1
|
Wu CS, Chen CY, Yang CH, Hsu YP, Yu CH, Chen YH, Chen SK. The alterations of molecular repertoire of the RANKL-induced osteoclastogenesis in the M1 macrophage-derived inflammatory milieu. Sci Rep 2025; 15:16137. [PMID: 40341702 PMCID: PMC12062438 DOI: 10.1038/s41598-025-99772-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 04/22/2025] [Indexed: 05/10/2025] Open
Abstract
Inflammation have been linked to bone diseases such as osteoporosis or bone destruction. However, whether M1 inflammatory stimuli exert a stimulatory or inhibitory effect on the differentiation of osteoclasts remained controversial. Also, how inflammatory milieu influence cell proliferation and survival during osteoclastogenesis have not been determined. Here we reported the molecular repertoire alterations of RANKL-stimulated osteoclastogenesis from RAW264.7 at different stages in the inflammatory environments. Adding conditioned medium collected from LPS-stimulated macrophage, which are the primary source of extracellular inflammatory mediators, resulted in a biphasic change in cell number among differentiating preosteoclasts. The inflammatory milieu induced a transient proliferation of preosteoclasts during the initial 48 h, which was followed by a significant decline in cell numbers from the fourth day onwards. Proliferation-related AKT and ERK were transiently activated in the inflammatory environments, which also upregulated the expressions of c-myc, a major transcription factor for osteoclast differentiation, and pro-inflammatory genes, such as Tnf-a and Nos2. Following prolonged exposure to an inflammatory environment, undifferentiated osteoclast precursors undergo apoptosis. Our findings suggest that short-term inflammatory exposure transiently promotes the proliferation and differentiation of preosteoclasts, whereas long-term exposure leads to apoptosis, potentially due to the enhancement of inflammatory signals.
Collapse
Affiliation(s)
- Chun-Shan Wu
- Department of Pediatrics, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Ching-Yun Chen
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County, Taiwan
| | - Chin-Hua Yang
- Department of Radiology, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
- Department of Biomedical Engineering and Environmental Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Pao Hsu
- Department of Orthopedic Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, No. 1492, Zhongshan Road, Taoyuan District, Taoyuan City, 330, Taiwan
| | - Ching-Hsiao Yu
- Department of Orthopedic Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, No. 1492, Zhongshan Road, Taoyuan District, Taoyuan City, 330, Taiwan
| | - Yu-Hsu Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan.
- Department of Orthopedic Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, No. 1492, Zhongshan Road, Taoyuan District, Taoyuan City, 330, Taiwan.
- Department of Orthopedics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| | - Shau-Kwaun Chen
- Institute of Neuroscience, National Chengchi University, No. 64, Section 2, Zhinan Road, Wenshan District, Taipei, 11605, Taiwan.
| |
Collapse
|
2
|
Luo XD, Tang S, Luo XY, Quzhen L, Xia RH, Wang XW. Mitochondrial regulation of obesity by POMC neurons. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167682. [PMID: 39837429 DOI: 10.1016/j.bbadis.2025.167682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/23/2025]
Abstract
Pro-opiomelanocortin (POMC) neurons, nestled in the hypothalamus, play a pivotal role in the intricate coordination of energy homeostasis and metabolic pathways. These neurons' mitochondria, often hailed as the cell's powerhouses, are crucial for maintaining cellular energy equilibrium and metabolic functionality. Recent research has illuminated the complex interplay between mitochondrial dynamics and POMC neuronal activity, underscoring their critical involvement in the pathogenesis of a spectrum of metabolic disorders, notably obesity and diabetes. This comprehensive review delves into the molecular mechanisms that underlie how mitochondrial function within POMC neurons modulates metabolic regulation. We dissect the impact of mitochondrial dynamics, encompassing fusion, fission, mitophagy, and biogenesis, on the regulation of POMC neuronal activity. Furthermore, we scrutinize the role of mitochondrial dysfunction in POMC neurons in the etiology of obesity, identifying key therapeutic targets within these pathways. We offer an in-depth perspective on the indispensable role of POMC neuronal mitochondria in metabolic regulation and chart future research directions to bridge the existing knowledge gaps in this field.
Collapse
Affiliation(s)
- Xing-Dan Luo
- Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, China
| | - Si Tang
- Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, China
| | - Xiang-Yun Luo
- Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, China
| | - Luosang Quzhen
- The Central Hospital of Qusong County, Shannan, Tibet Autonomous Region 856300, China
| | - Ruo-Han Xia
- Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, China.
| | - Xian-Wang Wang
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China; Shannan Maternal and Child Health Hospital, Shannan, Xizang 856100, China.
| |
Collapse
|
3
|
Hernández-Díaz Y, de Los Ángeles Ovando-Almeida M, Fresán A, Juárez-Rojop IE, Genis-Mendoza AD, Nicolini H, González-Castro TB, Tovilla-Zárate CA, López-Narváez ML. Increased Leptin Levels in Plasma and Serum in Patients with Metabolic Disorders: A Systematic Review and Meta-Analysis. Int J Mol Sci 2024; 25:12668. [PMID: 39684379 DOI: 10.3390/ijms252312668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
A large number of studies have reported the relationships between leptin levels and diabetes or obesity. However, the results are still controversial, and no consensus has been reached. Therefore, the purpose of the study was to collect data from various databases to perform a meta-analysis and address the inconsistencies in these studies. A systematic literature search was conducted on PubMed, Web of Science, and EBSCO for relevant available articles. The pooled standard mean difference (SMD) with 95% confidence interval (CI) was used to estimate the association by a meta-analysis. Fifteen reports with 1,388 cases and 3,536 controls were chosen for the meta-analysis. First, an increase in leptin levels in serum (SMD 0.69; 95% CI 0.36-1.02 ng/mL) and plasma (SMD 0.46; 95% CI 0.18-0.74 ng/mL) was observed in individuals with diabetes compared to controls. This increased level was also observed by gender and population. Second, statistical analysis showed that leptin levels in serum were significantly increased in individuals with obesity (SMD 1.03; 95% CI 0.72-1.34 ng/mL). This meta-analysis analyzed leptin in individuals with diabetes or obesity and emphasized the importance of monitoring serum/plasma leptin levels in patients with these diseases. However, more comprehensive studies are necessary in order to draw firm conclusions.
Collapse
Affiliation(s)
- Yazmín Hernández-Díaz
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez 86205, Tabasco, Mexico
| | | | - Ana Fresán
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México 14370, Mexico
| | - Isela Esther Juárez-Rojop
- División Académica de Ciencias de la Salud, Villahermosa, Universidad Juárez Autónoma de Tabasco, Villahermosa 86040, Tabasco, Mexico
| | - Alma Delia Genis-Mendoza
- Servicio de Atención Psiquiátrica, Hospital Psiquiátrico Infantil Dr. Juan N. Navarro, Ciudad de México 14080, Mexico
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico
| | - Humberto Nicolini
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico
| | - Thelma Beatriz González-Castro
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez 86205, Tabasco, Mexico
| | - Carlos Alfonso Tovilla-Zárate
- División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, Comalcalco 86658, Tabasco, Mexico
| | - María Lilia López-Narváez
- División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, Comalcalco 86658, Tabasco, Mexico
| |
Collapse
|
4
|
Gevezova M, Ivanov Z, Pacheva I, Timova E, Kazakova M, Kovacheva E, Ivanov I, Sarafian V. Bioenergetic and Inflammatory Alterations in Regressed and Non-Regressed Patients with Autism Spectrum Disorder. Int J Mol Sci 2024; 25:8211. [PMID: 39125780 PMCID: PMC11311370 DOI: 10.3390/ijms25158211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Autism spectrum disorder (ASD) is associated with multiple physiological abnormalities. Current laboratory and clinical evidence most commonly report mitochondrial dysfunction, oxidative stress, and immunological imbalance in almost every cell type of the body. The present work aims to evaluate oxygen consumption rate (OCR), extracellular acidification rate (ECAR), and inflammation-related molecules such as Cyclooxygenase-2 (COX-2), chitinase 3-like protein 1 (YKL-40), Interleukin-1 beta (IL-1β), Interleukin-9 (IL-9) in ASD children with and without regression compared to healthy controls. Children with ASD (n = 56) and typically developing children (TDC, n = 12) aged 1.11 to 11 years were studied. Mitochondrial activity was examined in peripheral blood mononuclear cells (PBMCs) isolated from children with ASD and from the control group, using a metabolic analyzer. Gene and protein levels of IL-1β, IL-9, COX-2, and YKL-40 were investigated in parallel. Our results showed that PBMCs of the ASD subgroup of regressed patients (ASD R(+), n = 21) had a specific pattern of mitochondrial activity with significantly increased maximal respiration, respiratory spare capacity, and proton leak compared to the non-regressed group (ASD R(-), n = 35) and TDC. Furthermore, we found an imbalance in the studied proinflammatory molecules and increased levels in ASD R(-) proving the involvement of inflammatory changes. The results of this study provide new evidence for specific bioenergetic profiles of immune cells and elevated inflammation-related molecules in ASD. For the first time, data on a unique metabolic profile in ASD R(+) and its comparison with a random group of children of similar age and sex are provided. Our data show that mitochondrial dysfunction is more significant in ASD R(+), while in ASD R(-) inflammation is more pronounced. Probably, in the group without regression, immune mechanisms (immune dysregulation, leading to inflammation) begin initially, and at a later stage mitochondrial activity is also affected under exogenous factors. On the other hand, in the regressed group, the initial damage is in the mitochondria, and perhaps at a later stage immune dysfunction is involved.
Collapse
Affiliation(s)
- Maria Gevezova
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.G.); (Z.I.); (M.K.); (E.K.)
- Research Institute at MU-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Zdravko Ivanov
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.G.); (Z.I.); (M.K.); (E.K.)
| | - Iliana Pacheva
- Department of Pediatrics and Medical Genetics, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (I.P.); (I.I.)
- Pediatrics Clinic, St. George University Hospital, 4002 Plovdiv, Bulgaria;
| | - Elena Timova
- Pediatrics Clinic, St. George University Hospital, 4002 Plovdiv, Bulgaria;
| | - Maria Kazakova
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.G.); (Z.I.); (M.K.); (E.K.)
- Research Institute at MU-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Eleonora Kovacheva
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.G.); (Z.I.); (M.K.); (E.K.)
- Research Institute at MU-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Ivan Ivanov
- Department of Pediatrics and Medical Genetics, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (I.P.); (I.I.)
- Pediatrics Clinic, St. George University Hospital, 4002 Plovdiv, Bulgaria;
| | - Victoria Sarafian
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.G.); (Z.I.); (M.K.); (E.K.)
- Research Institute at MU-Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
5
|
Pearce WJ. Mitochondrial influences on smooth muscle phenotype. Am J Physiol Cell Physiol 2024; 326:C442-C448. [PMID: 38009196 PMCID: PMC11932527 DOI: 10.1152/ajpcell.00354.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/18/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
Smooth muscle cells transition reversibly between contractile and noncontractile phenotypes in response to diverse influences, including many from mitochondria. Numerous molecules including myocardin, procontractile miRNAs, and the mitochondrial protein prohibitin-2 promote contractile differentiation; this is opposed by mitochondrial reactive oxygen species (mtROS), high lactate concentrations, and metabolic reprogramming induced by mitophagy and/or mitochondrial fission. A major pathway through which vascular pathologies such as oncogenic transformation, pulmonary hypertension, and atherosclerosis cause loss of vascular contractility is by enhancing mitophagy and mitochondrial fission with secondary effects on smooth muscle phenotype. Proproliferative miRNAs and the mitochondrial translocase TOMM40 also attenuate contractile differentiation. Hypoxia can initiate loss of contractility by enhancing mtROS and lactate production while simultaneously depressing mitochondrial respiration. Mitochondria can reduce cytosolic calcium by moving it across the inner mitochondrial membrane via the mitochondrial calcium uniporter, and then through mitochondria-associated membranes to and from calcium stores in the sarcoplasmic/endoplasmic reticulum. Through these effects on calcium, mitochondria can influence multiple calcium-sensitive nuclear transcription factors and genes, some of which govern smooth muscle phenotype, and possibly also the production of genomically encoded mitochondrial proteins and miRNAs (mitoMirs) that target the mitochondria. In turn, mitochondria also can influence nuclear transcription and mRNA processing through mitochondrial retrograde signaling, which is currently a topic of intensive investigation. Mitochondria also can signal to adjacent cells by contributing to the content of exosomes. Considering these and other mechanisms, it is becoming increasingly clear that mitochondria contribute significantly to the regulation of smooth muscle phenotype and differentiation.
Collapse
Affiliation(s)
- William J Pearce
- Department of Basic Sciences, Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California, United States
| |
Collapse
|
6
|
Calderón-Garcidueñas L, Hernández-Luna J, Aiello-Mora M, Brito-Aguilar R, Evelson PA, Villarreal-Ríos R, Torres-Jardón R, Ayala A, Mukherjee PS. APOE Peripheral and Brain Impact: APOE4 Carriers Accelerate Their Alzheimer Continuum and Have a High Risk of Suicide in PM 2.5 Polluted Cities. Biomolecules 2023; 13:927. [PMID: 37371506 DOI: 10.3390/biom13060927] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
This Review emphasizes the impact of APOE4-the most significant genetic risk factor for Alzheimer's disease (AD)-on peripheral and neural effects starting in childhood. We discuss major mechanistic players associated with the APOE alleles' effects in humans to understand their impact from conception through all life stages and the importance of detrimental, synergistic environmental exposures. APOE4 influences AD pathogenesis, and exposure to fine particulate matter (PM2.5), manufactured nanoparticles (NPs), and ultrafine particles (UFPs) associated with combustion and friction processes appear to be major contributors to cerebrovascular dysfunction, neuroinflammation, and oxidative stress. In the context of outdoor and indoor PM pollution burden-as well as Fe, Ti, and Al alloys; Hg, Cu, Ca, Sn, and Si UFPs/NPs-in placenta and fetal brain tissues, urban APOE3 and APOE4 carriers are developing AD biological disease hallmarks (hyperphosphorylated-tau (P-tau) and amyloid beta 42 plaques (Aβ42)). Strikingly, for Metropolitan Mexico City (MMC) young residents ≤ 40 y, APOE4 carriers have 4.92 times higher suicide odds and 23.6 times higher odds of reaching Braak NFT V stage versus APOE4 non-carriers. The National Institute on Aging and Alzheimer's Association (NIA-AA) framework could serve to test the hypothesis that UFPs and NPs are key players for oxidative stress, neuroinflammation, protein aggregation and misfolding, faulty complex protein quality control, and early damage to cell membranes and organelles of neural and vascular cells. Noninvasive biomarkers indicative of the P-tau and Aβ42 abnormal protein deposits are needed across the disease continuum starting in childhood. Among the 21.8 million MMC residents, we have potentially 4 million APOE4 carriers at accelerated AD progression. These APOE4 individuals are prime candidates for early neuroprotective interventional trials. APOE4 is key in the development of AD evolving from childhood in highly polluted urban centers dominated by anthropogenic and industrial sources of pollution. APOE4 subjects are at higher early risk of AD development, and neuroprotection ought to be implemented. Effective reductions of PM2.5, UFP, and NP emissions from all sources are urgently needed. Alzheimer's Disease prevention ought to be at the core of the public health response and physicians-scientist minority research be supported.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- College of Health, The University of Montana, Missoula, MT 59812, USA
- Universidad del Valle de México, Mexico City 14370, Mexico
| | | | - Mario Aiello-Mora
- Otorrinolaryngology Department, Instituto Nacional de Cardiología, Mexico City 14080, Mexico
| | | | - Pablo A Evelson
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1113 AAD, Argentina
| | | | - Ricardo Torres-Jardón
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Alberto Ayala
- Sacramento Metropolitan Air Quality Management District, Sacramento, CA 95814, USA
- West Virginia University, Morgantown, WV 26506, USA
| | - Partha S Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata 700108, India
| |
Collapse
|