1
|
Ward KS, Ptak CP, Pashkova N, Grider T, Peterson TA, Pareyson D, Pisciotta C, Saveri P, Moroni I, Laura M, Burns J, Menezes MP, Cornett K, Finkel R, Mukherjee-Clavin B, Sumner CJ, Greene M, Hamid OA, Herrmann D, Sadjadi R, Walk D, Züchner S, Reilly MM, Scherer SS, Inherited Neuropathy Consortium, Piper RC, Shy ME. Charcot-Marie-Tooth disease type 1E: Clinical Natural History and Molecular Impact of PMP22 Variants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.05.01.25326605. [PMID: 40343019 PMCID: PMC12060940 DOI: 10.1101/2025.05.01.25326605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Charcot-Marie-Tooth disease type 1E (CMT1E) is a rare, autosomal dominant peripheral neuropathy caused by missense variants, deletions, and truncations within the peripheral myelin protein-22 (PMP22) gene. CMT1E phenotypes vary depending on the specific variant, ranging from mild to severe, and there is little natural history and phenotypic progression data on individuals with CMT1E. Patients with CMT1E were evaluated during initial and follow-up visits at sites within the Inherited Neuropathy Consortium. Clinical characteristics were obtained from history, neurological exams, and nerve conduction studies. Clinical outcome measures were used to quantify baseline and longitudinal changes, including the Rasch-modified CMT Examination Score version 2 (CMTESv2-R) and the CMT Pediatric Scale (CMTPedS). The trafficking of PMP22 variants in transfected cells was correlated to disease severity. Twenty-four, presumed disease-causing PMP22 variants were identified in 50 individuals from 35 families, including 19 missense variants, three in-frame deletions, and two truncations. Twenty-nine patients presented with delayed walking during childhood. At their baseline evaluation, the mean CMTESv2-R in 46 patients was 16 ± 7.72 (out of 32), and the mean CMTPedS from 17 patients was 28 ± 6.35 (out of 44). Six individuals presented with hearing loss, eleven with scoliosis, three with hip dysplasia, and one with both scoliosis and hip dysplasia. Twenty variants were localized within in transmembrane domains; 31 of 35 individuals with these variants had moderate to severe phenotypes. Three variants were found in the extracellular domain and were associated with milder phenotypes. Reduced expression of PMP22 at the cell surface, and the location of missense variants within in the transmembrane domain correlated with disease severity. Pathogenic PMP22 variants located within the transmembrane regions usually cause a moderate to severe clinical phenotype, beginning in early childhood, and have impaired trafficking to the plasma membrane.
Collapse
Affiliation(s)
- Kailee S. Ward
- Department of Neurology, University of Iowa Health Care Medical Center, Iowa City, IA 52242, USA
| | - Christopher P. Ptak
- Biomolecular Nuclear Magnetic Resonance Facility, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Natalya Pashkova
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Tiffany Grider
- Department of Neurology, University of Iowa Health Care Medical Center, Iowa City, IA 52242, USA
| | - Tabitha A. Peterson
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Davide Pareyson
- Department of Clinical Neurosciences, Fondazione IRCCS Instituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Chiara Pisciotta
- Department of Clinical Neurosciences, Fondazione IRCCS Instituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Paola Saveri
- Department of Clinical Neurosciences, Fondazione IRCCS Instituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Isabella Moroni
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Matilde Laura
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Joshua Burns
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Manoj P. Menezes
- University of Sydney School of Health Sciences, Faculty of Medicine and Health; Paediatric Gait Analysis Service of New South Wales, Sydney Children’s Hospital Network, Sydney, 2145 Australia
| | - Kayla Cornett
- University of Sydney School of Health Sciences, Faculty of Medicine and Health; Paediatric Gait Analysis Service of New South Wales, Sydney Children’s Hospital Network, Sydney, 2145 Australia
| | - Richard Finkel
- Center for Experimental Neurotherapies, St. Jude Children’s Research Hospital, Memphis, TN USA
| | | | - Charlotte J. Sumner
- Department of Neurology, John Hopkins University School of Medicine, Baltimore, MD 21205
| | - Maxwell Greene
- Department of Neurology, Stanford University, Stanford, CA 94304, USA
| | - Omer Abdul Hamid
- Department of Neurology, Nemours Children’s Hospital, Orland, FL 32827, USA
| | - David Herrmann
- Department of Neurology, University of Rochester, Rochester, NY 14618, USA
| | - Reza Sadjadi
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David Walk
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephan Züchner
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- John P. Hussman Institutue for Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Mary M. Reilly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Steven S. Scherer
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Robert C. Piper
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Michael E. Shy
- Department of Neurology, University of Iowa Health Care Medical Center, Iowa City, IA 52242, USA
| |
Collapse
|
2
|
De Grado A, Serio M, Saveri P, Pisciotta C, Pareyson D. Charcot-Marie-Tooth disease: a review of clinical developments and its management - What's new in 2025? Expert Rev Neurother 2025; 25:427-442. [PMID: 40014417 DOI: 10.1080/14737175.2025.2470980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/03/2025] [Accepted: 02/19/2025] [Indexed: 03/01/2025]
Abstract
INTRODUCTION Charcot-Marie-Tooth disease (CMT) understanding and diagnostic rates are improving. Symptomatic management is still the only option, but many therapeutic approaches are under investigation, some in the clinical trial phase. AREAS COVERED Through a comprehensive search in PubMed, the ClinicalTrials.gov website, and the latest abstracts on the topic, the authors review the diagnostic advances and promising treatments, focusing on pharmacological and gene therapy/silencing approaches, and on clinical trial challenges. They also review current CMT management, including rehabilitation, orthotics, and associated symptoms and comorbidities. EXPERT OPINION The CMT field is evolving rapidly, with significant advances in genetic diagnosis and disease recognition. International networks and patient organization partnerships are vital for progress, enabling collaboration and large-scale studies. Metabolic neuropathies are relatively easier to target, and interim analysis results from the CMT-SORD trial suggest govorestat may become the first approved CMT drug. Gene therapy shows promise but currently faces safety and targeting challenges; PMP22 silencers for CMT1A are close to being tested in patients. New drugs, such as HDAC6 inhibitors, are also approaching the clinical trial phase, despite existing hurdles. Supportive care, including rehabilitation and orthotics, continues to improve quality of life. There is optimism that within the next decade, approved therapies will reduce disease burden.
Collapse
Affiliation(s)
- Amedeo De Grado
- Unit of Rare Neurological Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marina Serio
- Department of Medicine and Surgery, Neurology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Paola Saveri
- Unit of Rare Neurological Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Pisciotta
- Unit of Rare Neurological Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Davide Pareyson
- Unit of Rare Neurological Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
3
|
Schepers M, Vangansewinkel T, Libberecht K, Jeurissen H, Jacobs D, Piccart E, Prior R, Ricciarelli R, Brullo C, Fedele E, Bruno O, Prickaerts J, Lambrichts I, Van Den Bosch L, Vanmierlo T, Wolfs E. Phosphodiesterase 4D inhibition improves the functional and molecular outcome in a mouse and human model of Charcot Marie Tooth disease 1 A. Biomed Pharmacother 2025; 183:117828. [PMID: 39823724 DOI: 10.1016/j.biopha.2025.117828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/20/2025] Open
Abstract
Charcot-Marie-Tooth disease type 1A (CMT1A) is an inherited peripheral neuropathy caused by a duplication of the peripheral myelin protein 22 (PMP22) gene. It is primarily marked by Schwann cell dedifferentiation and demyelination, leading to motor and sensory deficits. Cyclic adenosine monophosphate (cAMP) is crucial for Schwann cell differentiation and maturation. Therefore, increasing cAMP by inhibiting its degraders, phosphodiesterases (PDE), is a potential therapeutic strategy for CMT1A. This study investigated the therapeutic potential of the specific PDE4D inhibitor Gebr32a using the C3-PMP22 mouse model for CMT1A and patient-induced Pluripotent Stem Cell (iPSC)-derived Schwann cells. C3-PMP22 mice, injected subcutaneously with Gebr32a twice a day for 10 weeks, showed significantly increased nerve conduction in sciatic nerves compared to vehicle-injected controls, indicating improved myelination. Additionally, Gebr32a-treated C3-PMP22 mice exhibited improved sensorimotor functions. Grip strength analysis revealed significantly increased strength in all limbs of Gebr32a-treated C3-PMP22 mice. Post-mortem histological and ultrastructural analysis confirmed enhanced myelination in the sciatic nerve of treated mice compared to controls. In primary mouse CMT1A Schwann cells, Gebr32a dose-dependently increased the expression of pro-myelinating genes such as oct6, Krox20, Mbp, Mpz, and Plp, while downregulating the dedifferentiation marker c-Jun and human PMP22. Similar effects on gene expression were observed in iPSC-derived Schwann cells from a CMT1A patient, highlighting the clinical relevance of our findings. In conclusion, inhibition of PDE4D with Gebr32a improves the functional and molecular outcomes in mouse and human models of CMT1A, highlighting its potential as a new therapeutic strategy for CMT1A disease management.
Collapse
Affiliation(s)
- Melissa Schepers
- NIC&R - Neuro-Immune Connection & Repair, BIOMED, Department of Neuroscience, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience - Division Translational Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Tim Vangansewinkel
- Laboratory for Functional Imaging & Research on Stem Cells, BIOMED, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven , Belgium
| | - Karen Libberecht
- Laboratory for Functional Imaging & Research on Stem Cells, BIOMED, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven , Belgium
| | - Hanne Jeurissen
- Laboratory for Functional Imaging & Research on Stem Cells, BIOMED, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Darren Jacobs
- NIC&R - Neuro-Immune Connection & Repair, BIOMED, Department of Neuroscience, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Laboratory for Functional Imaging & Research on Stem Cells, BIOMED, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Elisabeth Piccart
- NIC&R - Neuro-Immune Connection & Repair, BIOMED, Department of Neuroscience, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Robert Prior
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven , Belgium; Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Roberta Ricciarelli
- IRCCS Ospedale Policlinico San Martino, Genova 16100, Italy; Department of Experimental Medicine, Section of General Pathology, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | - Chiara Brullo
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | - Ernesto Fedele
- IRCCS Ospedale Policlinico San Martino, Genova 16100, Italy; Department of Pharmacy, Section of Pharmacology and Toxicology, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | - Olga Bruno
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | | | - Ivo Lambrichts
- Laboratory for Functional Imaging & Research on Stem Cells, BIOMED, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven , Belgium
| | - Tim Vanmierlo
- NIC&R - Neuro-Immune Connection & Repair, BIOMED, Department of Neuroscience, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience - Division Translational Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - Esther Wolfs
- Laboratory for Functional Imaging & Research on Stem Cells, BIOMED, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
4
|
Ruzzante B, Fruzzetti F, Cattaneo M, Lauria Pinter G, Marcuzzo S, Candiani G, Bono N. Harnessing osmotic shock for enhanced intracellular delivery of (nano)cargos. Int J Pharm 2025; 669:125008. [PMID: 39638270 DOI: 10.1016/j.ijpharm.2024.125008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Efficient intracellular delivery of exogenous (nano)materials is critical for both research and therapeutic applications. The physicochemical properties of the cargo play a crucial role in determining internalization efficacy. Consequently, significant research efforts are focused on developing innovative and effective methodologies to optimize (nano)material delivery. In this study, we utilized osmotic shock to enhance (nano)cargos internalization. We examined the effects of hypotonic/hypertonic shock on both primary and cell lines, assessing parameters such as cell viability, cell volume, membrane tension changes, and particle uptake. Our results indicate that short-lived osmotic shock does not harm cells. Hypotonic shock induced temporary shape changes lasting up to 5 min, followed by a 15-minute recovery period. Importantly, hypotonic shock increased the uptake of 100-nm and 500-nm particles by ∼ 3- and ∼ 5-fold, respectively, compared to isotonic conditions. In contrast, the hypertonic shock did not impact cell behavior or particle uptake. Notably, the internalization mechanisms triggered by osmotic shock operate independently of active endocytic pathways, making hypotonic stimulation particularly beneficial for hard-to-treat cells. When primary fibroblasts derived from amyotrophic lateral sclerosis (ALS)-patients were exposed to hypotonic shock in the presence of the therapeutic cargo icerguastat, there was an increased expression of miR-106b-5p compared to isotonic conditions. In conclusion, osmotic shock presents a promising strategy for improving drug delivery within cells and, potentially, in tissues such as muscles or skin, where localized drug administration is preferred.
Collapse
Affiliation(s)
- Beatrice Ruzzante
- genT_LΛB, Dept. of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Flaminia Fruzzetti
- genT_LΛB, Dept. of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Marco Cattaneo
- ALS Centre, 3rd Neurology Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy; Ph.D. Program in Pharmacological Biomolecular Sciences, Experimental and Clinical, University of Milan, Milan, Italy
| | - Giuseppe Lauria Pinter
- ALS Centre, 3rd Neurology Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy; Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Stefania Marcuzzo
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy; Brain-targeted Nanotechnologies (BraiNs) Lab, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Gabriele Candiani
- genT_LΛB, Dept. of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy; Brain-targeted Nanotechnologies (BraiNs) Lab, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Nina Bono
- genT_LΛB, Dept. of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy.
| |
Collapse
|
5
|
Schneider A, Won S, Armstrong EA, Cooper AJ, Suresh A, Rivera R, Barrett‐Wilt G, Denu JM, Simcox JA, Svaren J. The role of ATP citrate lyase in myelin formation and maintenance. Glia 2025; 73:105-121. [PMID: 39318247 PMCID: PMC11660526 DOI: 10.1002/glia.24620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/05/2024] [Accepted: 09/14/2024] [Indexed: 09/26/2024]
Abstract
Formation of myelin by Schwann cells is tightly coupled to peripheral nervous system development and is important for neuronal function and long-term maintenance. Perturbation of myelin causes a number of specific disorders that are among the most prevalent diseases affecting the nervous system. Schwann cells synthesize myelin lipids de novo rather than relying on uptake of circulating lipids, yet one unresolved matter is how acetyl CoA, a central metabolite in lipid formation is generated during myelin formation and maintenance. Recent studies have shown that glucose-derived acetyl CoA itself is not required for myelination. However, the importance of mitochondrially-derived acetyl CoA has never been tested for myelination in vivo. Therefore, we have developed a Schwann cell-specific knockout of the ATP citrate lyase (Acly) gene to determine the importance of mitochondrial metabolism to supply acetyl CoA in nerve development. Intriguingly, the ACLY pathway is important for myelin maintenance rather than myelin formation. In addition, ACLY is required to maintain expression of a myelin-associated gene program and to inhibit activation of the latent Schwann cell injury program.
Collapse
Affiliation(s)
- Andrew Schneider
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Seongsik Won
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Eric A. Armstrong
- Wisconsin Institute of DiscoveryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Aaron J. Cooper
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Comparative Biosciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Amulya Suresh
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Rachell Rivera
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | | | - John M. Denu
- Wisconsin Institute of DiscoveryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Judith A. Simcox
- Howard Hughes Medical Institute, Department of BiochemistryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - John Svaren
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Comparative Biosciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
6
|
Pashkova N, Peterson TA, Ptak CP, Winistorfer SC, Guerrero-Given D, Kamasawa N, Ahern CA, Shy ME, Piper RC. Disrupting the transmembrane domain interface between PMP22 and MPZ causes peripheral neuropathy. iScience 2024; 27:110989. [PMID: 39759075 PMCID: PMC11700639 DOI: 10.1016/j.isci.2024.110989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/25/2024] [Accepted: 09/16/2024] [Indexed: 01/07/2025] Open
Abstract
Peripheral Myelin Protein 22 (PMP22) and MPZ are abundant myelin membrane proteins in Schwann cells. The MPZ adhesion protein holds myelin wraps together across the intraperiod line. PMP22 is a tetraspan protein belonging to the Claudin superfamily. Loss of either MPZ or PMP22 causes severe demyelinating Charcot-Marie-Tooth (CMT) peripheral neuropathy, and duplication of PMP22 causes the most common form of CMT, CMT1A. Yet, the molecular functions provided by PMP22 and how its alteration causes CMT are unknown. Here, we find MPZ and PMP22 form a specific complex through interfaces within their transmembrane domains. We also find that the PMP22 A67T patient variant that causes a loss-of-function (hereditary neuropathy with pressure palsies) phenotype maps to this interface, and blocks MPZ association without affecting localization to the plasma membrane or interactions with other proteins. These data define the molecular basis for the MPZ ∼ PMP22 interaction and indicate this complex fulfills an important function in myelinating cells.
Collapse
Affiliation(s)
- Natalya Pashkova
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Tabitha A. Peterson
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Christopher P. Ptak
- Carver College of Medicine NMR Facility, University of Iowa, Iowa City, IA 52242, USA
| | - Stanley C. Winistorfer
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Debbie Guerrero-Given
- Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Naomi Kamasawa
- Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Christopher A. Ahern
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Michael E. Shy
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Robert C. Piper
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
7
|
Moore SM, Gawron J, Stevens M, Marziali LN, Buys ES, Milne GT, Feltri ML, VerPlank JJS. Pharmacologically increasing cGMP improves proteostasis and reduces neuropathy in mouse models of CMT1. Cell Mol Life Sci 2024; 81:434. [PMID: 39400753 PMCID: PMC11473742 DOI: 10.1007/s00018-024-05463-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/27/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
Increasing cyclic GMP activates 26S proteasomes via phosphorylation by Protein Kinase G and stimulates the intracellular degradation of misfolded proteins. Therefore, agents that raise cGMP may be useful therapeutics against neurodegenerative diseases and other diseases in which protein degradation is reduced and misfolded proteins accumulate, including Charcot Marie Tooth 1A and 1B peripheral neuropathies, for which there are no treatments. Here we increased cGMP in the S63del mouse model of CMT1B by treating for three weeks with either the phosphodiesterase 5 inhibitor tadalafil, or the brain-penetrant soluble guanylyl cyclase stimulator CYR119. Both molecules activated proteasomes in the affected peripheral nerves, reduced polyubiquitinated proteins, and improved myelin thickness and nerve conduction. CYR119 increased cGMP more than tadalafil in the peripheral nerves of S63del mice and elicited greater biochemical and functional improvements. To determine whether raising cGMP could be beneficial in other neuropathies, we first showed that polyubiquitinated proteins and the disease-causing protein accumulate in the sciatic nerves of the C3 mouse model of CMT1A. Treatment of these mice with CYR119 reduced the levels of polyubiquitinated proteins and the disease-causing protein, presumably by increasing their degradation, and improved myelination, nerve conduction, and motor coordination. Thus, pharmacological agents that increase cGMP are promising treatments for CMT1 neuropathies and may be useful against other proteotoxic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Seth M Moore
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Joseph Gawron
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Mckayla Stevens
- Department of Anatomy, Physiology, and Genetics, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Leandro N Marziali
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Emmanuel S Buys
- Cyclerion Therapeutics, 245 First Street Riverview II, 18th floor, Cambridge, MA, 02142, USA
| | - G Todd Milne
- Cyclerion Therapeutics, 245 First Street Riverview II, 18th floor, Cambridge, MA, 02142, USA
| | - Maria Laura Feltri
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
- IRCCS Neurological institute 'Carlo Besta', Milano, Italy
- Department of Medical Biotechnology and Translational Medicine, Universita' degli Studi di Milano, Milano, Italy
| | - Jordan J S VerPlank
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA.
- Department of Anatomy, Physiology, and Genetics, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| |
Collapse
|
8
|
Cassinotti LR, Ji L, Yuk MC, Desai AS, Cass ND, Amir ZA, Corfas G. Hidden hearing loss in a Charcot-Marie-Tooth type 1A mouse model. JCI Insight 2024; 9:e180315. [PMID: 39178128 PMCID: PMC11466197 DOI: 10.1172/jci.insight.180315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/15/2024] [Indexed: 08/25/2024] Open
Abstract
Hidden hearing loss (HHL), a recently described auditory neuropathy characterized by normal audiometric thresholds but reduced sound-evoked cochlear compound action potentials, has been proposed to contribute to hearing difficulty in noisy environments in people with normal hearing thresholds and has become a widespread complaint. While most studies on HHL pathogenesis have focused on inner hair cell (IHC) synaptopathy, we recently showed that transient auditory nerve (AN) demyelination also causes HHL in mice. To test the effect of myelinopathy on hearing in a clinically relevant model, we studied a mouse model of Charcot-Marie-Tooth type 1A (CMT1A), the most prevalent hereditary peripheral neuropathy in humans. CMT1A mice exhibited the functional hallmarks of HHL together with disorganization of AN heminodes near the IHCs with minor loss of AN fibers. These results support the hypothesis that mild disruptions of AN myelination can cause HHL and that heminodal defects contribute to the alterations in the sound-evoked cochlear compound action potentials seen in this mouse model. Furthermore, these findings suggest that patients with CMT1A or other mild peripheral neuropathies are likely to suffer from HHL. Furthermore, these results suggest that studies of hearing in patients with CMT1A might help develop robust clinical tests for HHL, which are currently lacking.
Collapse
|
9
|
Pashkova N, Peterson TA, Ptak CP, Winistorfer SC, Guerrero-Given D, Kamasawa N, Ahern CA, Shy ME, Piper RC. Disrupting the transmembrane domain interface between PMP22 and MPZ causes peripheral neuropathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.24.573255. [PMID: 38187781 PMCID: PMC10769442 DOI: 10.1101/2023.12.24.573255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
PMP22 and MPZ are abundant myelin membrane proteins in Schwann cells. The MPZ adhesion protein holds myelin wraps together across the intraperiod line. PMP22 is a tetraspan protein belonging to the Claudin superfamily. Loss of either MPZ or PMP22 causes severe demyelinating Charcot-Marie-Tooth (CMT) peripheral neuropathy, and duplication of PMP22 causes the most common form of CMT, CMT1A. Yet, the molecular functions provided by PMP22 and how its alteration causes CMT are unknown. Here we find MPZ and PMP22 form a specific complex through interfaces within their transmembrane domains. We also find that the PMP22 A67T patient variant that causes a loss-of-function (Hereditary Neuropathy with Pressure Palsies) phenotype maps to this interface, and blocks MPZ association without affecting localization to the plasma membrane or interactions with other proteins. These data define the molecular basis for the MPZ~PMP22 interaction and indicate this complex fulfills an important function in myelinating cells.
Collapse
|
10
|
McCulloch MK, Mehryab F, Rashnonejad A. Navigating the Landscape of CMT1B: Understanding Genetic Pathways, Disease Models, and Potential Therapeutic Approaches. Int J Mol Sci 2024; 25:9227. [PMID: 39273178 PMCID: PMC11395143 DOI: 10.3390/ijms25179227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Charcot-Marie-Tooth type 1B (CMT1B) is a peripheral neuropathy caused by mutations in the gene encoding myelin protein zero (MPZ), a key component of the myelin sheath in Schwann cells. Mutations in the MPZ gene can lead to protein misfolding, unfolded protein response (UPR), endoplasmic reticulum (ER) stress, or protein mistrafficking. Despite significant progress in understanding the disease mechanisms, there is currently no effective treatment for CMT1B, with therapeutic strategies primarily focused on supportive care. Gene therapy represents a promising therapeutic approach for treating CMT1B. To develop a treatment and better design preclinical studies, an in-depth understanding of the pathophysiological mechanisms and animal models is essential. In this review, we present a comprehensive overview of the disease mechanisms, preclinical models, and recent advancements in therapeutic research for CMT1B, while also addressing the existing challenges in the field. This review aims to deepen the understanding of CMT1B and to encourage further research towards the development of effective treatments for CMT1B patients.
Collapse
Affiliation(s)
- Mary Kate McCulloch
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, 575 Children’s Crossroad, Columbus, OH 43215, USA
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| | - Fatemeh Mehryab
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, 575 Children’s Crossroad, Columbus, OH 43215, USA
| | - Afrooz Rashnonejad
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, 575 Children’s Crossroad, Columbus, OH 43215, USA
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
11
|
Cassinotti LR, Ji L, Yuk MC, Desai AS, Cass ND, Amir ZA, Corfas G. Hidden hearing loss in a Charcot-Marie-Tooth type 1A mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.14.571732. [PMID: 38168255 PMCID: PMC10760174 DOI: 10.1101/2023.12.14.571732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Hidden hearing loss (HHL), a recently described auditory neuropathy characterized by normal audiometric thresholds but reduced sound-evoked cochlear compound action potentials, has been proposed to contribute to hearing difficulty in noisy environments in people with normal hearing thresholds, a widespread complaint. While most studies on HHL pathogenesis have focused on inner hair cell (IHC) synaptopathy, we recently showed that transient auditory nerve (AN) demyelination also causes HHL in mice. To test the impact of myelinopathy on hearing in a clinically relevant model, we studied a mouse model of Charcot-Marie-Tooth type 1A (CMT1A), the most prevalent hereditary peripheral neuropathy in humans. CMT1A mice exhibited the functional hallmarks of HHL together with disorganization of AN heminodes near the IHCs with minor loss of AN fibers. These results support the hypothesis that mild disruptions of AN myelination can cause HHL, and that heminodal defects contribute to the alterations in the sound-evoked cochlear compound action potentials seen in this mouse model. Also, these findings suggest that patients with CMT1A or other mild peripheral neuropathies are likely to suffer from HHL. Furthermore, these results suggest that studies of hearing in CMT1A patients might help develop robust clinical tests for HHL, which are currently lacking.
Collapse
|
12
|
Castelli L, Vasta R, Allen SP, Waller R, Chiò A, Traynor BJ, Kirby J. From use of omics to systems biology: Identifying therapeutic targets for amyotrophic lateral sclerosis. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:209-268. [PMID: 38802176 DOI: 10.1016/bs.irn.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a heterogeneous progressive neurodegenerative disorder with available treatments such as riluzole and edaravone extending survival by an average of 3-6 months. The lack of highly effective, widely available therapies reflects the complexity of ALS. Omics technologies, including genomics, transcriptomic and proteomics have contributed to the identification of biological pathways dysregulated and targeted by therapeutic strategies in preclinical and clinical trials. Integrating clinical, environmental and neuroimaging information with omics data and applying a systems biology approach can further improve our understanding of the disease with the potential to stratify patients and provide more personalised medicine. This chapter will review the omics technologies that contribute to a systems biology approach and how these components have assisted in identifying therapeutic targets. Current strategies, including the use of genetic screening and biosampling in clinical trials, as well as the future application of additional technological advances, will also be discussed.
Collapse
Affiliation(s)
- Lydia Castelli
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Rosario Vasta
- ALS Expert Center,'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy; Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | - Scott P Allen
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Rachel Waller
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Adriano Chiò
- ALS Expert Center,'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy; Neurology 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Turin, Turin, Italy
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States; RNA Therapeutics Laboratory, National Center for Advancing Translational Sciences, NIH, Rockville, MD, United States; National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States; Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, United States; Reta Lila Weston Institute, UCL Queen Square Institute of Neurology,University College London, London, United Kingdom
| | - Janine Kirby
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
13
|
Zambon AA, Falzone YM, Bolino A, Previtali SC. Molecular mechanisms and therapeutic strategies for neuromuscular diseases. Cell Mol Life Sci 2024; 81:198. [PMID: 38678519 PMCID: PMC11056344 DOI: 10.1007/s00018-024-05229-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/14/2024] [Accepted: 04/07/2024] [Indexed: 05/01/2024]
Abstract
Neuromuscular diseases encompass a heterogeneous array of disorders characterized by varying onset ages, clinical presentations, severity, and progression. While these conditions can stem from acquired or inherited causes, this review specifically focuses on disorders arising from genetic abnormalities, excluding metabolic conditions. The pathogenic defect may primarily affect the anterior horn cells, the axonal or myelin component of peripheral nerves, the neuromuscular junction, or skeletal and/or cardiac muscles. While inherited neuromuscular disorders have been historically deemed not treatable, the advent of gene-based and molecular therapies is reshaping the treatment landscape for this group of condition. With the caveat that many products still fail to translate the positive results obtained in pre-clinical models to humans, both the technological development (e.g., implementation of tissue-specific vectors) as well as advances on the knowledge of pathogenetic mechanisms form a collective foundation for potentially curative approaches to these debilitating conditions. This review delineates the current panorama of therapies targeting the most prevalent forms of inherited neuromuscular diseases, emphasizing approved treatments and those already undergoing human testing, offering insights into the state-of-the-art interventions.
Collapse
Affiliation(s)
- Alberto Andrea Zambon
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Institute for Experimental Neurology, Inspe, Milan, Italy
- Neurology Department, San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Yuri Matteo Falzone
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Institute for Experimental Neurology, Inspe, Milan, Italy
- Neurology Department, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Bolino
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Institute for Experimental Neurology, Inspe, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Stefano Carlo Previtali
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Institute for Experimental Neurology, Inspe, Milan, Italy.
- Neurology Department, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
14
|
Touvier T, Veneri FA, Claessens A, Ferri C, Mastrangelo R, Sorgiati N, Bianchi F, Valenzano S, Del Carro U, Rivellini C, Duong P, Shy ME, Kelly JW, Svaren J, Wiseman RL, D’Antonio M. Activation of XBP1s attenuates disease severity in models of proteotoxic Charcot-Marie-Tooth type 1B. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.577760. [PMID: 38352425 PMCID: PMC10862880 DOI: 10.1101/2024.01.31.577760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Mutations in myelin protein zero (MPZ) are generally associated with Charcot-Marie-Tooth type 1B (CMT1B) disease, one of the most common forms of demyelinating neuropathy. Pathogenesis of some MPZ mutants, such as S63del and R98C, involves the misfolding and retention of MPZ in the endoplasmic reticulum (ER) of myelinating Schwann cells. To cope with proteotoxic ER-stress, Schwann cells mount an unfolded protein response (UPR) characterized by activation of the PERK, ATF6 and IRE1α/XBP1 pathways. Previous results showed that targeting the PERK UPR pathway mitigates neuropathy in mouse models of CMT1B; however, the contributions of other UPR pathways in disease pathogenesis remains poorly understood. Here, we probe the importance of the IRE1α/XBP1 signalling during normal myelination and in CMT1B. In response to ER stress, IRE1α is activated to stimulate the non-canonical splicing of Xbp1 mRNA to generate spliced Xbp1 (Xbp1s). This results in the increased expression of the adaptive transcription factor XBP1s, which regulates the expression of genes involved in diverse pathways including ER proteostasis. We generated mouse models where Xbp1 is deleted specifically in Schwann cells, preventing XBP1s activation in these cells. We observed that Xbp1 is dispensable for normal developmental myelination, myelin maintenance and remyelination after injury. However, Xbp1 deletion dramatically worsens the hypomyelination and the electrophysiological and locomotor parameters observed in young and adult CMT1B neuropathic animals. RNAseq analysis suggested that XBP1s exerts its adaptive function in CMT1B mouse models in large part via the induction of ER proteostasis genes. Accordingly, the exacerbation of the neuropathy in Xbp1 deficient mice was accompanied by upregulation of ER-stress pathways and of IRE1-mediated RIDD signaling in Schwann cells, suggesting that the activation of XBP1s via IRE1 plays a critical role in limiting mutant protein toxicity and that this toxicity cannot be compensated by other stress responses. Schwann cell specific overexpression of XBP1s partially re-established Schwann cell proteostasis and attenuated CMT1B severity in both the S63del and R98C mouse models. In addition, the selective, pharmacologic activation of IRE1α/XBP1 signaling ameliorated myelination in S63del dorsal root ganglia explants. Collectively, these data show that XBP1 has an essential adaptive role in different models of proteotoxic CMT1B neuropathy and suggest that activation of the IRE1α/XBP1 pathway may represent a therapeutic avenue in CMT1B and possibly for other neuropathies characterized by UPR activation.
Collapse
Affiliation(s)
- Thierry Touvier
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Francesca A. Veneri
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Anke Claessens
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Cinzia Ferri
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Rosa Mastrangelo
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Noémie Sorgiati
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Francesca Bianchi
- Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Serena Valenzano
- Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy
- University of Camerino, Center for Neuroscience, 62032 Camerino, Italy
| | - Ubaldo Del Carro
- Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Cristina Rivellini
- Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Phu Duong
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael E. Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242 USA
| | - Jeffery W. Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John Svaren
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - R. Luke Wiseman
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Maurizio D’Antonio
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| |
Collapse
|
15
|
Ptak CP, Peterson TA, Hopkins JB, Ahern CA, Shy ME, Piper RC. Homomeric interactions of the MPZ Ig domain and their relation to Charcot-Marie-Tooth disease. Brain 2023; 146:5110-5123. [PMID: 37542466 PMCID: PMC10690024 DOI: 10.1093/brain/awad258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/28/2023] [Accepted: 07/17/2023] [Indexed: 08/07/2023] Open
Abstract
Mutations in MPZ (myelin protein zero) can cause demyelinating early-onset Charcot-Marie-Tooth type 1B disease or later onset type 2I/J disease characterized by axonal degeneration, reflecting the diverse roles of MPZ in Schwann cells. MPZ holds apposing membranes of the myelin sheath together, with the adhesion role fulfilled by its extracellular immunoglobulin-like domain (IgMPZ), which oligomerizes. Models for how the IgMPZ might form oligomeric assemblies has been extrapolated from a protein crystal structure in which individual rat IgMPZ subunits are packed together under artificial conditions, forming three weak interfaces. One interface organizes the IgMPZ into tetramers, a second 'dimer' interface links tetramers together across the intraperiod line, and a third hydrophobic interface that mediates binding to lipid bilayers or the same hydrophobic surface on another IgMPZ domain. Presently, there are no data confirming whether the proposed IgMPZ interfaces actually mediate oligomerization in solution, whether they are required for the adhesion activity of MPZ, whether they are important for myelination, or whether their loss results in disease. We performed nuclear magnetic resonance spectroscopy and small angle X-ray scattering analysis of wild-type IgMPZ as well as mutant forms with amino acid substitutions designed to interrupt its presumptive oligomerization interfaces. Here, we confirm the interface that mediates IgMPZ tetramerization, but find that dimerization is mediated by a distinct interface that has yet to be identified. We next correlated different types of Charcot-Marie-Tooth disease symptoms to subregions within IgMPZ tetramers. Variants causing axonal late-onset disease (CMT2I/J) map to surface residues of IgMPZ proximal to the transmembrane domain. Variants causing early-onset demyelinating disease (CMT1B) segregate into two groups: one is described by variants that disrupt the stability of the Ig-fold itself and are largely located within the core of the IgMPZ domain; whereas another describes a region on the surface of IgMPZ tetramers, accessible to protein interactions. Computational docking studies predict that this latter disease-relevant subregion may potentially mediate dimerization of IgMPZ tetramers.
Collapse
Affiliation(s)
- Christopher P Ptak
- Biomolecular Nuclear Magnetic Resonance Facility, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Tabitha A Peterson
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Jesse B Hopkins
- BioCAT, Department of Physics, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Christopher A Ahern
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Michael E Shy
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Robert C Piper
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| |
Collapse
|
16
|
Cavalcanti EBU, Leal RDCC, Marques Junior W, Nascimento OJMD. Charcot-Marie-Tooth disease: from historical landmarks in Brazil to current care perspectives. ARQUIVOS DE NEURO-PSIQUIATRIA 2023; 81:913-921. [PMID: 37611635 PMCID: PMC10631856 DOI: 10.1055/s-0043-1770348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 03/16/2023] [Indexed: 08/25/2023]
Abstract
Hereditary motor and sensory neuropathy, also known as Charcot-Marie-Tooth disease (CMT), traditionally refers to a group of genetic disorders in which neuropathy is the main or sole feature. Its prevalence varies according to different populations studied, with an estimate between 1:2,500 to 1:10,000. Since the identification of PMP22 gene duplication on chromosome 17 by Vance et al., in 1989, more than 100 genes have been related to this group of disorders, and we have seen advances in the care of patients, with identification of associated conditions and better supportive treatments, including clinical and surgical interventions. Also, with discoveries in the field of genetics, including RNA interference and gene editing techniques, new treatment perspectives begin to emerge. In the present work, we report the most import landmarks regarding CMT research in Brazil and provide a comprehensive review on topics such as frequency of different genes associated with CMT in our population, prevalence of pain, impact on pregnancy, respiratory features, and development of new therapies.
Collapse
Affiliation(s)
| | | | - Wilson Marques Junior
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Neurologia, Ribeirão Preto SP, Brazil.
| | | |
Collapse
|
17
|
Libberecht K, Vangansewinkel T, Van Den Bosch L, Lambrichts I, Wolfs E. Proteostasis plays an important role in demyelinating Charcot Marie Tooth disease. Biochem Pharmacol 2023; 216:115760. [PMID: 37604292 DOI: 10.1016/j.bcp.2023.115760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Type 1 Charcot-Marie-Tooth disease (CMT1) is the most common demyelinating peripheral neuropathy. Patients suffer from progressive muscle weakness and sensory problems. The underlying disease mechanisms of CMT1 are still unclear and no therapy is currently available, hence patients completely rely on supportive care. Balancing protein levels is a complex multistep process fundamental to maintain cells in their healthy state and a disrupted proteostasis is a hallmark of several neurodegenerative diseases. When protein misfolding occurs, protein quality control systems are activated such as chaperones, the lysosomal-autophagy system and proteasomal degradation to ensure proper degradation. However, in pathological circumstances, these mechanisms are overloaded and thereby become inefficient to clear the load of misfolded proteins. Recent evidence strongly indicates that a disbalance in proteostasis plays an important role in several forms of CMT1. In this review, we present an overview of the protein quality control systems, their role in CMT1, and potential treatment strategies to restore proteostasis.
Collapse
Affiliation(s)
- Karen Libberecht
- UHasselt, Biomedical Research Institute (BIOMED), Lab for Functional Imaging & Research on Stem Cells (FIERCELab), Diepenbeek, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.
| | - Tim Vangansewinkel
- UHasselt, Biomedical Research Institute (BIOMED), Lab for Functional Imaging & Research on Stem Cells (FIERCELab), Diepenbeek, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium; UHasselt, Biomedical Research Institute (BIOMED), Lab for Histology and Regeneration (HISTOREGEN Lab), Diepenbeek, Belgium
| | - Ludo Van Den Bosch
- KU Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Ivo Lambrichts
- UHasselt, Biomedical Research Institute (BIOMED), Lab for Histology and Regeneration (HISTOREGEN Lab), Diepenbeek, Belgium
| | - Esther Wolfs
- UHasselt, Biomedical Research Institute (BIOMED), Lab for Functional Imaging & Research on Stem Cells (FIERCELab), Diepenbeek, Belgium.
| |
Collapse
|
18
|
Nair MA, Niu Z, Madigan NN, Shin AY, Brault JS, Staff NP, Klein CJ. Clinical trials in Charcot-Marie-Tooth disorders: a retrospective and preclinical assessment. Front Neurol 2023; 14:1251885. [PMID: 37808507 PMCID: PMC10556688 DOI: 10.3389/fneur.2023.1251885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
Objective This study aimed to evaluate the progression of clinical and preclinical trials in Charcot-Marie-Tooth (CMT) disorders. Background CMT has historically been managed symptomatically and with genetic counseling. The evolution of molecular and pathologic understanding holds a therapeutic promise in gene-targeted therapies. Methods ClinicalTrials.gov from December 1999 to June 2022 was data extracted for CMT with preclinical animal gene therapy trials also reviewed by PubMed search. Results The number of active trials was 1 in 1999 and 286 in 2022. Academic settings accounted for 91% and pharmaceutical companies 9%. Of the pharmaceutical and academic trials, 38% and 28%, respectively, were controlled, randomized, and double-blinded. Thirty-two countries participated: the United States accounted for 26% (75/286). In total, 86% of the trials were classified as therapeutic: 50% procedural (21% wrist/elbow surgery; 22% shock wave and hydrodissection therapy), 23% investigational drugs, 15% devices, and 11% physical therapy. Sixty-seven therapeutic trials (49%) were designated phases 1-2 and 51% phases 3-4. The remaining 14% represent non-therapeutic trials: diagnostic testing (3%), functional outcomes (4%), natural history (4%), and standard of care (3%). One-hundred and three (36%) resulted in publications. Phase I human pharmaceutical trials are focusing on the safety of small molecule therapies (n = 8) and AAV and non-viral gene therapy (n = 3). Preclinical animal gene therapy studies include 11 different CMT forms including viral, CRISPR-Cas9, and nanoparticle delivery. Conclusion Current CMT trials are exploring procedural and molecular therapeutic options with substantial participation of the pharmaceutical industry worldwide. Emerging drug therapies directed at molecular pathogenesis are being advanced in human clinical trials; however, the majority remain within animal investigations.
Collapse
Affiliation(s)
- Malavika A. Nair
- Department of Graduate Education, Alix School of Medicine, Rochester, MN, United States
| | - Zhiyv Niu
- Department of Laboratory Medicine and Pathology, Rochester, MN, United States
- Department of Clinical Genomics, Rochester, MN, United States
| | | | - Alexander Y. Shin
- Division of Hand Surgery, Department of Orthopaedic, Rochester, MN, United States
| | - Jeffrey S. Brault
- Department of Physical Medicine and Rehabilitation Medicine, Mayo Clinic, Rochester, MN, United States
| | | | - Christopher J. Klein
- Department of Laboratory Medicine and Pathology, Rochester, MN, United States
- Department of Neurology, Rochester, MN, United States
| |
Collapse
|
19
|
Jeon H, Jang SY, Kwak G, Yi YW, You MH, Park NY, Jo JH, Yang JW, Jang HJ, Jeong SY, Moon SK, Doo HM, Nahm M, Kim D, Chang JW, Choi BO, Hong YB. TGFβ4 alleviates the phenotype of Charcot-Marie-Tooth disease type 1A. Brain 2023; 146:3608-3615. [PMID: 37143322 DOI: 10.1093/brain/awad147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/30/2023] [Accepted: 04/14/2023] [Indexed: 05/06/2023] Open
Abstract
The duplication of the peripheral myelin protein 22 (PMP22) gene causes a demyelinating type of neuropathy, commonly known as Charcot-Marie-Tooth disease type 1A (CMT1A). Development of effective drugs for CMT1A still remains as an unmet medical need. In the present study, we assessed the role of the transforming growth factor beta 4 (TGFβ4)/Nodal axis in the pathogenesis of CMT1A. First, we identified PMP22 overexpression-induced Nodal expression in Schwann cells, which might be one of the downstream effectors in CMT1A. Administration of Nodal protein at the developmental stage of peripheral nerves induced the demyelinating phenotype in vivo. Second, we further isolated TGFβ4 as an antagonist that could abolish Nodal-induced demyelination. Finally, we developed a recombinant TGFβ4-fragment crystallizable (Fc) fusion protein, CX201, and demonstrated that its application had promyelinating efficacy in Schwann cells. CX201 administration improved the demyelinating phenotypes of CMT1A mouse models at both pre-symptomatic and post-symptomatic stages. These results suggest that the TGFβ4/Nodal axis plays a crucial role in the pathogenesis of CMT1A and might be a potential therapeutic target for CMT1A.
Collapse
Affiliation(s)
- Hyeonjin Jeon
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Korea
- Dementia Research Group, Korea Brain Research Institute, Daegu 41062, Korea
| | - So Young Jang
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Korea
| | - Geon Kwak
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
- BioMedicine Lab., CKD Research Institute, ChongKunDang Pharm., Yongin 16995, Korea
| | - Yong Weon Yi
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Korea
| | - Mi-Hyeon You
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Na Young Park
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Korea
| | - Ju Hee Jo
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Korea
| | - Ji Won Yang
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Korea
| | - Hye Ji Jang
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Korea
| | - Sun-Young Jeong
- BioMedicine Lab., CKD Research Institute, ChongKunDang Pharm., Yongin 16995, Korea
| | - Seung Kee Moon
- BioMedicine Lab., CKD Research Institute, ChongKunDang Pharm., Yongin 16995, Korea
| | - Hyun Myung Doo
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
| | - Minyeop Nahm
- Dementia Research Group, Korea Brain Research Institute, Daegu 41062, Korea
| | - Donghoon Kim
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Korea
- Department of Pharmacology, College of Medicine, Dong-A University, Busan 49201, Korea
| | - Jong Wook Chang
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, Korea
| | - Byung-Ok Choi
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Young Bin Hong
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Korea
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Korea
| |
Collapse
|
20
|
Pisciotta C, Pareyson D. Gene therapy and other novel treatment approaches for Charcot-Marie-Tooth disease. Neuromuscul Disord 2023; 33:627-635. [PMID: 37455204 DOI: 10.1016/j.nmd.2023.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
There is still no effective drug treatment available for Charcot-Marie-Tooth disease (CMT). Current management relies on rehabilitation therapy, surgery for skeletal deformities, and symptomatic treatment. The challenge is to find disease-modifying therapies. Several approaches, including gene silencing (by means of ASO, siRNA, shRNA, miRNA, CRISPR-Cas9 editing), to counteract the PMP22 gene overexpression in the most frequent CMT1A type are under investigation. PXT3003 is the compound in the most advanced phase for CMT1A, as a second phase-III trial is ongoing. Gene therapy to substitute defective genes (particularly in recessive forms associated with loss-of-function mutations) or insert novel ones (e.g., NT3 gene) are being developed and tested in animal models and in still exceptional cases have reached the clinical trial phase in humans. Novel treatment approaches are also aimed at developing compounds acting on pathways important for different CMT types. Modulation of the neuregulin pathway determining myelin thickness is promising for both hypo-demyelinating and hypermyelinating neuropathies; intervention on Unfolded Protein Response seems effective for rescuing misfolded myelin proteins such as MPZ in CMT1B. HDAC6 inhibitors improved axonal transport and ameliorated phenotypes in different CMT models. Other potential therapeutic strategies include targeting macrophages, lipid metabolism, and Nav1.8 sodium channel in demyelinating CMT and the P2×7 receptor, which regulates calcium influx into Schwann cells, in CMT1A. Further approaches are aimed at correcting metabolic abnormalities, including the accumulation of sorbitol caused by biallelic mutations in the sorbitol dehydrogenase (SORD) gene and of neurotoxic glycosphingolipids in HSN1.
Collapse
Affiliation(s)
- Chiara Pisciotta
- Unit of Rare Neurological Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Davide Pareyson
- Unit of Rare Neurological Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| |
Collapse
|
21
|
Pisciotta C, Shy ME. Hereditary neuropathy. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:609-617. [PMID: 37562889 DOI: 10.1016/b978-0-323-98818-6.00009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The hereditary neuropathies, collectively referred as Charcot-Marie-Tooth disease (CMT) and related disorders, are heterogeneous genetic peripheral nerve disorders that collectively comprise the commonest inherited neurological disease with an estimated prevalence of 1:2500 individuals. The field of hereditary neuropathies has made significant progress in recent years with respect to both gene discovery and treatment as a result of next-generation sequencing (NGS) approach. These investigations which have identified over 100 causative genes and new mutations have made the classification of CMT even more challenging. Despite so many different mutated genes, the majority of CMT forms share a similar clinical phenotype, and due to this phenotypic homogeneity, genetic testing in CMT is increasingly being performed through the use of NGS panels. The majority of patients still have a mutation in one the four most common genes (PMP22 duplication-CMT1A, MPZ-CMT1B, GJB1-CMTX1, and MFN2-CMT2A). This chapter focuses primarily on these four forms and their potential therapeutic approaches.
Collapse
Affiliation(s)
- Chiara Pisciotta
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| | - Michael E Shy
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| |
Collapse
|
22
|
Alpha-1 Antitrypsin Reduces Disease Progression in a Mouse Model of Charcot-Marie-Tooth Type 1A: A Role for Decreased Inflammation and ADAM-17 Inhibition. Int J Mol Sci 2022; 23:ijms23137405. [PMID: 35806409 PMCID: PMC9266995 DOI: 10.3390/ijms23137405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022] Open
Abstract
Charcot-Marie-Tooth disease type 1 (CMT1A) is a hereditary peripheral neuropathy for which there is no available therapy. Alpha-1 antitrypsin (AAT) is an abundant serine protease inhibitor with anti-inflammatory and immunomodulating properties. Here, we tested whether treatment with human AAT (hAAT) would have a therapeutic effect on CMT1A in a PMP22 transgenic mouse model. Our results show that hAAT significantly improved compound muscle action potential and histopathological features and decreased circulating IL-6 in CMT1A mice. We also investigated some of the possible underlying mechanisms in vitro. We confirmed that hAAT inhibits ADAM-17, a protease that has been implicated in blocking myelination. Furthermore, both hAAT and recombinant human AAT (rhAAT) were able to attenuate the activation of a macrophage/microglia cell line, markedly decreasing the activation of the MHC class II promoter and the expression of pro-inflammatory genes such as IL-1β and the endoplasmic reticulum (ER) stress marker ATF3. Taken together, our results demonstrate for the first time that hAAT is able to reduce the progression of CMT1A, possibly by dampening inflammation and by regulating ADAM-17. Given the already well-established safety profile of hAAT, specifically in AAT deficiency disease (AATD), we suggest that the findings of our study should be promptly investigated in CMT1A patients.
Collapse
|