has a limited positive effect on 14-3-3 protein stability. This complex recruits CAMK2D to induce the Ser324 phosphorylation of Tau proteins, changing the phosphorylation status of Tau bound to 14-3-3 and ultimately forming the hsa_circ_0001546/14-3-3/CAMK2D/Tau complex. The existence of this complex stimulates the production of Tau aggregation, which then induces the accumulation of lipid peroxides (LPOs) and causes LPO-dependent ferroptosis. In vivo, treatment with ferrostatin-1 and TRx0237 rescued the inhibitory effect of hsa_circ_0001546 on EOC cell spreading. Therefore, based on this results, ferroptosis caused by Tau aggregation occurs in EOC cells, which is not only in Alzheimer's disease- or Parkinson's disease-related cells and this kind of ferroptosis driven by the hsa_circ_0001546/14-3-3/CAMK2D/Tau complex is LPO-dependent rather than GPX4-dependent is hypothesized.
Collapse
Affiliation(s)
- BinShu Chai
- Department of GynecologyThe Third Affiliated Hospital of Kunming Medical UniversityYunnan Cancer HospitalYunnan Cancer CenterKunming650118China
- Lab for Noncoding RNA & CancerSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Yong Wu
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Department of Gynecologic OncologyFudan University Shanghai Cancer CenterShanghai200032China
| | - HengHui Yang
- Department of GynecologyThe Third Affiliated Hospital of Kunming Medical UniversityYunnan Cancer HospitalYunnan Cancer CenterKunming650118China
| | - BiaoFeng Fan
- Department of GynecologyThe Third Affiliated Hospital of Kunming Medical UniversityYunnan Cancer HospitalYunnan Cancer CenterKunming650118China
| | - SiYu Cao
- Department of Gynecologic OncologyFudan University Shanghai Cancer CenterShanghai200032China
| | - XiaoFei Zhang
- Department of GynecologyShanghai First Maternity and Infant HospitalTongji University School of Medicine2699 West Gaoke RoadShanghai201204China
| | - YaQing Xie
- Department of GynecologyThe Third Affiliated Hospital of Kunming Medical UniversityYunnan Cancer HospitalYunnan Cancer CenterKunming650118China
| | - ZhiXiang Hu
- Department of Integrative OncologyFudan University Shanghai Cancer Centerand Institutes of Biomedical SciencesFudan UniversityShanghai200032China
| | - ZhongLiang Ma
- Lab for Noncoding RNA & CancerSchool of Life SciencesShanghai UniversityShanghai200444China
| | - YunKui Zhang
- Department of AnesthesiologyFudan University Shanghai Cancer CenterShanghai200032China
| | - Wei Pan
- Lab for Noncoding RNA & CancerSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Wei Meng
- Lab for Noncoding RNA & CancerSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Jiao Meng
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Cancer InstituteFudan University Shanghai Cancer Center, and Shanghai Fifth People's HospitalShanghai200032China
| | - WenJuan Tian
- Department of Gynecologic OncologyFudan University Shanghai Cancer CenterShanghai200032China
| | - JiaLi Zhang
- Cancer InstituteFudan University Shanghai Cancer Center, and Shanghai Fifth People's HospitalShanghai200032China
| | - YanLi Li
- Lab for Noncoding RNA & CancerSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Yang Shao
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Cancer InstituteFudan University Shanghai Cancer Center, and Shanghai Fifth People's HospitalShanghai200032China
| | - ShaoJia Wang
- Department of GynecologyThe Third Affiliated Hospital of Kunming Medical UniversityYunnan Cancer HospitalYunnan Cancer CenterKunming650118China
| |
Collapse
|
13
|
Zhou J, Pathak JL, Cao T, Chen B, Wei W, Hu S, Mao T, Wu X, Watanabe N, Li X, Li J. CD4 T cell-secreted IFN-γ in Sjögren's syndrome induces salivary gland epithelial cell ferroptosis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167121. [PMID: 38471652 DOI: 10.1016/j.bbadis.2024.167121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Sjögren's syndrome (SS) is a chronic autoimmune disease that predominantly affects exocrine glands. Previous studies have demonstrated that upregulated interferon-gamma (IFN-γ) in SS triggers ferroptosis in salivary gland epithelial cells (SGECs), resulting in impaired salivary gland secretion. However, the immune cells responsible for secreting IFN-γ remain unclear. Therefore, this study conducted bioinformatics analysis and molecular validation to identify the origin of IFN-γ in SS salivary gland. METHODS The 'limma' package in R software was utilized to identify differentially expressed genes (DEGs) in the human SS dataset. Subsequently, the identified DEGs were compared with the ferroptosis database and screened through Cytoscape to determine candidate genes. The cellular localization and expression patterns of candidate genes were further confirmed in the salivary gland single-cell RNA sequence (scRNA-seq) data set from healthy control and SS mice. Furthermore, in vitro and in vivo studies were performed to analyze the effect of CD4 T-secreted IFN-γ on SGECs' ferroptosis and functions. RESULTS Upregulated TLR4, IFNG, and IL33 were screened as candidates ferroptosis ferroptosis-inducing genes in SS salivary glands. The association of IFNG and IL33 with CD4 T cells was established through immune infiltration analysis. The expression of IFN-γ on CD4 T cells was robustly higher compared with that of IL33 as evidenced by scRNA-seq and immunofluorescence co-localization. Subsequent experiments conducted on candidate genes consistently demonstrated the potent ability of IFN-γ to induce SGECs' ferroptosis and inhibit AQP5 expression. CONCLUSIONS Our findings indicate that CD4 T cell-secreted IFN-γ in SS induces SGECs' ferroptosis and inhibits AQP5 expression.
Collapse
Affiliation(s)
- Jiannan Zhou
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510182, China
| | - Janak L Pathak
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510182, China
| | - Tingting Cao
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510182, China
| | - Bo Chen
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510182, China
| | - Wei Wei
- Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Shilin Hu
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510182, China
| | - Tianjiao Mao
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510182, China
| | - Xiaodan Wu
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510182, China
| | - Nobumoto Watanabe
- Chemical Resource Development Research Unit, RIKEN CSRS, Wako, Saitama, 351-0198, Japan
| | - Xiaomeng Li
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong 510182, China.
| | - Jiang Li
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510182, China.
| |
Collapse
|
14
|
Li L, Wang L, Zhang L. Therapeutic Potential of Natural Compounds from Herbs and Nutraceuticals in Alleviating Neurological Disorders: Targeting the Wnt Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2411-2433. [PMID: 38284360 DOI: 10.1021/acs.jafc.3c07536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
As an important signaling pathway in multicellular eukaryotes, the Wnt signaling pathway participates in a variety of physiological processes. Recent studies have confirmed that the Wnt signaling pathway plays an important role in neurological disorders such as stroke, Alzheimer's disease, and Parkinson's disease. The regulation of Wnt signaling by natural compounds in herbal medicines and nutraceuticals has emerged as a potential strategy for the development of new drugs for neurological disorders. Purpose: The aim of this review is to evaluate the latest research results on the efficacy of natural compounds derived from herbs and nutraceuticals in the prevention and treatment of neurological disorders by regulating the Wnt pathway in vivo and in vitro. A manual and electronic search was performed for English articles available from PubMed, Web of Science, and ScienceDirect from the January 2010 to February 2023. Keywords used for the search engines were "natural products,″ "plant derived products,″ "Wnt+ clinical trials,″ and "Wnt+,″ and/or paired with "natural products″/″plant derived products", and "neurological disorders." A total of 22 articles were enrolled in this review, and a variety of natural compounds from herbal medicine and nutritional foods have been shown to exert therapeutic effects on neurological disorders through the Wnt pathway, including curcumin, resveratrol, and querctrin, etc. These natural products possess antioxidant, anti-inflammatory, and angiogenic properties, confer neurovascular unit and blood-brain barrier integrity protection, and affect neural stem cell differentiation, synaptic formation, and neurogenesis, to play a therapeutic role in neurological disorders. In various in vivo and in vitro studies and clinical trials, these natural compounds have been shown to be safe and tolerable with few adverse effects. Natural compounds may serve a therapeutic role in neurological disorders by regulating the Wnt pathway. This summary of the research progress of natural compounds targeting the Wnt pathway may provide new insights for the treatment of neurological disorders and potential targets for the development of new drugs.
Collapse
Affiliation(s)
- Lei Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning PR China
| | - Lin Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning PR China
| | - Lijuan Zhang
- Departments of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110000, Liaoning PR China
| |
Collapse
|
15
|
Wang J, Fu J, Zhao Y, Liu Q, Yan X, Su J. Iron and Targeted Iron Therapy in Alzheimer's Disease. Int J Mol Sci 2023; 24:16353. [PMID: 38003544 PMCID: PMC10671546 DOI: 10.3390/ijms242216353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide. β-amyloid plaque (Aβ) deposition and hyperphosphorylated tau, as well as dysregulated energy metabolism in the brain, are key factors in the progression of AD. Many studies have observed abnormal iron accumulation in different regions of the AD brain, which is closely correlated with the clinical symptoms of AD; therefore, understanding the role of brain iron accumulation in the major pathological aspects of AD is critical for its treatment. This review discusses the main mechanisms and recent advances in the involvement of iron in the above pathological processes, including in iron-induced oxidative stress-dependent and non-dependent directions, summarizes the hypothesis that the iron-induced dysregulation of energy metabolism may be an initiating factor for AD, based on the available evidence, and further discusses the therapeutic perspectives of targeting iron.
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Su
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130012, China; (J.W.); (J.F.); (Y.Z.); (Q.L.); (X.Y.)
| |
Collapse
|
16
|
Feng S, Tang D, Wang Y, Li X, Bao H, Tang C, Dong X, Li X, Yang Q, Yan Y, Yin Z, Shang T, Zheng K, Huang X, Wei Z, Wang K, Qi S. The mechanism of ferroptosis and its related diseases. MOLECULAR BIOMEDICINE 2023; 4:33. [PMID: 37840106 PMCID: PMC10577123 DOI: 10.1186/s43556-023-00142-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/23/2023] [Indexed: 10/17/2023] Open
Abstract
Ferroptosis, a regulated form of cellular death characterized by the iron-mediated accumulation of lipid peroxides, provides a novel avenue for delving into the intersection of cellular metabolism, oxidative stress, and disease pathology. We have witnessed a mounting fascination with ferroptosis, attributed to its pivotal roles across diverse physiological and pathological conditions including developmental processes, metabolic dynamics, oncogenic pathways, neurodegenerative cascades, and traumatic tissue injuries. By unraveling the intricate underpinnings of the molecular machinery, pivotal contributors, intricate signaling conduits, and regulatory networks governing ferroptosis, researchers aim to bridge the gap between the intricacies of this unique mode of cellular death and its multifaceted implications for health and disease. In light of the rapidly advancing landscape of ferroptosis research, we present a comprehensive review aiming at the extensive implications of ferroptosis in the origins and progress of human diseases. This review concludes with a careful analysis of potential treatment approaches carefully designed to either inhibit or promote ferroptosis. Additionally, we have succinctly summarized the potential therapeutic targets and compounds that hold promise in targeting ferroptosis within various diseases. This pivotal facet underscores the burgeoning possibilities for manipulating ferroptosis as a therapeutic strategy. In summary, this review enriched the insights of both investigators and practitioners, while fostering an elevated comprehension of ferroptosis and its latent translational utilities. By revealing the basic processes and investigating treatment possibilities, this review provides a crucial resource for scientists and medical practitioners, aiding in a deep understanding of ferroptosis and its effects in various disease situations.
Collapse
Affiliation(s)
- Shijian Feng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Dan Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yichang Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiang Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hui Bao
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chengbing Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiuju Dong
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xinna Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qinxue Yang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yun Yan
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhijie Yin
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Tiantian Shang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Kaixuan Zheng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiaofang Huang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zuheng Wei
- Chengdu Jinjiang Jiaxiang Foreign Languages High School, Chengdu, People's Republic of China
| | - Kunjie Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Shiqian Qi
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
17
|
Zhang JB, Jia X, Cao Q, Chen YT, Tong J, Lu GD, Li DJ, Han T, Zhuang CL, Wang P. Ferroptosis-Regulated Cell Death as a Therapeutic Strategy for Neurodegenerative Diseases: Current Status and Future Prospects. ACS Chem Neurosci 2023; 14:2995-3012. [PMID: 37579022 DOI: 10.1021/acschemneuro.3c00406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023] Open
Abstract
Ferroptosis is increasingly being recognized as a key element in the pathogenesis of diverse diseases. Recent studies have highlighted the intricate links between iron metabolism and neurodegenerative disorders. Emerging evidence suggests that iron homeostasis, oxidative stress, and neuroinflammation all contribute to the regulation of both ferroptosis and neuronal health. However, the precise molecular mechanisms underlying the involvement of ferroptosis in the pathological processes of neurodegeneration and its impact on neuronal dysfunction remain incompletely understood. In our Review, we provide a comprehensive analysis and summary of the potential molecular mechanisms underlying ferroptosis in neurodegenerative diseases, aiming to elucidate the disease progression of neurodegeneration. Additionally, we discuss potential therapeutic agents that modulate ferroptosis with the goal of identifying novel drug molecules for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Jia-Bao Zhang
- Department of Pharmacology, College of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
- National Experimental Teaching Demonstration Center of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Xiuqin Jia
- Department of Radiology, Beijing Chao Yang Hospital, Capital Medical University, Chaoyang District, Beijing 100020, China
| | - Qi Cao
- Department of Pharmacology, College of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
- National Experimental Teaching Demonstration Center of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Yi-Ting Chen
- Department of Pharmacology, College of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Jie Tong
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Guo-Dong Lu
- Department of Pharmacology, College of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Dong-Jie Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ting Han
- Department of Pharmacology, College of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Chun-Lin Zhuang
- Department of Pharmacology, College of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| | - Pei Wang
- Department of Pharmacology, College of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
- National Experimental Teaching Demonstration Center of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
18
|
Brackhan M, Arribas-Blazquez M, Lastres-Becker I. Aging, NRF2, and TAU: A Perfect Match for Neurodegeneration? Antioxidants (Basel) 2023; 12:1564. [PMID: 37627559 PMCID: PMC10451380 DOI: 10.3390/antiox12081564] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Although the trigger for the neurodegenerative disease process is unknown, the relevance of aging stands out as a major risk for the development of neurodegeneration. In this review, we highlighted the relationship between the different cellular mechanisms that occur as a consequence of aging and transcription factor nuclear factor erythroid-2-related factor 2 (NRF2) and the connection with the TAU protein. We focused on the relevance of NRF2 in the main processes involved in neurodegeneration and associated with aging, such as genomic instability, protein degradation systems (proteasomes/autophagy), cellular senescence, and stem cell exhaustion, as well as inflammation. We also analyzed the effect of aging on TAU protein levels and its aggregation and spread process. Finally, we investigated the interconnection between NRF2 and TAU and the relevance of alterations in the NRF2 signaling pathway in both primary and secondary tauopathies. All these points highlight NRF2 as a possible therapeutic target for tauopathies.
Collapse
Affiliation(s)
- Mirjam Brackhan
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28029 Madrid, Spain;
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, c/Arturo Duperier 4, 28029 Madrid, Spain
| | - Marina Arribas-Blazquez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain;
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Isabel Lastres-Becker
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, c/Arturo Duperier 4, 28029 Madrid, Spain
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain
- Institute Teófilo Hernando for Drug Discovery, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| |
Collapse
|
19
|
Li N, Duan YH, Chen L, Zhang K. Iron metabolism: An emerging therapeutic target underlying the anti-Alzheimer's disease effect of ginseng. J Trace Elem Med Biol 2023; 79:127252. [PMID: 37418790 DOI: 10.1016/j.jtemb.2023.127252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 06/05/2023] [Accepted: 06/22/2023] [Indexed: 07/09/2023]
Abstract
Finding neuroprotective drugs with fewer side effects and more efficacy has become a major problem as the global prevalence of Alzheimer's disease (AD) rises. Natural drugs have risen to prominence as potential medication candidates. Ginseng has a long history of use in China, and it has a wide range of pharmacological actions that can help with neurological issues. Iron loaded in the brain has been linked to AD pathogenesis. We reviewed the regulation of iron metabolism and its studies in AD and explored how ginseng might regulate iron metabolism and prevent or treat AD. Researchers utilized network pharmacology analysis to identify key factive components of ginseng that protect against AD by regulating ferroptosis. Ginseng and its active ingredients may benefit AD by regulating iron metabolism and targeting ferroptosis genes to inhibit the ferroptosis process. The results present new ideas for ginseng pharmacological studies and initiatives for further research into AD-related drugs. To provide comprehensive information on the neuroprotective use of ginseng to modulate iron metabolism, reveal its potential to treat AD, and provide insights for future research opportunities.
Collapse
Affiliation(s)
- Nan Li
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Yu-Han Duan
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Lei Chen
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Kun Zhang
- Department of Medical Research Center, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
20
|
Wu M, Chen Z, Jiang M, Bao B, Li D, Yin X, Wang X, Liu D, Zhu LQ. Friend or foe: role of pathological tau in neuronal death. Mol Psychiatry 2023; 28:2215-2227. [PMID: 36918705 DOI: 10.1038/s41380-023-02024-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Neuronal death is one of the most common pathological hallmarks of diverse neurological diseases, which manifest varying degrees of cognitive or motor dysfunction. Neuronal death can be classified into multiple forms with complicated and unique regulatory signaling pathways. Tau is a key microtubule-associated protein that is predominantly expressed in neurons to stabilize microtubules under physiological conditions. In contrast, pathological tau always detaches from microtubules and is implicated in a series of neurological disorders that are characterized by irreversible neuronal death, such as necrosis, apoptosis, necroptosis, pyroptosis, ferroptosis, autophagy-dependent neuronal death and phagocytosis by microglia. However, recent studies have also revealed that pathological tau can facilitate neuron escape from acute apoptosis, delay necroptosis through its action on granulovacuolar degeneration bodies (GVBs), and facilitate iron export from neurons to block ferroptosis. In this review, we briefly describe the current understanding of how pathological tau exerts dual effects on neuronal death by acting as a double-edged sword in different neurological diseases. We propose that elucidating the mechanism by which pathological tau affects neuronal death is critical for exploring novel and precise therapeutic strategies for neurological disorders.
Collapse
Affiliation(s)
- Moxin Wu
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China
| | - Zhiying Chen
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China
| | - Min Jiang
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China
| | - Bing Bao
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China
| | - Dongling Li
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China
| | - Xiaoping Yin
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China.
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China.
| | - Xueren Wang
- Department of Anesthesiology, Shanxi Bethune Hospital, Taiyuan, 030032, China.
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Dan Liu
- Department of Medical Genetics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
21
|
Chen LL, Fan YG, Zhao LX, Zhang Q, Wang ZY. The metal ion hypothesis of Alzheimer's disease and the anti-neuroinflammatory effect of metal chelators. Bioorg Chem 2023; 131:106301. [PMID: 36455485 DOI: 10.1016/j.bioorg.2022.106301] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/13/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD), characterized by the β-amyloid protein (Aβ) deposition and tau hyperphosphorylation, is the most common dementia with uncertain etiology. The clinical trials of Aβ monoclonal antibody drugs have almost failed, giving rise to great attention on the other etiologic hypothesis regarding AD such as metal ions dysmetabolism and chronic neuroinflammation. Mounting evidence revealed that the metal ions (iron, copper, and zinc) were dysregulated in the susceptible brain regions of AD patients, which was highly associated with Aβ deposition, tau hyperphosphorylation, neuronal loss, as well as neuroinflammation. Further studies uncovered that iron, copper and zinc could not only enhance the production of Aβ but also directly bind to Aβ and tau to promote their aggregations. In addition, the accumulation of iron and copper could respectively promote ferroptosis and cuproptosis. Therefore, the metal ion chelators were recognized as promising agents for treating AD. This review comprehensively summarized the effects of metal ions on the Aβ dynamics and tau phosphorylation in the progression of AD. Furthermore, taking chronic neuroinflammation contributes to the progression of AD, we also provided a summary of the mechanisms concerning metal ions on neuroinflammation and highlighted the metal ion chelators may be potential agents to alleviate neuroinflammation under the condition of AD. Nevertheless, more investigations regarding metal ions on neuroinflammation should be taken into practice, and the effects of metal ion chelators on neuroinflammation should gain more attention. Running title: Metal chelators against neuroinflammation.
Collapse
Affiliation(s)
- Li-Lin Chen
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Yong-Gang Fan
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Ling-Xiao Zhao
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Qi Zhang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Zhan-You Wang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| |
Collapse
|
22
|
Sfera A, Thomas KG, Andronescu CV, Jafri N, Sfera DO, Sasannia S, Zapata-Martín del Campo CM, Maldonado JC. Bromodomains in Human-Immunodeficiency Virus-Associated Neurocognitive Disorders: A Model of Ferroptosis-Induced Neurodegeneration. Front Neurosci 2022; 16:904816. [PMID: 35645713 PMCID: PMC9134113 DOI: 10.3389/fnins.2022.904816] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Human immunodeficiency virus (HIV)-associated neurocognitive disorders (HAND) comprise a group of illnesses marked by memory and behavioral dysfunction that can occur in up to 50% of HIV patients despite adequate treatment with combination antiretroviral drugs. Iron dyshomeostasis exacerbates HIV-1 infection and plays a major role in Alzheimer's disease pathogenesis. In addition, persons living with HIV demonstrate a high prevalence of neurodegenerative disorders, indicating that HAND provides a unique opportunity to study ferroptosis in these conditions. Both HIV and combination antiretroviral drugs increase the risk of ferroptosis by augmenting ferritin autophagy at the lysosomal level. As many viruses and their proteins exit host cells through lysosomal exocytosis, ferroptosis-driving molecules, iron, cathepsin B and calcium may be released from these organelles. Neurons and glial cells are highly susceptible to ferroptosis and neurodegeneration that engenders white and gray matter damage. Moreover, iron-activated microglia can engage in the aberrant elimination of viable neurons and synapses, further contributing to ferroptosis-induced neurodegeneration. In this mini review, we take a closer look at the role of iron in the pathogenesis of HAND and neurodegenerative disorders. In addition, we describe an epigenetic compensatory system, comprised of bromodomain-containing protein 4 (BRD4) and microRNA-29, that may counteract ferroptosis by activating cystine/glutamate antiporter, while lowering ferritin autophagy and iron regulatory protein-2. We also discuss potential interventions for lysosomal fitness, including ferroptosis blockers, lysosomal acidification, and cathepsin B inhibitors to achieve desirable therapeutic effects of ferroptosis-induced neurodegeneration.
Collapse
Affiliation(s)
- Adonis Sfera
- Patton State Hospital, San Bernardino, CA, United States
- Department of Psychiatry, University of California, Riverside, Riverside, CA, United States
| | | | | | - Nyla Jafri
- Patton State Hospital, San Bernardino, CA, United States
| | - Dan O. Sfera
- Patton State Hospital, San Bernardino, CA, United States
| | | | | | - Jose C. Maldonado
- Department of Medicine, The University of Texas Rio Grande Valley, Edinburg, TX, United States
| |
Collapse
|
23
|
Osorio C, Sfera A, Anton JJ, Thomas KG, Andronescu CV, Li E, Yahia RW, Avalos AG, Kozlakidis Z. Virus-Induced Membrane Fusion in Neurodegenerative Disorders. Front Cell Infect Microbiol 2022; 12:845580. [PMID: 35531328 PMCID: PMC9070112 DOI: 10.3389/fcimb.2022.845580] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/01/2022] [Indexed: 12/15/2022] Open
Abstract
A growing body of epidemiological and research data has associated neurotropic viruses with accelerated brain aging and increased risk of neurodegenerative disorders. Many viruses replicate optimally in senescent cells, as they offer a hospitable microenvironment with persistently elevated cytosolic calcium, abundant intracellular iron, and low interferon type I. As cell-cell fusion is a major driver of cellular senescence, many viruses have developed the ability to promote this phenotype by forming syncytia. Cell-cell fusion is associated with immunosuppression mediated by phosphatidylserine externalization that enable viruses to evade host defenses. In hosts, virus-induced immune dysfunction and premature cellular senescence may predispose to neurodegenerative disorders. This concept is supported by novel studies that found postinfectious cognitive dysfunction in several viral illnesses, including human immunodeficiency virus-1, herpes simplex virus-1, and SARS-CoV-2. Virus-induced pathological syncytia may provide a unified framework for conceptualizing neuronal cell cycle reentry, aneuploidy, somatic mosaicism, viral spreading of pathological Tau and elimination of viable synapses and neurons by neurotoxic astrocytes and microglia. In this narrative review, we take a closer look at cell-cell fusion and vesicular merger in the pathogenesis of neurodegenerative disorders. We present a "decentralized" information processing model that conceptualizes neurodegeneration as a systemic illness, triggered by cytoskeletal pathology. We also discuss strategies for reversing cell-cell fusion, including, TMEM16F inhibitors, calcium channel blockers, senolytics, and tubulin stabilizing agents. Finally, going beyond neurodegeneration, we examine the potential benefit of harnessing fusion as a therapeutic strategy in regenerative medicine.
Collapse
Affiliation(s)
- Carolina Osorio
- Department of Psychiatry, Loma Linda University, Loma Linda, CA, United States
| | - Adonis Sfera
- Department of Psychiatry, Loma Linda University, Loma Linda, CA, United States
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Jonathan J. Anton
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Karina G. Thomas
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Christina V. Andronescu
- Medical Anthropology – Department of Anthropology, Stanford University, Stanford, CA, United States
| | - Erica Li
- School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Rayan W. Yahia
- School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Andrea García Avalos
- Universidad Nacional Autónoma de México (UNAM), Facultad de Medicina Campus, Ciudad de Mexico, Mexico
| | - Zisis Kozlakidis
- International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|