1
|
Yao J, Li Y, Liu X, Liang W, Li Y, Wu L, Wang Z, Song W. FUBP3 mediates the amyloid-β-induced neuronal NLRP3 expression. Neural Regen Res 2025; 20:2068-2083. [PMID: 39254567 PMCID: PMC11691456 DOI: 10.4103/nrr.nrr-d-23-01799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/29/2024] [Accepted: 03/13/2024] [Indexed: 09/11/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202507000-00028/figure1/v/2024-09-09T124005Z/r/image-tiff Alzheimer's disease is characterized by deposition of amyloid-β, which forms extracellular neuritic plaques, and accumulation of hyperphosphorylated tau, which aggregates to form intraneuronal neurofibrillary tangles, in the brain. The NLRP3 inflammasome may play a role in the transition from amyloid-β deposition to tau phosphorylation and aggregation. Because NLRP3 is primarily found in brain microglia, and tau is predominantly located in neurons, it has been suggested that NLRP3 expressed by microglia indirectly triggers tau phosphorylation by upregulating the expression of pro-inflammatory cytokines. Here, we found that neurons also express NLRP3 in vitro and in vivo, and that neuronal NLRP3 regulates tau phosphorylation. Using biochemical methods, we mapped the minimal NLRP3 promoter and identified FUBP3 as a transcription factor regulating NLRP3 expression in neurons. In primary neurons and the neuroblastoma cell line Neuro2A, FUBP3 is required for endogenous NLRP3 expression and tau phosphorylation only when amyloid-β is present. In the brains of aged wild-type mice and a mouse model of Alzheimer's disease, FUBP3 expression was markedly increased in cortical neurons. Transcriptome analysis suggested that FUBP3 plays a role in neuron-mediated immune responses. We also found that FUBP3 trimmed the 5' end of DNA fragments that it bound, implying that FUBP3 functions in stress-induced responses. These findings suggest that neuronal NLRP3 may be more directly involved in the amyloid-β-to-phospho-tau transition than microglial NLRP3, and that amyloid-β fundamentally alters the regulatory mechanism of NLRP3 expression in neurons. Given that FUBP3 was only expressed at low levels in young wild-type mice and was strongly upregulated in the brains of aged mice and Alzheimer's disease mice, FUBP3 could be a safe therapeutic target for preventing Alzheimer's disease progression.
Collapse
Affiliation(s)
- Jing Yao
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuan Li
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xi Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Wenping Liang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yu Li
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liyong Wu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhe Wang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Weihong Song
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang Province, China
| |
Collapse
|
2
|
Talukdar G, Duvick L, Yang P, O'Callaghan B, Fuchs GJ, Cvetanovic M, Orr HT. An expanded polyglutamine in ATAXIN1 results in a loss-of-function that exacerbates severity of Multiple Sclerosis in an EAE mouse model. J Neuroinflammation 2025; 22:127. [PMID: 40307815 PMCID: PMC12044863 DOI: 10.1186/s12974-025-03450-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 04/18/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Ataxin-1 (ATXN1) is a protein in which expansion of its polyglutamine tract causes the neurodegenerative disorder spinocerebellar ataxia type 1 (SCA1) via a gain-of-function. Wild type ATXN1 was recently shown to have a protective role in regulating severity of experimental autoimmune encephalomyelitis (EAE), a well-established mouse model for Multiple sclerosis (MS). This study further investigates the role of ATXN1 with an expanded polyglutamine tract in the context of MS using an EAE mouse model. METHODS Hemizygous Atxn1 (Atxn12Q/-) mice or f-ATXN1146Q/2Q, heterozygous mice that have one copy of the endogenous mouse gene replaced with a polyQ expanded pathogenic human ATXN1 gene, were injected with myelin oligodendrocytes glycoprotein (MOG35 - 55) peptide to induce EAE. Immunohistochemical and biochemical approaches were used to analyze the degree of demyelination, cell loss, axonal degeneration as well as detecting the activated immune cells and inflammatory cytokines upon EAE induction in Atxn12Q/- and f-ATXN1146Q/2Q mice. RESULTS Our findings reveal that a loss-of-function of wild type Atxn1 in Atxn12Q/- and f-ATXN1146Q/2Q mice significantly exacerbates the EAE symptoms, leading to increased demyelination, oligodendrocytes loss, heightened axon degeneration, and greater clinical disability in affected mice. Importantly, the data reveals that neurotoxic astrocytes are activated at acute stage of disease (PID-14) and at the chronic stage of disease (PID-30) neurotoxic astrocytes no longer show signs of activation. The data also demonstrated enhanced infiltration of immune cells into the lesions of mutant mice. DISCUSSION These results indicate that ATXN1 plays a protective role in modulating immune responses and maintaining neural integrity during MS. Importantly, expansion of the polyQ tract in ATXN1 results in a loss-of-function in ATXN1's ability to dampen the immune response. Understanding the functional role of ATXN1 in MS pathogenesis may open new avenues for therapeutic strategies aimed at mitigating disease progression.
Collapse
MESH Headings
- Animals
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Mice
- Ataxin-1/genetics
- Ataxin-1/metabolism
- Peptides/genetics
- Peptides/metabolism
- Mice, Transgenic
- Disease Models, Animal
- Mice, Inbred C57BL
- Female
- Multiple Sclerosis/pathology
- Multiple Sclerosis/genetics
- Multiple Sclerosis/metabolism
- Humans
- Myelin-Oligodendrocyte Glycoprotein/toxicity
- Peptide Fragments/toxicity
Collapse
Affiliation(s)
- Gourango Talukdar
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Lisa Duvick
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Praseuth Yang
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Brennon O'Callaghan
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Gavin J Fuchs
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Marija Cvetanovic
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Harry T Orr
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
3
|
Talukdar G, Duvick L, Yang P, O'Callaghan B, Fuchs GJ, Cvetanovic M, Orr HT. An expanded polyglutamine in ATAXIN1 results in a loss-of-function that exacerbates severity of Multiple Sclerosis in an EAE mouse model. RESEARCH SQUARE 2025:rs.3.rs-5664390. [PMID: 40321775 PMCID: PMC12047985 DOI: 10.21203/rs.3.rs-5664390/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Background and Objectives Ataxin-1 (ATXN1) is a protein in which expansion of its polyglutamine tract causes the neurodegenerative disorder spinocerebellar ataxia type 1 (SCA1) via a gain-of-function. Wild type ATXN1 was recently shown to have a protective role in regulating severity of experimental autoimmune encephalomyelitis (EAE), a well-established mouse model for Multiple sclerosis (MS). This study further investigates the role of ATXN1 with an expanded polyglutamine tract in the context of MS using an EAE mouse model. Methods Hemizygous Atxn1 (Atxn1 2Q/-) mice or f-ATXN1 146Q/2Q , heterozygous mice that have one copy of the endogenous mouse gene replaced with a polyQ expanded pathogenic human ATXN1 gene, were injected with myelin oligodendrocytes glycoprotein (MOG35 - 55) peptide to induce EAE. Immunohistochemical and biochemical approaches were used to analyze the degree of demyelination, cell loss, axonal degeneration as well as detecting the activated immune cells and inflammatory cytokines upon EAE induction in Atxn1 2Q/- and f-ATXN1 146Q/2Q mice. Results Our findings reveal that a loss-of-function of wild type Atxn1 in Atxn1 2Q/- and f-ATXN1 146Q/2Q mice significantly exacerbates the EAE symptoms, leading to increased demyelination, oligodendrocytes loss, heightened axon degeneration, and greater clinical disability in affected mice. Importantly, the data reveals that neurotoxic astrocytes are activated at acute stage of disease (PID-14) and at the chronic stage of disease (PID-30) neurotoxic astrocytes no longer show signs of activation. The data also demonstrated enhanced infiltration of immune cells into the lesions of mutant mice. Discussion These results indicate that ATXN1 plays a protective role in modulating immune responses and maintaining neural integrity during MS. Importantly, expansion of the polyQ tract in ATXN1 results in a loss-of-function in ATXN1's ability to dampen the immune response. Understanding the functional role of ATXN1 in MS pathogenesis may open new avenues for therapeutic strategies aimed at mitigating disease progression.
Collapse
|
4
|
Zhang WG, Zheng XR, Yao Y, Sun WJ, Shao BZ. The role of NLRP3 inflammasome in multiple sclerosis: pathogenesis and pharmacological application. Front Immunol 2025; 16:1572140. [PMID: 40242770 PMCID: PMC11999851 DOI: 10.3389/fimmu.2025.1572140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Multiple sclerosis (MS) is widely acknowledged as a chronic inflammatory autoimmune disorder characterized by central nervous system (CNS) demyelination and neurodegeneration. The hyperactivation of immune and inflammatory responses is recognized as a pivotal factor contributing to the pathogenesis and progression of MS. Among various immune and inflammatory reactions, researchers have increasingly focused on the inflammasome, a complex of proteins. The initiation and activation of the inflammasome are intricately involved in the onset of MS. Notably, the NLRP3 inflammasome, the most extensively studied member of the inflammasome complex, is closely linked with MS. This review will delve into the roles of the NLRP3 inflammasome in the pathogenesis and progression of MS. Additionally, therapeutic strategies targeting the NLRP3 inflammasome for the treatment of MS, including natural compounds, autophagy regulators, and other small molecular compounds, will be detailed in this review.
Collapse
Affiliation(s)
- Wen-Gang Zhang
- The First Medical Center, General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Xiao-Rui Zheng
- Medical Supplies Center, General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Yi Yao
- The First Medical Center, General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Wei-Jia Sun
- Medical Supplies Center, General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Bo-Zong Shao
- The First Medical Center, General Hospital of the Chinese People’s Liberation Army, Beijing, China
| |
Collapse
|
5
|
Li X, Lin D, Hu X, Shi X, Huang W, Ouyang Y, Chen X, Xiong Y, Wu X, Hong D, Chen H. Akkermansia muciniphila Modulates Central Nervous System Autoimmune Response and Cognitive Impairment by Inhibiting Hippocampal NLRP3-Mediated Neuroinflammation. CNS Neurosci Ther 2025; 31:e70320. [PMID: 40050112 PMCID: PMC11884925 DOI: 10.1111/cns.70320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 01/20/2025] [Accepted: 02/11/2025] [Indexed: 03/10/2025] Open
Abstract
BACKGROUND Numerous studies have demonstrated the significant role of Akkermansia muciniphila (A. muciniphila) in enhancing host immune responses and metabolic functions. However, its increased presence in multiple sclerosis (MS) patients has led to a focus on the relationships between A. muciniphila and diseases, with the underlying mechanisms remaining unknown. METHOD Solochrome cyanin, hematoxylin-eosin staining (H&E) and immunofluorescence staining were used to assess demyelination and inflammation. Gut microbiota changes were examined by 16S rRNA sequencing. Intracellular cytokine levels were assessed by flow cytometry. Cognitive impairment was evaluated using four behavioral tests. Intestinal barrier function and pyrin domain-containing protein 3 (NLRP3)-mediated neuroinflammation were evaluated by immunoblotting. RESULTS We found that treatment with an appropriate dose of A. muciniphila (5.0 × 107 CFU/mL) reduced neuropathology and disease severity in experimental autoimmune encephalomyelitis (EAE) mice. In addition, A. muciniphila supplementation increased the diversity and abundance of intestinal microbiota while decreasing the Firmicutes/Bacteroidetes ratio. Moreover, it improved intestinal barrier function and attenuated Th17 responses in the gut, central nervous system (CNS), and lymphoid tissues, without affecting Treg response in the lymphoid tissue. Furthermore, A. muciniphila administration partly regulated cognitive impairment and hippocampal NLRP3-mediated neuroinflammation. CONCLUSION Our results suggest that A. muciniphila holds promise as a probiotic for treating NLRP3-associated inflammatory disorders and cognitive impairment, including MS.
Collapse
MESH Headings
- Animals
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors
- NLR Family, Pyrin Domain-Containing 3 Protein/immunology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/microbiology
- Mice
- Mice, Inbred C57BL
- Hippocampus/metabolism
- Hippocampus/immunology
- Hippocampus/pathology
- Cognitive Dysfunction/immunology
- Cognitive Dysfunction/microbiology
- Cognitive Dysfunction/metabolism
- Gastrointestinal Microbiome/physiology
- Neuroinflammatory Diseases/immunology
- Female
- Akkermansia
- Probiotics
Collapse
Affiliation(s)
- Xiaobing Li
- Department of NeurologyThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
- Institute of Neurology, Jiangxi Academy of Clinical Medical Science, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
- Key Laboratory of Rare Neurological Diseases of Jiangxi Provincial Health CommissionJiangxi Medical College, Nanchang UniversityNanchangChina
| | - Dengna Lin
- Department of GastroenterologyThe Sixth Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouChina
- Guangdong Institute of GastroenterologyGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Supported by National Key Clinical DisciplineGuangzhouChina
| | - Xin Hu
- Department of NeurologyThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
- Institute of Neurology, Jiangxi Academy of Clinical Medical Science, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
- Key Laboratory of Rare Neurological Diseases of Jiangxi Provincial Health CommissionJiangxi Medical College, Nanchang UniversityNanchangChina
| | - Xiongwei Shi
- Department of NeurologyThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
- Institute of Neurology, Jiangxi Academy of Clinical Medical Science, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
- Key Laboratory of Rare Neurological Diseases of Jiangxi Provincial Health CommissionJiangxi Medical College, Nanchang UniversityNanchangChina
| | - Wenxuan Huang
- Department of NeurologyThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
- Institute of Neurology, Jiangxi Academy of Clinical Medical Science, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
- Key Laboratory of Rare Neurological Diseases of Jiangxi Provincial Health CommissionJiangxi Medical College, Nanchang UniversityNanchangChina
| | - Yi Ouyang
- Department of NeurologyThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
- Institute of Neurology, Jiangxi Academy of Clinical Medical Science, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
- Key Laboratory of Rare Neurological Diseases of Jiangxi Provincial Health CommissionJiangxi Medical College, Nanchang UniversityNanchangChina
| | - Xiaohong Chen
- Department of Neurology and Multiple Sclerosis Research CenterThe Third Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouChina
| | - Yingqiong Xiong
- Department of NeurologyThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
- Institute of Neurology, Jiangxi Academy of Clinical Medical Science, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
- Key Laboratory of Rare Neurological Diseases of Jiangxi Provincial Health CommissionJiangxi Medical College, Nanchang UniversityNanchangChina
| | - Xiaomu Wu
- Department of NeurologyThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
- Institute of Neurology, Jiangxi Academy of Clinical Medical Science, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
- Key Laboratory of Rare Neurological Diseases of Jiangxi Provincial Health CommissionJiangxi Medical College, Nanchang UniversityNanchangChina
| | - Daojun Hong
- Department of NeurologyThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
- Institute of Neurology, Jiangxi Academy of Clinical Medical Science, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
- Key Laboratory of Rare Neurological Diseases of Jiangxi Provincial Health CommissionJiangxi Medical College, Nanchang UniversityNanchangChina
| | - Hao Chen
- Department of NeurologyThe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
- Institute of Neurology, Jiangxi Academy of Clinical Medical Science, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangChina
- Key Laboratory of Rare Neurological Diseases of Jiangxi Provincial Health CommissionJiangxi Medical College, Nanchang UniversityNanchangChina
| |
Collapse
|
6
|
Otálora-Alcaraz A, Reilly T, Oró-Nolla M, Sun MC, Costelloe L, Kearney H, Patra PH, Downer EJ. The NLRP3 inflammasome: A central player in multiple sclerosis. Biochem Pharmacol 2025; 232:116667. [PMID: 39647604 DOI: 10.1016/j.bcp.2024.116667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 12/10/2024]
Abstract
Multiple sclerosis (MS) is a neurological autoimmune condition associated with many symptoms including spasticity, pain, limb numbness and weakness. It is characterised by inflammatory demyelination and axonal degeneration of the brain and spinal cord. A range of disease-modifying therapies (DMTs) are available to suppress inflammatory disease activity in MS, however, there is a pressing need for new therapeutic avenues as DMTs have a limited ability to suppress confirmed disability progression. A body of literature indicates that innate immune inflammation is linked to MS progression. The nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain containing protein 3 (NLRP3) inflammasome has a well-established function in innate immunity which is closely associated with the pathogenesis of neuroinflammatory conditions. Evidence suggests that the inflammasome may be a therapeutic target in disorders such as MS and at present, inhibitors of the NLRP3 inflammasome are in pre-clinical development. Therefore, this review systematically highlights the pathogenic role of inflammasomes in MS, presenting an overview of research evidence linking inflammasome-related polymorphisms to MS susceptibility, and gathering evidence investigating NLRP3 biomarkers in MS. The role of the NLRP3 inflammasome in murine models of MS is furthermore discussed. Finally, a significant component of this review focuses on evidence that NLRP3 signalling components are novel drug targets in MS. Overall this review defines the role of the inflammasome in MS pathogenesis and identifies inflammasome inhibitor targets that warrant full investigation in MS and related disorders.
Collapse
Affiliation(s)
- Almudena Otálora-Alcaraz
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Thomas Reilly
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Martí Oró-Nolla
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Melody Cui Sun
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Lisa Costelloe
- Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Hugh Kearney
- MS Unit, Department of Neurology, St. James's Hospital, Dublin, Ireland; Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Ireland
| | - Pabitra H Patra
- Transpharmation Ltd., London Biosciences Innovation Centre, London, United Kingdom
| | - Eric J Downer
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
7
|
Cai X, Cai X, Xie Q, Xiao X, Li T, Zhou T, Sun H. NLRP3 inflammasome and gut microbiota-brain axis: a new perspective on white matter injury after intracerebral hemorrhage. Neural Regen Res 2025; 21:01300535-990000000-00684. [PMID: 39885662 PMCID: PMC12094575 DOI: 10.4103/nrr.nrr-d-24-00917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/09/2024] [Accepted: 01/07/2025] [Indexed: 02/01/2025] Open
Abstract
ABSTRACT Intracerebral hemorrhage is the most dangerous subtype of stroke, characterized by high mortality and morbidity rates, and frequently leads to significant secondary white matter injury. In recent decades, studies have revealed that gut microbiota can communicate bidirectionally with the brain through the gut microbiota-brain axis. This axis indicates that gut microbiota is closely related to the development and prognosis of intracerebral hemorrhage and its associated secondary white matter injury. The NACHT, LRR, and pyrin domain-containing protein 3 (NLRP3) inflammasome plays a crucial role in this context. This review summarizes the dysbiosis of gut microbiota following intracerebral hemorrhage and explores the mechanisms by which this imbalance may promote the activation of the NLRP3 inflammasome. These mechanisms include metabolic pathways (involving short-chain fatty acids, lipopolysaccharides, lactic acid, bile acids, trimethylamine-N-oxide, and tryptophan), neural pathways (such as the vagus nerve and sympathetic nerve), and immune pathways (involving microglia and T cells). We then discuss the relationship between the activated NLRP3 inflammasome and secondary white matter injury after intracerebral hemorrhage. The activation of the NLRP3 inflammasome can exacerbate secondary white matter injury by disrupting the blood-brain barrier, inducing neuroinflammation, and interfering with nerve regeneration. Finally, we outline potential treatment strategies for intracerebral hemorrhage and its secondary white matter injury. Our review highlights the critical role of the gut microbiota-brain axis and the NLRP3 inflammasome in white matter injury following intracerebral hemorrhage, paving the way for exploring potential therapeutic approaches.
Collapse
Affiliation(s)
- Xiaoxi Cai
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xinhong Cai
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Quanhua Xie
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xueqi Xiao
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Tong Li
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Tian Zhou
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong–Hong Kong–Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong–Hong Kong–Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
8
|
Kalaki-Jouybari F, Shirzad M, Javan M, Ghasemi-Kasman M, Pouramir M. Co-administration of Naringin and NLRP3 Inhibitor Improves Myelin Repair and Mitigates Oxidative Stress in Cuprizone-Induced Demyelination Model. Curr Neuropharmacol 2025; 23:475-491. [PMID: 40123459 DOI: 10.2174/1570159x23666241206102022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Naringin and MCC950 as an inflammasome inhibitor have exhibited numerous pharmacological activities, including antioxidant and anti-inflammatory effects. The present study has examined the combined impacts of naringin and MCC950 on the levels of oxidative stress, demyelination, and inflammation in the cuprizone (CPZ)-induced demyelination model. METHODS In order to induce demyelination, CPZ (0.2% w/w) was added to the normal diet of mice for 42 days. Subsequently, the male C57BL/6 mice received naringin (oral administration), MCC950 (intraperitoneal injection), or their combination for 14 days. Working memory was tested by the Y maze. FluoroMyelin staining, MOG, and GFAP immunostaining assessed the demyelination extent, myelin intensity, and astrocyte activation, respectively. Oxidant/antioxidant biomarkers were measured using colorimetric techniques. The expression levels of MBP, PDGFRα, Olig2, Nrf2, HO-1, NQO-1, GSK3β, IL1α, and IL18 were assessed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). RESULTS Our results indicated that the co-administration of naringin and MCC950 improved working memory and antioxidant capacity. A significant reduction was found in the extent of demyelination and inflammatory mediatorsin naringin and MCC950-treated mice. In addition, co-administration of naringin and MCC950 elevated the expression levels of pro-myelinating and antioxidant markers. CONCLUSION These findings indicated improvement of the working memory through co-administration of naringin and MCC950, which might be partly mediated by enhancing antioxidant capacity, promoting remyelination, and mitigating inflammation in the CPZ-induced demyelination model.
Collapse
Affiliation(s)
- Fatemeh Kalaki-Jouybari
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Moein Shirzad
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Physiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mehdi Pouramir
- Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
9
|
Zhou Q, Guo Y, Tian Z, Qiu Y, Liu Y, Liu Q, Liu Y, Yang Y, Shi L, Li X, Gao G, Fan S, Zeng Z, Xiong W, Tan M, Li G, Zhang W. PLUNC inhibits invasion and metastasis in nasopharyngeal carcinoma by inhibiting NLRP3 inflammasome activation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167352. [PMID: 39004379 DOI: 10.1016/j.bbadis.2024.167352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor that occurs in the nasopharynx. Palate, lung, and nasal epithelium clone (PLUNC) has been identified as an early secreted protein that is specifically expressed in the nasopharynx. The aim of this study was to determine the role and mechanism of PLUNC in NPC. We used mRNA sequencing (seq) combined with ribosome-nascent chain complex (RNC)-seq to determine the biological role of PLUNC. The expression of epithelial-to-mesenchymal transition (EMT)-related molecules was detected by western blotting. Then, cell migration and invasion were detected by wound healing and Transwell chamber assays. NPC cells were injected into the tail vein of nude mice to explore the biological role of PLUNC in vivo. The sequencing results showed that PLUNC inhibited the progression of NPC and its expression was correlated with that of NOD-like receptors. Experiments confirmed that PLUNC inhibited the invasion and metastasis of NPC cells by promoting the ubiquitination degradation of NLRP3. PLUNC overexpression in combination with the treatment by MCC950, an inhibitor of NLRP3 inflammasome activation, was most effective in inhibiting NPC invasion and metastasis. In vivo experiments also confirmed that the combination of PLUNC overexpression and MCC950 treatment effectively inhibited the lung metastasis of NPC cells. In summary, our research suggested that PLUNC inhibited the invasion and metastasis of NPC by inhibiting NLRP3 inflammasome activation, and targeting the PLUNC-NLRP3 inflammasome axis could provide a new strategy for the diagnosis and treatment of NPC patients.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Clinical Laboratory, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China; Department of Medical Laboratory Science, Xiangya Medical College, Central South University, Changsha, Hunan, China
| | - Yilin Guo
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Medical Laboratory Science, Xiangya Medical College, Central South University, Changsha, Hunan, China
| | - Ziying Tian
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Medical Laboratory Science, Xiangya Medical College, Central South University, Changsha, Hunan, China
| | - Yanbing Qiu
- Clinical Laboratory, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ying Liu
- Department of Clinical Laboratory, Zhengzhou Orthopaedics Hospital, Zhengzhou, Henan, China
| | - Qingluan Liu
- Changsha Hospital for Maternal and Child Health Care, Changsha, Hunan, China
| | - Yijun Liu
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuqin Yang
- Shenzhen Maternity & Child Healthcare Hospital Clinical Laboratory, Shenzhen, Guangdong, China
| | - Lei Shi
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- Hunan Provincial People's Hospital, Changsha, Hunan, China
| | - Ge Gao
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Medical Laboratory Science, Xiangya Medical College, Central South University, Changsha, Hunan, China
| | - Songqing Fan
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Ming Tan
- Graduate Institute of Biomedical Sciences, China Medical University, Taiwan; Research Center for Cancer Biology, China Medical University, Taiwan
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Wenling Zhang
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Medical Laboratory Science, Xiangya Medical College, Central South University, Changsha, Hunan, China.
| |
Collapse
|
10
|
Rahman MS, Islam R, Bhuiyan MIH. Ion transporter cascade, reactive astrogliosis and cerebrovascular diseases. Front Pharmacol 2024; 15:1374408. [PMID: 38659577 PMCID: PMC11041382 DOI: 10.3389/fphar.2024.1374408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024] Open
Abstract
Cerebrovascular diseases and their sequalae, such as ischemic stroke, chronic cerebral hypoperfusion, and vascular dementia are significant contributors to adult disability and cognitive impairment in the modern world. Astrocytes are an integral part of the neurovascular unit in the CNS and play a pivotal role in CNS homeostasis, including ionic and pH balance, neurotransmission, cerebral blood flow, and metabolism. Astrocytes respond to cerebral insults, inflammation, and diseases through unique molecular, morphological, and functional changes, collectively known as reactive astrogliosis. The function of reactive astrocytes has been a subject of debate. Initially, astrocytes were thought to primarily play a supportive role in maintaining the structure and function of the nervous system. However, recent studies suggest that reactive astrocytes may have both beneficial and detrimental effects. For example, in chronic cerebral hypoperfusion, reactive astrocytes can cause oligodendrocyte death and demyelination. In this review, we will summarize the (1) roles of ion transporter cascade in reactive astrogliosis, (2) role of reactive astrocytes in vascular dementia and related dementias, and (3) potential therapeutic approaches for dementing disorders targeting reactive astrocytes. Understanding the relationship between ion transporter cascade, reactive astrogliosis, and cerebrovascular diseases may reveal mechanisms and targets for the development of therapies for brain diseases associated with reactive astrogliosis.
Collapse
Affiliation(s)
- Md Shamim Rahman
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX, United States
| | | | - Mohammad Iqbal H. Bhuiyan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX, United States
| |
Collapse
|
11
|
Demirtaş N, Mazlumoğlu BŞ, Palabıyık Yücelik ŞS. Role of NLRP3 Inflammasomes in Neurodegenerative Diseases. Eurasian J Med 2023; 55:98-105. [PMID: 39109852 PMCID: PMC11075041 DOI: 10.5152/eurasianjmed.2023.23349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/24/2023] [Indexed: 08/11/2024] Open
Abstract
Large-scale neuronal degeneration in the human brain is a hallmark of neurodegenerative diseases. These diseases range in location and cause, but they all have neurodegenerative characteristics in common. Neurodegenerative diseases, which have almost no efective treatment options, tend to progress irreversibly and cause large socioeconomic and healthcare costs. In recent years, due to the increase in the elderly population, neurodegenerative diseases that have a risk factor with aging are becoming increasingly common. Evidence that neurodegenerative diseases, which have an important place in public health, may be caused by neuroinflammation, has led to comprehensive investigation of neurodegenerative diseases in this regard. Inflammasomes are innate immune system-associated multiproteins that regulate caspase-1 activation and induce inflammation. The NLRP3 inflammasome is the most researched inflammasome and also located in microglia, its activation mediates the maturation and secretion of the inflammatory cytokines interleukin1beta (IL-1β) and IL-18, thus exerting its efects in the central nervous system. Within the scope of this review, experimental and human studies evaluating the role of NLRP3 inflammasome activation and the efects of its inhibition in neurodegenerative diseases frequently encountered in society have been compiled with studies from past to present.
Collapse
Affiliation(s)
- Nagihan Demirtaş
- Department of Pharmaceutical Toxicology, Atatürk University Faculty of Pharmacy, Erzurum, Turkey
| | - Büşra Şahin Mazlumoğlu
- Department of Pharmaceutical Toxicology, Atatürk University Faculty of Pharmacy, Erzurum, Turkey
| | - Şaziye Sezin Palabıyık Yücelik
- Department of Pharmaceutical Toxicology, Atatürk University Faculty of Pharmacy, Erzurum, Turkey
- Clinical Research, Development and Design Application and Research Center, Atatürk University, Erzurum, Turkey
| |
Collapse
|