1
|
Liu Y, Zhang JT, Sun M, Song J, Sun HM, Wang MY, Wang CM, Liu W. Targeting ferroptosis in the treatment of ulcerative colitis by traditional Chinese medicine: A novel therapeutic strategies. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156539. [PMID: 39987602 DOI: 10.1016/j.phymed.2025.156539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/04/2025] [Accepted: 02/16/2025] [Indexed: 02/25/2025]
Abstract
BACKGROUND The incidence of ulcerative colitis (UC) has been rising rapidly in recent years, and there is currently no effective method to prevent its recurrence. Owing to its long treatment duration, difficulty in treatment, prolonged remission, and high costs, it has attracted global attention. Exploring safe, effective, and sustainable treatment regimens has become an urgent global issue. Traditional Chinese medicine (TCM) has unique advantages such as low cost, low drug resistance, and fewer side effects, and has accumulated rich experience in the treatment of UC. PURPOSE Ferroptosis, as a new form of non-apoptotic cell death, is characterized by iron homeostatic imbalance and lipid peroxidation in the redox system. Studies have shown that inhibited ferroptosis in intestinal epithelial cells can protect the intestinal mucosa. Targeted intervention in ferroptosis may be a new direction for the treatment of UC. METHODS We conducted a systematic literature search with Google Scholar, PubMed, Web of Science, ScienceDirect and X-mol databases have been utilized to retrieve relevant literature up to October 2024, using keywords included ferroptosis, Inflammatory bowel disease (IBD), UC, Crohn's disease and TCM, Chinese traditional prescription, Chinese medicine extract and active ingredients. The existing literature was comprehensively studied and sorted out. RESULTS Currently, UC is mainly treated with drugs, including corticosteroids, amino salicylates, biologics, and immunomodulators, but drug resistance and adverse reactions are common. Increasing evidence suggests that TCM may treat UC by interfering with ferroptosis. Scholars have confirmed that TCM can inhibit ferroptosis, and recent studies have shown that TCM can not only inhibit iron dependent lipid peroxidation in intestinal cells but also enhance the antioxidant and anti-inflammatory abilities of intestinal mucosa, thus playing a role in the treatment of UC. This review explores the relevance of TCM intervention in ferroptosis and the treatment of UC, discusses the possible mechanisms of ferroptosis in UC, and aims to provide a basis for the diagnosis and treatment of UC. CONCLUSION It is revealed that TCM targeted ferroptosis has a good application prospect in the treatment of UC, providing a theoretical basis for elucidating the pathogenesis of UC and the study of TCM targeting ferroptosis regulating lipid metabolism in the treatment of UC, and providing a new perspective for the treatment of IBD in the future.
Collapse
Affiliation(s)
- Ying Liu
- College of Pharmacy, Beihua University, jilin 132013, China
| | - Jing-Tian Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Meng Sun
- College of Pharmacy, Beihua University, jilin 132013, China
| | - Jian Song
- College of Pharmacy, Beihua University, jilin 132013, China
| | - Hai-Ming Sun
- College of Pharmacy, Beihua University, jilin 132013, China
| | - Meng-Yang Wang
- College of Pharmacy, Beihua University, jilin 132013, China
| | - Chun-Mei Wang
- College of Pharmacy, Beihua University, jilin 132013, China
| | - Wei Liu
- College of Pharmacy, Beihua University, jilin 132013, China.
| |
Collapse
|
2
|
Kusi D, Sun Y, Liu C. Advances in Manganese-based nanomaterials for cancer therapy via regulating Non-Ferrous ferroptosis. Int J Pharm 2025; 669:125101. [PMID: 39706379 DOI: 10.1016/j.ijpharm.2024.125101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/02/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Ferroptosis, a regulated form of cell death distinct from apoptosis, was first identified in 2012 and is characterized by iron-dependent lipid peroxidation driven by reactive oxygen species (ROS). Since its discovery, ferroptosis has been linked to various diseases, with recent studies highlighting its potential in cancer therapy, particularly for targeting cancer cells that are resistant to traditional treatments like chemotherapy and radiotherapy. While iron has historically been central to ferroptosis, emerging evidence indicates that non-ferrous ions, especially manganese (Mn), also play a crucial role in modulating this process. Mn-based nanomaterials have shown significant promise in cancer treatment by enhancing ROS production, depleting antioxidant defenses, and inducing ferroptosis. Additionally, these materials offer advantages in tumor imaging, immunotherapy, and catalyzing the Fenton-like reactions essential for ferroptosis. This review delves into the mechanisms of Mn-induced ferroptosis, focusing on recent advancements in Mn-based nanomaterials and their applications in chemodynamic therapy and immunotherapy. By leveraging non-ferrous ion-mediated ferroptosis, these approaches provide a novel avenue for cancer treatment. Furthermore, this review explores the potential role of Mn-based nanomaterials in the lipid metabolism pathways involved in ferroptosis and highlights the advantages of Mn ions over other metals in promoting ferroptosis. These insights offer new perspectives for the development of tumor therapies centered on Mn-based nanomaterials.
Collapse
Affiliation(s)
- Dipa Kusi
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yan Sun
- Department of Cardiology, Zhejiang Rongjun Hospital, Jiaxing 314001 PR China.
| | - Chenguang Liu
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| |
Collapse
|
3
|
Zhang H, Ma G, Lv H, Peng Y. Bibliometric Analysis of Non-coding RNAs and Ischemic Stroke: Trends, Frontiers, and Challenges. Mol Biotechnol 2025; 67:1-15. [PMID: 38064146 DOI: 10.1007/s12033-023-00981-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/31/2023] [Indexed: 01/03/2025]
Abstract
More and more articles have shown that non-coding RNAs (ncRNAs) play a significant role in the pathogenesis and prognosis of ischemic stroke. However, the bibliometric analysis in ncRNAs and ischemic stroke is still lacking. This study retrieved the Web of Science Core Collection for relevant articles from January 1, 2010 to April 6, 2023. Bibliometrix R, VOSviewer, and CiteSpace were used to perform the bibliometric analysis. A total of 1058 articles were eligible for this review. The number of publications showed a fluctuating upward trend. The total citations were 28,698 times, and the average number of citations per article was 27.12 times. Our findings indicated ncRNAs has been increasingly investigated for its critical role in apoptosis, autophagy, angiogenesis, inflammation, oxidative stress, and blood-brain barrier after ischemic stroke by regulating target mRNAs, extracellular secretion, target proteins, and others. The microRNAs, circular RNAs, and long ncRNAs may be hotspots, and ferroptosis, METTL3, and exosome might be frontier in this field. Besides, ncRNAs have a promising future as diagnostic and prognostic biomarkers, molecular drug targets, and other targeted therapies for ischemic stroke. However, it still faces many challenges to be successfully applied in the clinical practice.
Collapse
Affiliation(s)
- Hanrui Zhang
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Guquan Ma
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Hequn Lv
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yongjun Peng
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
4
|
Tao X, Kang N, Zheng Z, Zhu Z, Ma J, He W. The regulatory mechanisms of N6-methyladenosine modification in ferroptosis and its implications in disease pathogenesis. Life Sci 2024; 355:123011. [PMID: 39181316 DOI: 10.1016/j.lfs.2024.123011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/30/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
HEADING AIMS Based on the current knowledge of the molecular mechanisms by which m6A influences ferroptosis, our objective is to underscore the intricate and interdependent relationships between m6A and the principal regulatory pathways of ferroptosis, as well as other molecules, emphasizing its relevance to diseases associated with this cell death mode. MATERIALS AND METHODS We conducted a literature search using the keywords "m6A and ferroptosis" across PubMed, Web of Science, and Medline. The search was limited to English-language publications from 2017 to 2024. Retrieved articles were managed using Endnote software. Two authors independently screened the search results and reviewed the full texts of selected articles. KEY FINDINGS Abnormal m6A levels are often identified as critical regulators of ferroptosis. Specifically, "writers", "readers" and "erasers" that dynamically modulate m6A function regulate various pathways in ferroptosis including iron metabolism, lipid metabolism and antioxidant system. Additionally, we provide an overview of the role of m6A-mediated ferroptosis in multiple diseases and summarize the potential applications of m6A-mediated ferroptosis, including its use as a therapeutic target for diseases and as diagnostic as well as prognostic biomarkers. SIGNIFICANCE N6-methyladenosine (m6A) modification, a prevalent RNA modification in eukaryotic cells, is crucial in regulating various aspects of RNA metabolism. Notably, accumulating evidence has implicated m6A modification in ferroptosis, a form of iron-dependent cell death characterized by elevated iron levels and lipid peroxide accumulation. Overall, this review sheds light on the potential diagnostic and therapeutic applications of m6A regulators in addressing conditions associated with ferroptosis.
Collapse
Affiliation(s)
- Xiao Tao
- Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Ningning Kang
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, PR China
| | - Zongqin Zheng
- Department of Anesthesiology, The Second School of Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Ziyi Zhu
- Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Junting Ma
- Department of Immunology and Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, PR China.
| | - Wei He
- Department of Immunology and Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, PR China.
| |
Collapse
|
5
|
Ouyang S, Zeng Z, He J, Luo L. Epigenetic regulation of targeted ferroptosis: A new strategy for drug development. J Pharm Anal 2024; 14:101012. [PMID: 39850234 PMCID: PMC11755343 DOI: 10.1016/j.jpha.2024.101012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 01/25/2025] Open
Abstract
Ferroptosis is a newly discovered form of cell death that is influenced by iron levels and is triggered by cellular metabolism and excessive lipid peroxidation. Epigenetic regulation plays a crucial role in the development and progression of diseases, making it essential to understand these mechanisms in order to identify potential targets for drug development and clinical treatment. The intersection of ferroptosis and epigenetics has opened up new avenues for research in drug development, offering innovative strategies for combating diseases. Recent studies have shown that epigenetic modifications can impact pathways related to ferroptosis, potentially leading to organ dysfunction. Despite the increasing focus on this relationship, the role of epigenetic regulation in drug development remains largely unexplored. This article explores current research on the interplay between epigenetic regulation and ferroptosis, delving into their regulatory mechanisms and discussing the effects of existing epigenetic modification regulators on diseases. Additionally, we highlight ongoing research on epigenetic factors involved in targeting ferroptosis in cancer, providing new insights for the development of cancer treatments.
Collapse
Affiliation(s)
- Shengli Ouyang
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Zeyao Zeng
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Jieyi He
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| |
Collapse
|
6
|
Xiao S, Zhang Y, Wang S, Liu J, Dan F, Yang F, Hong S, Liu N, Zeng Y, Huang K, Xie X, Zhong Y, Liu Z. The Syvn1 inhibits neuronal cell ferroptosis by activating Stat3/Gpx4 axis in rat with spinal cord injury. Cell Prolif 2024; 57:e13658. [PMID: 38803032 PMCID: PMC11471452 DOI: 10.1111/cpr.13658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/01/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
Spinal cord injury (SCI) leads to secondary neuronal death, which severely impedes recovery of motor function. Therefore, prevention of neuronal cell death after SCI is an important strategy. Ferroptosis, a new form of cell death discovered in recent years, has been shown to be involved in the regulation of SCI. However, the role and potential mechanisms of ferroptosis in secondary SCI are not fully understood. In this study, we report that the E3 ubiquitin ligase Syvn1 suppresses ferroptosis and promotes functional recovery from SCI in vitro and in vivo. Mechanistically, screened with bioinformatics, immunoprecipitation, and mass spectrometry, we identified Stat3, a transcription factor that induces the expression of the ferroptosis inhibitor Gpx4, as a substrate of Syvn1. Furthermore, we identified neurons as the primary cellular source of Syvn1 signalling. Moreover, we determined the binding domains of Syvn1 and Stat3 in HEK 293 T cells using full-length proteins and a series of truncated Flag-tagged and Myc-tagged fragments. Furthermore, we created the cell and animal models with silencing or overexpression of Syvn1 and Stat3 and found that Syvn1 inhibits neuronal ferroptosis by stabilizing Stat3, which subsequently activates the ferroptosis regulator Gpx4 in SCI. In summary, the Syvn1-mediated Stat3/Gpx4 signalling axis attenuates neuronal ferroptosis, reduces neuronal death, and promotes SCI repair. Therefore, our findings provide potential new targets and intervention strategies for the treatment of SCI.
Collapse
Affiliation(s)
- Shining Xiao
- Department of Orthopedicsthe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangPeople's Republic of China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord DiseasesNanchangPeople's Republic of China
- Medical Innovation Centerthe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangPeople's Republic of China
| | - Yu Zhang
- Department of Orthopedicsthe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangPeople's Republic of China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord DiseasesNanchangPeople's Republic of China
- Medical Innovation Centerthe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangPeople's Republic of China
| | - Shijiang Wang
- Department of Orthopedicsthe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangPeople's Republic of China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord DiseasesNanchangPeople's Republic of China
- Medical Innovation Centerthe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangPeople's Republic of China
| | - Jiaming Liu
- Department of Orthopedicsthe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangPeople's Republic of China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord DiseasesNanchangPeople's Republic of China
| | - Fan Dan
- Department of Orthopedicsthe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangPeople's Republic of China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord DiseasesNanchangPeople's Republic of China
- Medical Innovation Centerthe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangPeople's Republic of China
| | - Feng Yang
- Department of Orthopedicsthe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangPeople's Republic of China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord DiseasesNanchangPeople's Republic of China
- Medical Innovation Centerthe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangPeople's Republic of China
| | - Shue Hong
- Department of Orthopedicsthe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangPeople's Republic of China
| | - Ning Liu
- Department of Spine SurgeryGanzhou People's HospitalGanzhouPeople's Republic of China
| | - Yujia Zeng
- Department of Rehabilitation Medicinethe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangPeople's Republic of China
| | - Ke Huang
- Department of Rehabilitation Medicinethe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangPeople's Republic of China
| | - Xinsheng Xie
- Medical Innovation Centerthe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangPeople's Republic of China
| | - Yanxin Zhong
- Department of Orthopedicsthe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangPeople's Republic of China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord DiseasesNanchangPeople's Republic of China
- Medical Innovation Centerthe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangPeople's Republic of China
| | - Zhili Liu
- Department of Orthopedicsthe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangPeople's Republic of China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord DiseasesNanchangPeople's Republic of China
- Medical Innovation Centerthe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangPeople's Republic of China
| |
Collapse
|
7
|
Zhang X, Duan Y, Li S, Zhang Z, Peng L, Ma X, Wang T, Xiang S, Chen G, Zhou D, Lu D, Qian M, Wang Z. CRISPR screening identifies PRMT1 as a key pro-ferroptotic gene via a two-layer regulatory mechanism. Cell Rep 2024; 43:114662. [PMID: 39178116 DOI: 10.1016/j.celrep.2024.114662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/10/2024] [Accepted: 08/06/2024] [Indexed: 08/25/2024] Open
Abstract
Ferroptosis is a form of nonapoptotic cell death characterized by iron-dependent peroxidation of polyunsaturated phospholipids. However, much remains unknown about the regulators of ferroptosis. Here, using CRISPR-Cas9-mediated genetic screening, we identify protein arginine methyltransferase 1 (PRMT1) as a crucial promoter of ferroptosis. We find that PRMT1 decreases the expression of solute carrier family 7 member 11 (SLC7A11) to limit the abundance of intracellular glutathione (GSH). Moreover, we show that PRMT1 interacts with ferroptosis suppressor protein 1 (FSP1), a GSH-independent ferroptosis suppressor, to inhibit the membrane localization and enzymatic activity of FSP1 through arginine dimethylation at R316, thus reducing CoQ10H2 content and inducing ferroptosis sensitivity. Importantly, genetic depletion or pharmacological inhibition of PRMT1 in mice prevents ferroptotic events in the liver and improves the overall survival under concanavalin A (ConA) exposure. Hence, our findings suggest that PRMT1 is a key regulator of ferroptosis and a potential target for antiferroptosis therapeutics.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Cancer Research Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen 518055, China
| | - Yajun Duan
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Su Li
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Zhenyuan Zhang
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Linyuan Peng
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaoyu Ma
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Tianzhi Wang
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Siliang Xiang
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Guo Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Danyang Zhou
- Department of Respiratory, Nanjing First Hospital, China Pharmaceutical University, Nanjing 210012, China
| | - Desheng Lu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Cancer Research Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen 518055, China.
| | - Minxian Qian
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.
| | - Zhongyuan Wang
- State Key Laboratory of Natural Medicines, Department of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
8
|
Shang J, Yan J, Lou H, Shou R, Zhan Y, Lu X, Fan X. Genome-wide DNA methylation sequencing reveals the involvement of ferroptosis in hepatotoxicity induced by dietary exposure to food-grade titanium dioxide. Part Fibre Toxicol 2024; 21:37. [PMID: 39294687 PMCID: PMC11409784 DOI: 10.1186/s12989-024-00598-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/06/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Following the announcement by the European Food Safety Authority that the food additive titanium dioxide (E 171) is unsafe for human consumption, and the subsequent ban by the European Commission, concerns have intensified over the potential risks E 171 poses to human vital organs. The liver is the main organ for food-grade nanoparticle metabolism. It is increasingly being found that epigenetic changes may play an important role in nanomaterial-induced hepatotoxicity. However, the profound effects of E 171 on the liver, especially at the epigenetic level, remain largely unknown. METHODS Mice were exposed orally to human-relevant doses of two types of E 171 mixed in diet for 28 and/or 84 days. Conventional toxicology and global DNA methylation analyses were performed to assess E 171-induced hepatotoxicity and epigenetic changes. Whole genome bisulfite sequencing and further ferroptosis protein detection were used to reveal E 171-induced changes in liver methylation profiles and toxic mechanisms. RESULTS Exposed to E 171 for 28 and/or 84 days resulted in reduced global DNA methylation and hydroxymethylation in the liver of mice. E 171 exposure for 84 days elicited inflammation and damage in the mouse liver, whereas 28-day exposure did not. Whole-genome DNA methylation sequencing disclosed substantial methylation alterations at the CG and non-CG sites of the liver DNA in mice exposed to E 171 for 84 days. Mechanistic analysis of the DNA methylation alterations indicated that ferroptosis contributed to the liver toxicity induced by E 171. E 171-induced DNA methylation changes triggered NCOA4-mediated ferritinophagy, attenuated the protein levels of GPX4, FTH1, and FTL in the liver, and thereby caused ferroptosis. CONCLUSIONS Long-term oral exposure to E 171 triggers hepatotoxicity and induces methylation changes in both CG and non-CG sites of liver DNA. These epigenetic alterations activate ferroptosis in the liver through NCOA4-mediated ferritinophagy, highlighting the role of DNA methylation and ferroptosis in the potential toxicity caused by E 171 in vivo.
Collapse
Affiliation(s)
- Jiaxin Shang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jun Yan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - He Lou
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Rongshang Shou
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yingqi Zhan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- State Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, China.
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China.
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- State Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, China.
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China.
- The Joint-Laboratory of Clinical Multi-Omics Research between Zhejiang University and Ningbo Municipal Hospital of TCM, Ningbo Municipal Hospital of TCM, Ningbo, 315010, China.
| |
Collapse
|
9
|
Wang Y, Hu J, Wu S, Fleishman JS, Li Y, Xu Y, Zou W, Wang J, Feng Y, Chen J, Wang H. Targeting epigenetic and posttranslational modifications regulating ferroptosis for the treatment of diseases. Signal Transduct Target Ther 2023; 8:449. [PMID: 38072908 PMCID: PMC10711040 DOI: 10.1038/s41392-023-01720-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/16/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
Ferroptosis, a unique modality of cell death with mechanistic and morphological differences from other cell death modes, plays a pivotal role in regulating tumorigenesis and offers a new opportunity for modulating anticancer drug resistance. Aberrant epigenetic modifications and posttranslational modifications (PTMs) promote anticancer drug resistance, cancer progression, and metastasis. Accumulating studies indicate that epigenetic modifications can transcriptionally and translationally determine cancer cell vulnerability to ferroptosis and that ferroptosis functions as a driver in nervous system diseases (NSDs), cardiovascular diseases (CVDs), liver diseases, lung diseases, and kidney diseases. In this review, we first summarize the core molecular mechanisms of ferroptosis. Then, the roles of epigenetic processes, including histone PTMs, DNA methylation, and noncoding RNA regulation and PTMs, such as phosphorylation, ubiquitination, SUMOylation, acetylation, methylation, and ADP-ribosylation, are concisely discussed. The roles of epigenetic modifications and PTMs in ferroptosis regulation in the genesis of diseases, including cancers, NSD, CVDs, liver diseases, lung diseases, and kidney diseases, as well as the application of epigenetic and PTM modulators in the therapy of these diseases, are then discussed in detail. Elucidating the mechanisms of ferroptosis regulation mediated by epigenetic modifications and PTMs in cancer and other diseases will facilitate the development of promising combination therapeutic regimens containing epigenetic or PTM-targeting agents and ferroptosis inducers that can be used to overcome chemotherapeutic resistance in cancer and could be used to prevent other diseases. In addition, these mechanisms highlight potential therapeutic approaches to overcome chemoresistance in cancer or halt the genesis of other diseases.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Jing Hu
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300060, PR China
| | - Shuang Wu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, 430000, PR China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Yulin Li
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Yinshi Xu
- Department of Outpatient, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Wailong Zou
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Jinhua Wang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China.
| | - Yukuan Feng
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, PR China.
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China.
| | - Hongquan Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, PR China.
| |
Collapse
|
10
|
Yan L, Han X, Zhang M, Fu Y, Yang F, Li Q, Cheng T. Integrative analysis of TBI data reveals Lgmn as a key player in immune cell-mediated ferroptosis. BMC Genomics 2023; 24:747. [PMID: 38057699 DOI: 10.1186/s12864-023-09842-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a central nervous system disease caused by external trauma, which has complex pathological and physiological mechanisms. The aim of this study was to explore the correlation between immune cell infiltration and ferroptosis post-TBI. METHODS This study utilized the GEO database to download TBI data and performed differentially expressed genes (DEGs) and ferroptosis-related differentially expressed genes (FRDEGs) analysis. DEGs were further analyzed for enrichment using the DAVID 6.8. Immunoinfiltration cell analysis was performed using the ssGSEA package and the Timer2.0 tool. The WGCNA analysis was then used to explore the gene modules in the data set associated with differential expression of immune cell infiltration and to identify the hub genes. The tidyverse package and corrplot package were used to calculate the correlations between hub genes and immune cell infiltration and ferroptosis-marker genes. The miRDB and TargetScan databases were used to predict complementary miRNAs for the Hub genes selected from the WGCNA analysis, and the DIANA-LncBasev3 tool was used to identify target lncRNAs for the miRNAs, constructing an mRNA-miRNA-lncRNA regulatory network. RESULTS A total of 320 DEGs and 21 FRDEGs were identified in GSE128543. GO and KEGG analyses showed that the DEGs after TBI were primarily associated with inflammation and immune response. Xcell and ssGSEA immune infiltration cell analysis showed significant infiltration of T cell CD4+ central memory, T cell CD4+ Th2, B cell memory, B cell naive, monocyte, macrophage, and myeloid dendritic cell activated. The WGCNA analysis identified two modules associated with differentially expressed immune cells and identified Lgmn as a hub gene associated with immune infiltrating cells. Lgmn showed significant correlation with immune cells and ferroptosis-marker genes, including Gpx4, Hspb1, Nfe2l2, Ptgs2, Fth1, and Tfrc. Finally, an mRNA-miRNA-lncRNA regulatory network was constructed using Lgmn. CONCLUSION Our results indicate that there is a certain correlation between ferroptosis and immune infiltrating cells in brain tissue after TBI, and that Lgmn plays an important role in this process.
Collapse
Affiliation(s)
- Liyan Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiaonan Han
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Mingkang Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yikun Fu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Fei Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Qian Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| | - Tian Cheng
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
11
|
Ding XS, Gao L, Han Z, Eleuteri S, Shi W, Shen Y, Song ZY, Su M, Yang Q, Qu Y, Simon DK, Wang XL, Wang B. Ferroptosis in Parkinson's disease: Molecular mechanisms and therapeutic potential. Ageing Res Rev 2023; 91:102077. [PMID: 37742785 DOI: 10.1016/j.arr.2023.102077] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/26/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Parkinson's Disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra (SN), leading to motor and non-motor symptoms. While the exact mechanisms remain complex and multifaceted, several molecular pathways have been implicated in PD pathology, including accumulation of misfolded proteins, impaired mitochondrial function, oxidative stress, inflammation, elevated iron levels, etc. Overall, PD's molecular mechanisms involve a complex interplay between genetic, environmental, and cellular factors that disrupt cellular homeostasis, and ultimately lead to the degeneration of dopaminergic neurons. Recently, emerging evidence highlights ferroptosis, an iron-dependent non-apoptotic cell death process, as a pivotal player in the advancement of PD. Notably, oligomeric α-synuclein (α-syn) generates reactive oxygen species (ROS) and lipid peroxides within cellular membranes, potentially triggering ferroptosis. The loss of dopamine, a hallmark of PD, could predispose neurons to ferroptotic vulnerability. This unique form of cell demise unveils fresh insights into PD pathogenesis, necessitating an exploration of the molecular intricacies connecting ferroptosis and PD progression. In this review, the molecular and regulatory mechanisms of ferroptosis and their connection with the pathological processes of PD have been systematically summarized. Furthermore, the features of ferroptosis in PD animal models and clinical trials targeting ferroptosis as a therapeutic approach in PD patients' management are scrutinized.
Collapse
Affiliation(s)
- Xv-Shen Ding
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China; Basic Medicine School, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Li Gao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Zheng Han
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Simona Eleuteri
- Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle 628H, Boston, MA 02215, USA
| | - Wei Shi
- Department of Neurosurgery, PLA 960th hospital, JiNan, Shandong Province, 250031, China
| | - Yun Shen
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Zi-Yao Song
- Basic Medicine School, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Mingming Su
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Qian Yang
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| | - David K Simon
- Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle 628H, Boston, MA 02215, USA.
| | - Xue-Lian Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| | - Bao Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710038, China.
| |
Collapse
|
12
|
Benarroch E. What Is the Role of Ferroptosis in Neurodegeneration? Neurology 2023; 101:312-319. [PMID: 37580137 PMCID: PMC10437014 DOI: 10.1212/wnl.0000000000207730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 08/16/2023] Open
|
13
|
Bammidi S, Hose S, Handa JT, Sinha D, Ghosh S. Thermal Shift Assay in Ferroptosis. Methods Mol Biol 2023; 2712:179-186. [PMID: 37578706 PMCID: PMC11059966 DOI: 10.1007/978-1-0716-3433-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Ferroptosis is a recently described process of cell death that is dependent on unregulated cellular iron accumulation with induction of oxidative stress. Ferroptosis has been linked to several human diseases; therefore, investigations aimed at better understanding the pathway and elucidating avenues for future drug development are warranted. Current assays that target ferroptosis/oxidative stress in cells is limited to western blotting and imaging techniques, and unfortunately provide only a broad understanding that is insufficient to effectively assess novel drugs (ligands). Specifically, these assays do not provide insights about ligand interactions with specific proteins associated with these processes. Herein, we discuss a cell-based thermal shift assay that enables screening of ligands under specific cellular conditions for targeting ferroptosis and/or oxidative stress pathways. These data would provide detailed preliminary evidence required for drug development that targets this pathway.
Collapse
Affiliation(s)
- Sridhar Bammidi
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stacey Hose
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - James T Handa
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Debasish Sinha
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sayan Ghosh
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|